MATH 150 PRACTICE PROBLEMS FOR FINAL

- 1. Determine if the following are tautologies:
- (a) $(R \to (S \lor Q)) \lor (R \lor (S \to Q))$
- (b) $(R \leftrightarrow P) \lor (P \rightarrow \neg R)$.
- 2. The soundness theorem says that:
- (a) If $\Gamma \vdash$ then $\Gamma \vDash \varphi$.
- (b) If Γ is satisfiable (i.e. there is some model $\mathfrak{M} \models \Gamma$), then Γ is consistent.

Show that the two statements are equivalent.

3. The completeness theorem says that:

- (a) If $\Gamma \vDash$ then $\Gamma \vdash \varphi$.
- (b) If Γ is consistent, then Γ is satisfiable.

Show that the two statements are equivalent.

4. The compactness theorem says that:

- (a) If $\Gamma \vDash$ then $\Gamma_0 \vdash \varphi$ for some finite $\Gamma_0 \Gamma$.
- (b) If every finite subset of Γ is satisfiable, then so is Γ .

Show that the two statements are equivalent.

- 5. Consider the following extension of the language of rings.
 - $\mathcal{L}_f = \{\dot{+}, \dot{\times}, \dot{0}, \dot{1}, \dot{<}, \dot{f}\}$ is the language of rings with an additional binary relation symbol $\dot{<}$ and a unary function symbol \dot{f} .

Consider the structure

$$\mathfrak{R} = (\mathbb{R}, +, \cdot, 0, 1, <, f)$$

where \mathbb{R} is the set of all real numbers, and the interpretations of symbols $\dot{+}, \dot{\times}, \dot{0}, \dot{1}, \dot{<}$ in these structures are natural: 0, 1 are numbers "zero" and "one", + and \cdot are usual addition and multiplication, and < is the usual ordering of real numbers. Additionally, \dot{f} is interpreted in \mathfrak{R} as a unary function $f: \mathbb{R} \to \mathbb{R}$.

Express the following statements about numbers and function f in the structure \Re as instructed below.

(a) Find an \mathcal{L} -formula $\varphi(u, v)$ which expresses:

"v is a local minimum of f at u".

(b) Find an \mathcal{L} -sentence τ which expresses:

"The set of arguments (i.e. points) at which f has local minimum is unbounded".

Now suppose $f(x) = e^x$ for all $x \in \mathbb{R}$; let $s : V \to \mathbb{R}$ be the evaluation of variables such that $s(x_{2k+1}) = 1$ for all $k \in \mathbb{N}$. Let t be the term

"
$$\dot{\times}(\dot{f}(\dot{1}), \dot{+}(\dot{1}, \dot{f}(v_1)))$$
"

and $\varphi(x)$ be the formula:

$$\exists v_2(v_2 = \dot{f}(x)).$$

- (c) Evaluate $t^{\Re}[s]$.
- (d) Is t substitutable for x in φ ? If so, determine whether $\mathfrak{R} \models \varphi(x/t)[s]$.

Explanations. Number b is a local minimum of a function f at a iff f(a) = b, and there is an open interval (x, y) containing a such that $f(z) \ge b$ for all $z \in (x, y)$. A set $X \subseteq \mathbb{R}$ is unbounded iff X has some element outside of any open interval (x, y) where $x, y \in \mathbb{R}$.

6. Consider a language \mathcal{L} with a 2-ary predicate symbol $\dot{\leq}$. Let $\mathfrak{N} = (\mathbb{N}; <)$ be the structure of \mathcal{L} consisting of the natural numbers with the usual ordering. Show that one cannot express the following statement in English

"There is no infinite descending chain."

by a sentence in the language \mathcal{L} . **Hint.** You may want to use the Compactness Theorem here. Think about what would happen if you could express the statement by a sentence τ in \mathcal{L} . Does $\mathfrak{N} \models \tau$? Can you find a model of \mathcal{L} that satisfies τ ?

7. Show that $\{\forall x(\alpha \to \beta), \exists x\alpha\} \models \exists x\beta$.

8. Let $\mathfrak{A} = (\mathbb{R}; +, \times)$ be an \mathcal{L} -structure, here \mathcal{L} 's nonlogical symbols are $\{\dot{+}, \dot{\times}\}$. Define the following sets in the structure \mathcal{A} .

- (a) $\{0\}$.
- (b) $\{1\}$.
- (c) $\{3\}$.
- (d) The interval $(0, \infty)$.
- (e) $\{\langle r, s \rangle \mid r \leq s\}$ (here r, s are reals, of course).

9. Let $\mathfrak{A} = (\mathbb{N}; 0, 1, +, \times)$. Give a formula in the language of \mathfrak{A} which defines the following. (Notice here that the language of \mathfrak{A} only consists of the following non-logical symbols: $\dot{0}, \dot{1}, \dot{+}, \dot{\times}$).

(a) $\{2\}$.

- (b) $\{n \mid n \text{ is even}\}.$
- (c) $\{\langle m, n \rangle \mid m \text{ divides } n\}.$
- (d) $\{n \mid n \text{ is a prime}\}.$
- 10. Assume that the language has a unary function symbol f. Find a sentence σ such that:
- (a) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff the universe of \mathfrak{A} has at least two elements.
- (b) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff the universe of \mathfrak{A} has exactly two elements.
- (c) for any model $\mathfrak{A}, \mathfrak{A} \models \sigma$ iff $f^{\mathfrak{A}}$ is onto.

11. Consider the model * \mathfrak{R} discussed in class (and defined in Section 2.8). We also have standard structure \mathfrak{R} , where $|\mathfrak{R}| = \mathbb{R}$, $P_R^{\mathfrak{R}} = R$, $c_r^{\mathfrak{R}} = r$, $f_F^{\mathfrak{R}} = F$ for each relation symbol P_R , constant symbol c_r , and function symbol f_F . By the construction of * \mathfrak{R} , $\mathfrak{R} \subset |*\mathfrak{R}| =_{def} *\mathbb{R}$. Let $<^* = P_<^{*\mathfrak{R}}$.

- (a) Show that for any $r, s \in \mathbb{R}$, there is some $t \in {}^*\mathbb{R}$ such that $r < {}^*t < {}^*s$.
- (b) Show that there is $\epsilon \in {}^*\mathbb{R}$, $0 < {}^*\epsilon$ such that for positive $r \in \mathbb{R}$, $\epsilon < {}^*r$.
- (c) Show that the set \mathbb{R} is a bounded subset of $*\mathbb{R}$. And there is no least upper bound for \mathbb{R} in $*\mathbb{R}$.