## HOMEWORK 7 ANSWER KEYS

PROBLEMS FROM THE NOTES: 6.1.3, 6.1.7, 6.2.3, 6.2.4, 6.3.2, 6.3.5, 6.3.6, 7.1.3, 7.1.5, 7.2.2, 7.2.4

Problem 6.1.7 (a,c): (a) Suppose (for contradiction) that the cardinality of $(a, b)=\{a,\{a, b\}\}$ is 1 . This must mean that $a=\{a, b\}$. This implies (by the definition of two sets being equal) $\forall x(x \in\{a, b\} \rightarrow x \in a)$. Since $a \in\{a, b\}$, we get that $a \in a$. This contradicts the Axiom of Regularity.
(c) (We use the results of parts ( $\mathrm{a}, \mathrm{b}$ ) in what follows). We want to show the second conclusion in part (b) is impossible. Suppose it holds, i.e. $a=\{c, d\}$ and $c=\{a, b\}$. The fact that $c=\{a, b\}$ implies $a \in c$. The fact that $a=\{c, d\}$ implies $c \in a$. So we have $a \in c \in a$. This again violates the Axiom of Regularity.

Remark: We did not use the full Axiom of Regularity, but two consequences of the axiom, namely: (i) $\forall a \neg(a \in a)$, and (ii) $\forall a \forall b \neg(a \in b \in a)$.

Problem 6.2.3 (a,b): (a) FALSE. Counterexample: let $A=\{7,\{7\}\}$. In this case, $\mathcal{P}(A)=$ $\{\emptyset,\{7\},\{\{7\}\}, A\}$. Clearly, $\{7\} \in \mathcal{P}(A), 7 \in A$ (by definition of $A$ ) but also $\{7\} \in A$.
(b) TRUE. We have shown in class that for finite $B$, if $|B|=n$, then $|\mathcal{P}(B)|=2^{n}$. Since $A \subsetneq \mathcal{P}(B)$ and $|A|=2,|\mathcal{P}(B)| \geq 3$. Since 3 is not $2^{n}$ for any $n,|\mathcal{P}(B)| \geq 4$. Now since $\mathcal{P}(B) \subsetneq C$, $|C| \geq 5$. This is what we want.

Problem 6.3.5: $\bigcup_{x \in \mathbb{R}} A_{x}=\mathbb{R}$. Since $A_{x} \subseteq \mathbb{R}, \bigcup_{x \in \mathbb{R}} A_{x} \subseteq \mathbb{R}$. To see the $\supseteq$-direction, let $z \in \mathbb{R}$ be arbitrary, we want to show $z \in \bigcup_{x \in \mathbb{R}} A_{x}$. It is enough to find some $x \in \mathbb{R}$ such that $z \in A_{x}$ (by the the definition of $\bigcup_{x \in \mathbb{R}} A_{x}$ ). Let $x=z-1$. Then since $z>z-1=x, z \in A_{x}$ as desired.
$\bigcap_{x \in \mathbb{R}} A_{x}=\{3,-2\}$. To see the $\supseteq$-direction, observe that $\{3,-2\} \subseteq A_{x}$ for all $x \in \mathbb{R}$ by the definition of $A_{x}$. To see the $\subseteq$-direction, it is enough to show that for $z \neq 3,-2, z \notin \bigcap_{x \in \mathbb{R}} A_{x}$. Fix such a $z$, to see that $z \notin \bigcap_{x \in \mathbb{R}} A_{x}$, it is enough to show that there is some $x \in \mathbb{R}$ such that $z \notin A_{x}$ (this uses the de Morgan's law for sets: $\left.\neg\left(\bigcap_{x} A_{x}\right)=\bigcup_{x} \neg A_{x}\right)$. Let $x=z$, then $A_{x}=A_{z}=\{3,-2\} \cup\{y \in \mathbb{R}: y>z\}$. It is easy, using the fact that $x 3,-2$, to see that $z \notin A_{z}$.

Problem 7.1.5: The answer is 6 . To see this, notice that the relation $R$ is a subset of $A \times A$. Since $|A|=4,|A \times A|=4.4=16$. Write $A=\{a, b, c, d\}$. Write $A \times A$ as $A_{1} \cup A_{2} \cup A_{3}$, where

- $A_{1}=\{(a, a),(b, b),(c, c),(d, d)\}$
- $A_{2}=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- $A_{3}=\{(b, a),(c, a),(d, a),(c, b),(d, b),(d, c)\}$.
$\left|A_{1}\right|=4,\left|A_{2}\right|=\left|A_{3}\right|=6$. Also note that in order for $R \cap R^{-1}=\emptyset, R$ cannot contain any element of $A_{1}$. This implies $|R| \leq 12$. Now observe that for $x, y \in A,(x, y) \in A_{2}$ iff $(y, x) \in A_{3}$. Also, if
$(x, y) \in R$, then $(y, x)$ cannot be in $R$. This shows that $|R| \leq 6 .|R|$ can be 6 , for example we can let $R=A_{2}$.

Problem 7.2.2 ( $\mathbf{a}, \mathbf{b}$ ): (a) $R$ is NOT a function. For example, $(0,1)$ and $(0,-1)$ are both in $R$.
(b) $S$ is a function. This is because for each $x \in[-1,1]$, the unique element $y \in[0,1]$ satisfying $x^{2}+y^{2}=1$ is $y=\sqrt{1-x^{2}}$. The function $S$ is SURJECTIVE because for any $y \in[0,1], x=\sqrt{1-y^{2}}$ is such that $(x, y) \in S . S$ is NOT INJECTIVE because $(-1,0)$ and $(1,0)$ are both in $S$.

