MATH 150 PRACTICE PROBLEMS FOR FINAL

1. Determine if the following are tautologies:
(a) $(R \rightarrow(S \vee Q)) \vee(R \vee(S \rightarrow Q))$
(b) $(R \leftrightarrow P) \vee(P \rightarrow \neg R)$.
2. The soundness theorem says that:
(a) If $\Gamma \vdash$ then $\Gamma \vDash \varphi$.
(b) If Γ is satisfiable (i.e. there is some model $\mathfrak{M} \vDash \Gamma$), then Γ is consistent.

Show that the two statements are equivalent.
3. The completeness theorem says that:
(a) If $\Gamma \vDash$ then $\Gamma \vdash \varphi$.
(b) If Γ is consistent, then Γ is satisfiable.

Show that the two statements are equivalent.
4. The compactness theorem says that:
(a) If $\Gamma \vDash$ then $\Gamma_{0} \vdash \varphi$ for some finite $\Gamma_{0} \Gamma$.
(b) If every finite subset of Γ is satisfiable, then so is Γ.

Show that the two statements are equivalent.
5. Consider the following extension of the language of rings.

- $\mathcal{L}_{f}=\{\dot{+}, \dot{\times}, \dot{0}, \dot{1}, \dot{<}, \dot{f}\}$ is the language of rings with an additional binary relation symbol $\dot{<}$ and a unary function symbol \dot{f}.

Consider the structure

$$
\mathfrak{R}=(\mathbb{R},+, \cdot, 0,1,<, f)
$$

where \mathbb{R} is the set of all real numbers, and the interpretations of symbols $\dot{+}, \dot{x}, \dot{0}, \dot{1}, \dot{<}$ in these structures are natural: 0,1 are numbers "zero" and "one",+ and \cdot are usual addition and multiplication, and < is the usual ordering of real numbers. Additionally, \dot{f} is interpreted in \Re as a unary function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Express the following statements about numbers and function f in the structure \Re as instructed below.
(a) Find an \mathcal{L}-formula $\varphi(u, v)$ which expresses:

$$
\text { " } v \text { is a local minimum of } f \text { at } u " \text {. }
$$

(b) Find an \mathcal{L}-sentence τ which expresses:
"The set of arguments (i.e. points) at which f has local minimum is unbounded".

Now suppose $f(x)=e^{x}$ for all $x \in \mathbb{R}$; let $s: V \rightarrow \mathbb{R}$ be the evaluation of variables such that $s\left(x_{2 k+1}\right)=1$ for all $k \in \mathbb{N}$. Let t be the term

$$
" \dot{x}\left(\dot{f}(\dot{1}), \dot{+}\left(\dot{1}, \dot{f}\left(v_{1}\right)\right)\right) "
$$

and $\varphi(x)$ be the formula:

$$
\exists v_{2}\left(v_{2}=\dot{f}(x)\right)
$$

(c) Evaluate $t^{\Re}[s]$.
(d) Is t substitutable for x in φ ? If so, determine whether $\mathfrak{R} \vDash \varphi(x / t)[s]$.

Explanations. Number b is a local minimum of a function f at a iff $f(a)=b$, and there is an open interval (x, y) containing a such that $f(z) \geq b$ for all $z \in(x, y)$. A set $X \subseteq \mathbb{R}$ is unbounded iff X has some element outside of any open interval (x, y) where $x, y \in \mathbb{R}$.
6. Consider a language \mathcal{L} with a 2 -ary predicate symbol $\dot{<}$. Let $\mathfrak{N}=(\mathbb{N} ;<)$ be the structure of \mathcal{L} consisting of the natural numbers with the usual ordering. Show that one cannot express the following statement in English
"There is no infinite descending chain."
by a sentence in the language \mathcal{L}. Hint. You may want to use the Compactness Theorem here. Think about what would happen if you could express the statement by a sentence τ in \mathcal{L}. Does $\mathfrak{N} \vDash \tau$? Can you find a model of \mathcal{L} that satisfies τ ?
7. Show that $\{\forall x(\alpha \rightarrow \beta), \exists x \alpha\} \vDash \exists x \beta$.
8. Let $\mathfrak{A}=(\mathbb{R} ;+, \times)$ be an \mathcal{L}-structure, here \mathcal{L} 's nonlogical symbols are $\{\dot{+}, \dot{\times}\}$. Define the following sets in the structure \mathcal{A}.
(a) $\{0\}$.
(b) $\{1\}$.
(c) $\{3\}$.
(d) The interval $(0, \infty)$.
(e) $\{\langle r, s\rangle \mid r \leq s\}$ (here r, s are reals, of course).
9. Let $\mathfrak{A}=(\mathbb{N} ; 0,1,+, \times)$. Give a formula in the language of \mathfrak{A} which defines the following. (Notice here that the language of \mathfrak{A} only consists of the following non-logical symbols: $\dot{0}, \dot{1}, \dot{+}, \dot{x})$.
(a) $\{2\}$.
(b) $\{n \mid n$ is even $\}$.
(c) $\{\langle m, n\rangle \mid m$ divides $n\}$.
(d) $\{n \mid n$ is a prime $\}$.
10. Assume that the language has a unary function symbol f. Find a sentence σ such that:
(a) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff the universe of \mathfrak{A} has at least two elements.
(b) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff the universe of \mathfrak{A} has exactly two elements.
(c) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff $f^{\mathfrak{A}}$ is onto.
11. Consider the model * \mathfrak{R} discussed in class (and defined in Section 2.8). We also have standard structure \mathfrak{R}, where $|\mathfrak{R}|=\mathbb{R}, P_{R}^{\Re}=R, c_{r}^{\Re}=r, f_{F}^{\mathfrak{\Re}}=F$ for each relation symbol P_{R}, constant symbol c_{r}, and function symbol f_{F}. By the construction of $* \mathfrak{R},\left.\mathfrak{R} \subset\right|^{*} \mathfrak{R} \mid={ }_{\text {def }}{ }^{*} \mathbb{R}$. Let $<{ }^{*}=P_{<}^{*} \mathfrak{R}$.
(a) Show that for any $r, s \in \mathbb{R}$, there is some $t \in{ }^{*} \mathbb{R}$ such that $r<^{*} t<^{*} s$.
(b) Show that there is $\epsilon \in{ }^{*} \mathbb{R}, 0<^{*} \epsilon$ such that for positive $r \in \mathbb{R}, \epsilon<^{*} r$.
(c) Show that the set \mathbb{R} is a bounded subset of ${ }^{*} \mathbb{R}$. And there is no least upper bound for \mathbb{R} in ${ }^{*} \mathbb{R}$.

