HOMEWORK 8 ANSWER KEYS

PROBLEMS FROM THE NOTES: 7.3.1, 7.3.4, 7.3.5, 7.4.3, 7.5.3, 7.6.1, 7.6.2, 7.6.5
Problem 7.3.1 (a,c): (a) $R=\{(1,1),(2,2),(3,3)\}$ is both symmetric and antisymmetric.
(c) $R=\{(1,2),(2,3),(1,3)\}$ is transitive. Now $R^{-1}=\{(2,1),(3,2),(3,1)\} . \quad R \cup R^{-1}=$ $\{(1,2),(2,3),(1,3),(2,1),(3,2),(3,1)\}$ is NOT transitive because: $(3,1)$ and $(1,3)$ are in $R \cup R^{-1}$ but $(3,3) \notin R \cup R^{-1}$.

Problem 7.3.5(a): $a R b \Leftrightarrow a \equiv b(\bmod 3)$ or $a \equiv b(\bmod 4)$
Is R reflexive: YES. Because for all $a \in \mathbb{Z}, a \equiv a(\bmod \mathrm{n})$ for all n.
Is R symmetric: YES. Suppose $a R b$. This means either $a \equiv b(\bmod 3)$ or $a \equiv b(\bmod 4)$. If the former holds, then $b \equiv a(\bmod 3)$. So $b \equiv a(\bmod 3)$ or $b \equiv a(\bmod 4)$. So $b R a$. If the latter holds, then similarly, we get $b \equiv a(\bmod 4)$, hence $b \equiv a(\bmod 4)$ or $b \equiv a(\bmod 3)$. Hence $b R a$.

Is R transitive: NO. Because $1 \equiv 4(\bmod 3)$ and $4 \equiv 8(\bmod 4)$ but $\neg(1 \equiv 8)(\bmod 3)$ and $\neg(1 \equiv 8)(\bmod 4)$.

Problem 7.4.3(a,b): (a) R is reflexive, symmetric, but is NOT transitive. To see why R is not transitive, just note that, for example, $(2,1) \in R$ and $(1,3) \in R$ but $(2,3) \notin R$.
(b) $A_{1}=\{1,2,3\}$.
$A_{2}=\{1,2\}$.
$A_{3}=\{1,3\}$.
$\left\{A_{1}, A_{2}, A_{3}\right\}$ do not form a partition of X because (even though $\bigcup_{i} A_{i}=X$) they are not pairwise disjoint, e.g. $A_{1} \cap A_{2}=\{1,2\} \neq \emptyset$.

Problem 7.5.3(c): I just do this for \oplus (the \otimes is similar and easier; grader: please just grade on the work on \oplus).

Suppose $(a, b) \sim(c, d)$ and $(x, y) \sim(z, t)$. We want to see that $[(a, b)] \oplus[(x, y)]=[(c, d)] \oplus[(z, t)]$. By the definition of \sim :

- $(a, b) \sim(c, d)$ means $a d=b c$
- $(x, y) \sim(z, t)$ means $x t=y z$.

Now, by the definition of \oplus :

- $[(a, b)] \oplus[(x, y)]=[(a y+b x, b y)]$.
- $[(c, d)] \oplus[(z, t)]=[(c t+d z, d t)]$.

To see that $[(a y+b x, b y)]=(c t+d z, d t)]$, we need to see that

$$
(a y+b x) d t=(c t+d z) b y .
$$

Now $(a y+b x) d t=(a d)(y t)+(b d)(x t)=(b c)(y t)+(b d)(x t)=(b c)(y t)+(b d)(y z)=(c t)(b y)+$ $(b y)(d z)=(c t+d z) b y$. As desired.

Problem 7.6.1: $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{5}: x \mapsto x^{3}(\bmod 5)$ is NOT well-defined.
Counter-example: $[2]_{3}=[5]_{3}\left(\right.$ i.e. $2 \equiv 5(\bmod 3) . \mathrm{f}(2)=2^{3}=8 \equiv 3(\bmod 5)$, but $f(5)=5^{3}=$ $125 \equiv 0(\bmod 5)$. Clearly $f(2) \neq f(5)$ even though $[2]_{3}=[5]_{3}$.

