MATH 150 PRACTICE PROBLEMS FOR FINAL

- 1. Determine if the following are tautologies:
- (a) $(R \to (S \lor Q)) \lor (R \lor (S \to Q))$
- (b) $(R \leftrightarrow P) \lor (P \rightarrow \neg R)$.

Answer: Both are tautologies. You should be able to check this using truth tables (or any of the shortcut methods we discussed). You should work these out.

- 2. The soundness theorem says that:
- (a) If $\Gamma \vdash$ then $\Gamma \vDash \varphi$.
- (b) If Γ is satisfiable (i.e. there is some model $\mathfrak{M} \models \Gamma$), then Γ is consistent.

Show that the two statements are equivalent.

Answer:

 $(a) \Rightarrow (b)$: Suppose (a) holds and Γ is satisfiable. Fix some model \mathfrak{A} such that $\mathfrak{A} \models \Gamma$. We have to show that Γ is consistent. Suppose otherwise i.e. there is some formula β such that $\Gamma \vdash \beta \land \neg \beta$. Then by (a) it follows that $\Gamma \vDash \beta \land \neg \beta$. Then since $\mathfrak{A} \models \Gamma$, we get that $\mathfrak{A} \vDash \beta \land \neg \beta$, but that is a contradiction. Therefore Γ is consistent.

 $(b) \Rightarrow (a)$: Suppose (b) holds and $\Gamma \vdash \phi$. We have to show that $\Gamma \vDash \phi$. Suppose otherwise i.e. $\Gamma \nvDash \phi$. Then there is some model \mathfrak{A} such that $\mathfrak{A} \vDash \Gamma \cup \{\neg \phi\}$ i.e. $\Gamma \cup \{\neg \phi\}$ is satisfiable (you can use this fact on the final; you can also try to prove it!!!). Then by (b) is follows that $\Gamma \cup \{\neg \phi\}$ is consistent. Therefore $\Gamma \nvDash \phi$, which is a contradiction with the assumptions. It follows that $\Gamma \vDash \phi$.

- 3. The completeness theorem says that:
- (a) If $\Gamma \vDash \varphi$ then $\Gamma \vdash \varphi$ for all φ .
- (b) If Γ is consistent, then Γ is satisfiable.

Show that the two statements are equivalent.

Answer: $(a) \Rightarrow (b)$: Suppose (a) holds and Γ is consistent. We have to show that Γ is satisfiable. Suppose otherwise i.e. for any model $\mathfrak{A}, \mathfrak{A} \nvDash \Gamma$. Then we have (vacuously) that $\Gamma \vDash \beta \land \neg \beta$. Then by (a) it follows that $\Gamma \vdash \beta \land \neg \beta$. But that is a contradiction, since Γ was assumed to be consistent. Therefore Γ is satisfiable.

 $(b) \Rightarrow (a)$: Suppose (b) holds and $\Gamma \vDash \phi$. We have to show that $\Gamma \vdash \phi$. Suppose otherwise i.e. $\Gamma \nvDash \phi$. Then $\Gamma \cup \{\neg \phi\}$ is consistent by RAA (Cor 24 E on pg 119, again this is a useful fact to keep in mind). Then by (b) it follows that $\Gamma \cup \{\neg \phi\}$ is satisfiable i.e. there is some model \mathfrak{A} such that $\mathfrak{A} \vDash \Gamma$ and $\mathfrak{A} \vDash \neg \phi$. Therefore $\Gamma \nvDash \phi$, which is a contradiction with the assumptions. It follows that $\Gamma \vdash \phi$.

- 4. The compactness theorem says that:
- (a) If $\Gamma \vDash$ then $\Gamma_0 \vdash \varphi$ for some finite $\Gamma_0 \Gamma$.
- (b) If every finite subset of Γ is satisfiable, then so is Γ .

Show that the two statements are equivalent.

Answer: $(a) \Rightarrow (b)$: Suppose (a) holds and every finite subset of Γ is satisfiable. We have to show that is satisfiable. Suppose otherwise i.e. for any model $\mathfrak{A}, \mathfrak{A} \nvDash \Gamma$. Then we have (vacuously) that $\Gamma \vDash \beta \land \neg \beta$. Then by (a) it follows that for some finite $\Delta \subset \Gamma, \Delta \vDash \beta \land \neg \beta$. But that is a contradiction, since Δ is assumed to be satisfiable. Therefore Γ is satisfiable.

 $(b) \Rightarrow (a)$: Suppose (b) holds and $\Gamma \vDash \phi$. We have to show that for some finite $\Delta \subset \Gamma$, $\Delta \vDash \phi$. Suppose otherwise. Then for every finite subset Δ of Γ , $\Delta \cup \{\neg\phi\}$ is satisfiable. Then by (b) it follows that $\Gamma \cup \{\neg\phi\}$ is satisfiable i.e. there is some model \mathfrak{A} such that $\mathfrak{A} \vDash \Gamma$ and $\mathfrak{A} \vDash \neg \phi$. Therefore $\Gamma \nvDash \phi$ which is a contradiction with the assumptions. It follows that $\Gamma \vdash \phi$.

- 5. Consider the following extension of the language of rings.
 - $\mathcal{L}_f = \{\dot{+}, \dot{\times}, \dot{0}, \dot{1}, \dot{<}, \dot{f}\}$ is the language of rings with an additional binary relation symbol $\dot{<}$ and a unary function symbol \dot{f} .

Consider the structure

$$\mathfrak{R} = (\mathbb{R}, +, \cdot, 0, 1, <, f)$$

where \mathbb{R} is the set of all real numbers, and the interpretations of symbols $\dot{+}, \dot{\times}, \dot{0}, \dot{1}, \dot{<}$ in these structures are natural: 0, 1 are numbers "zero" and "one", + and \cdot are usual addition and multiplication, and < is the usual ordering of real numbers. Additionally, \dot{f} is interpreted in \Re as a unary function $f: \mathbb{R} \to \mathbb{R}$.

Express the following statements about numbers and function f in the structure \Re as instructed below.

(a) Find an \mathcal{L} -formula $\varphi(u, v)$ which expresses:

"v is a local minimum of f at u".

(b) Find an \mathcal{L} -sentence τ which expresses:

"The set of arguments (i.e. points) at which f has local minimum is unbounded".

Now suppose $f(x) = e^x$ for all $x \in \mathbb{R}$; let $s : V \to \mathbb{R}$ be the evaluation of variables such that $s(x_{2k+1}) = 1$ for all $k \in \mathbb{N}$. Let t be the term

"
$$\dot{\times}(\dot{f}(\dot{1}), \dot{+}(\dot{1}, \dot{f}(v_1)))$$
"

and $\varphi(x)$ be the formula:

$$\exists v_2(v_2 = f(x)).$$

(c) Evaluate $t^{\Re}[s]$.

(d) Is t substitutable for x in φ ? If so, determine whether $\mathfrak{R} \models \varphi(x/t)[s]$.

Explanations. Number b is a local minimum of a function f at a iff f(a) = b, and there is an open interval (x, y) containing a such that $f(z) \ge b$ for all $z \in (x, y)$. A set $X \subseteq \mathbb{R}$ is unbounded iff X has some element outside of any open interval (x, y) where $x, y \in \mathbb{R}$.

Answer:

- (a) $\varphi_{\min}(u, v) = "f(u) = v \land \exists x \exists y (x < u \land u < y \land \forall z (x < z \land z < y \to \neg (f(z) < v))".$
- (b) $\varphi_{unbounded} = "\forall z \exists u \exists v (\varphi_{min}(u, v) \land z < u)"$
- (c) The only variable that shows up in t is v_1 and $s(v_1) = 1$. Now $f(1) = e^1 = e$. So the value of the term $t^{\Re}[s]$ is: $e^1 \times (1 + e^1) = e(1 + e) = e + e^2$.
- (d) t is substitutable for x in φ . This is because there is only free occurrence of x in φ and when we replace x by t, we get the formula $\exists v_2(v_2 = \dot{f}(\dot{\times}(\dot{f}(\dot{1}), \dot{+}(\dot{1}, \dot{f}(v_1)))))$. Note that the variable v_1 is still free in $\varphi(x/t)$. So we did verify t is substitutable for x in φ .

To check $\mathfrak{R} \models \varphi(x/t)[s]$, we simply need to find a value $d \in \mathbb{R}$ such that when we extend s by s' such that $s'(v_2) = d$, $\mathfrak{R} \models (v_2 = \dot{f}(t))[s']$. Since by part (c), $t^{\mathfrak{R}}[s] = e + e^2$, hence $(\dot{f}(t))^{\mathfrak{R}} = e^{e+e^2}$. Let $s'(v_2) = e^{e+e^2}$, then we found the value desired value d.

6. Consider a language \mathcal{L} with a 2-ary predicate symbol $\dot{<}$. Let $\mathfrak{N} = (\mathbb{N}; <)$ be the structure of \mathcal{L} consisting of the natural numbers with the usual ordering. Show that one cannot express the following statement in English

"There is no infinite descending chain."

by a sentence in the language \mathcal{L} . **Hint.** You may want to use the Compactness Theorem here. Think about what would happen if you could express the statement by a sentence τ in \mathcal{L} . Does $\mathfrak{N} \models \tau$? Can you find a model of \mathcal{L} that satisfies τ ?

Answer: This is a typical application of the compactness theorem (though this one is a bit tricky). Suppose τ is a sentence in \mathcal{L} that expresses the above statement. Note that $\mathfrak{N} \models \tau$.

Now let $\Sigma = \{\tau\} \cup \{\phi_n : n \ge 2\}$, where

$$\phi_n = \exists x_1 \dots \exists x_n (x_n < x_{n-1} \land x_{n-1} < x_{n-2} \land \dots \land x_2 < x_1).$$

 Σ is finitely satisfiable. This is because if $\Delta \subset \Sigma$ is finite, then $\mathfrak{N} \models \Delta$ (if $\tau \in \Delta$, then we already assume $\mathfrak{N} \models \tau$; if $\phi_n \in \Delta$ for some *n*, then letting *N* be the largest *k* such that $\phi_k \in \Delta$, then $\mathfrak{N} \models \phi_N[s]$ where $s(x_N) = 1, s(x_{N-1}) = 3, \ldots, s(x_1) = N$).

By compactness, Σ has a model \mathfrak{M} and some evaluation s of the variables $\{x_n : n \in \mathbb{N}\}$ such that

- (i) $\mathfrak{M} \vDash \tau$ (so there is NO infinite descending sequence in \mathfrak{M}); and
- (ii) for all $n \ge 1$, $\mathfrak{M} \models \phi_n[s]$. This implies then there IS an infinite descending sequence in \mathfrak{M} .

Clearly, the two items above give us a contradiction. So it must be the case that the statement "there is no infinite descending chain" cannot be expressed by a sentence in \mathcal{L} .

7. Show that $\{\forall x(\alpha \to \beta), \exists x\alpha\} \models \exists x\beta$.

Answer: Suppose that $\mathfrak{A} \models \{ \forall x(\alpha \rightarrow \beta), \exists \alpha) \} [s]$, where \mathfrak{A} is a model and s is an evaluation of variables. We have to show that $\mathfrak{A} \models \exists x \beta [s]$.

 $\mathfrak{A} \models \exists x \alpha[s]$, so fix an element d in the universe of \mathfrak{A} , such that $\mathfrak{A} \models \alpha[x/d]$ (in other words, we extend s to s' such that s'(x) = d and such that $\mathfrak{A} \models \alpha[s']$. The existence of d, or equivalently s', of course follows from the fact that $\mathfrak{A} \models \exists x \alpha[s]$. Then since $\mathfrak{A} \models \forall x(\alpha \to \beta)[s]$, we have that $\mathfrak{A} \models (\alpha \to \beta)[x/d]$, and so $\mathfrak{A} \models \beta[x/d]$. It follows that $\mathfrak{A} \models \exists x \beta[s]$.

8. Let $\mathfrak{A} = (\mathbb{R}; +, \times)$ be an \mathcal{L} -structure, here \mathcal{L} 's nonlogical symbols are $\{\dot{+}, \dot{\times}\}$. Define the following sets in the structure \mathcal{A} .

- (a) $\{0\}$.
- (b) {1}.
- (c) {3}.
- (d) The interval $(0, \infty)$.
- (e) $\{\langle r, s \rangle \mid r \leq s\}$ (here r, s are reals, of course).

Answer:

- (a) $\phi_0(x) = "x + x = x"$.
- (b) $\phi_1(x) = "x \times x = x \land \neg (x + x = x)".$
- (c) $\phi_3(x) = "\exists y(\phi_1(y) \land x = y + y + y").$
- (d) $\phi_{(0,\infty)}(x) = "\exists y(y \times y = x)? \neg (x + x = x)".$
- (e) $\psi(r,s) = \exists y \exists x (y = x \times x \land s = r + y)$ ". (the clause " $y = x \times x$ " just says "y is nonnegative").

9. Let $\mathfrak{A} = (\mathbb{N}; 0, 1, +, \times)$. Give a formula in the language of \mathfrak{A} which defines the following. (Notice here that the language of \mathfrak{A} only consists of the following non-logical symbols: $\dot{0}, \dot{1}, \dot{+}, \dot{\times}$).

- (a) $\{2\}$.
- (b) $\{n \mid n \text{ is even}\}.$
- (c) $\{\langle m, n \rangle \mid m \text{ divides } n\}.$
- (d) $\{n \mid n \text{ is a prime}\}.$

Answer: Note here our language does not have symbol \dot{S} for the successor function. There are, of course, more than one way of expressing these statements above. Below, I just give you one solution.

- (a) $\phi_2(x) = "x = 1 + 1"$.
- (b) $\phi_{even}(x) = "\exists y(x = y + y)".$
- (c) $\phi_{divides}(x, y) = "\exists z(y = x \times z)".$

- (d) $\phi_{prime}(x) = \exists y \exists z (\phi_2(y) \land x = y + z \land \forall t (\phi_{divides}(t, x) \to t = 1 \lor t = x))$ ".
- 10. Assume that the language has a unary function symbol f. Find a sentence σ such that:
- (a) for any model $\mathfrak{A}, \mathfrak{A} \models \sigma$ iff the universe of \mathfrak{A} has at least two elements.
- (b) for any model $\mathfrak{A}, \mathfrak{A} \models \sigma$ iff the universe of \mathfrak{A} has exactly two elements.
- (c) for any model $\mathfrak{A}, \mathfrak{A} \vDash \sigma$ iff $f^{\mathfrak{A}}$ is onto.

Answer:

- (a) σ_0 is something like this: " $\exists x \exists y (\neg (x = y))$ ".
- (b) σ_1 is: " $\phi_0 \land \neg(\exists x \exists y \exists z (\neg(x = y) \land \neg(x = z) \land \neg(y = z)))$ ".
- (c) σ_2 is: " $\forall x \exists y (f(x) = y)$ ".

11. Consider the model * \mathfrak{R} discussed in class (and defined in Section 2.8). We also have standard structure \mathfrak{R} , where $|\mathfrak{R}| = \mathbb{R}$, $P_R^{\mathfrak{R}} = R$, $c_r^{\mathfrak{R}} = r$, $f_F^{\mathfrak{R}} = F$ for each relation symbol P_R , constant symbol c_r , and function symbol f_F . By the construction of * \mathfrak{R} , $\mathfrak{R} \subset |*\mathfrak{R}| =_{def} *\mathbb{R}$. Let $<^* = P_<^{*\mathfrak{R}}$.

- (a) Show that for any $r, s \in \mathbb{R}$, there is some $t \in \mathbb{R} \setminus \mathbb{R}$ such that $r <^* t <^* s$.
- (b) Show that there is $\epsilon \in {}^*\mathbb{R}$, $0 < {}^*\epsilon$ such that for positive $r \in \mathbb{R}$, $\epsilon < {}^*r$.
- (c) Show that the set \mathbb{R} is a bounded subset of $*\mathbb{R}$. And there is no least upper bound for \mathbb{R} in $*\mathbb{R}$.

Answer: If you read section 2.8 carefully, you'll see that these are already answered there. Here I just provide you with the main points. I start with (b).

- (b) By the construction of * \mathfrak{R} , there is some element $c \in \mathbb{R}$ such that for all $r \in \mathbb{R}$, $r^* < c$. Now recall our language has the symbol "/" for "division"; so the interpretation $*/=f_{/}^{\mathfrak{R}}$ is defined and is the "division" operation in * \mathfrak{R} . So it makes sense to let $\epsilon = 1^*/c$. We have:
 - (i) $0^* < \epsilon$. This is because $0^* < c$ and the theory $Th(\mathfrak{R})$ of \mathfrak{R} is satisfied by $*\mathfrak{R}$. Part of $Th(\mathfrak{R})$ has the sentence $\forall x(0 < x \to 0 < 1/x)$.
 - (ii) for any $r \in \mathbb{R}$, $\epsilon^* < r$. This is because $r^* < c$ and the theory $Th(\mathfrak{R})$ has the sentence " $\forall x \forall y (0 < x < y \rightarrow 0 < 1/y < /x)$ ".
- (a) Let w = s r. So $w \in \mathbb{R}$ and w > 0. Now use the result in part (b) to get some $\epsilon \in \mathbb{R}$ such that $0 < \epsilon < w$. So $0 + r < \epsilon + r < w + r$. So $r < \epsilon + r < s$. Notice two things here: first, $\hat{*} + \uparrow \mathbb{R} = +$; and second, $\epsilon + r$ is the desired t because it is in $\mathbb{R} \setminus \mathbb{R}$ (why? if $t = \epsilon + r \in \mathbb{R}$, then $\epsilon = t r = t r \in \mathbb{R}$. This is a contradiction to the choice of ϵ in (a)).
- (c) The first clause is clear because by construction, there is some $c \in \mathbb{R}$ such that for all $x \in \mathbb{R}(x < c)$. For the second clause, let c be the least upper bound for \mathbb{R} . Let $\epsilon = 1 < c$. So ϵ has the following properties listed in part (b). Further:
 - $-\epsilon \in \mathcal{F}$, where \mathcal{F} is defined in Section 2.8. and is the set of all "finite elements" of * \mathbb{R} .
 - $-\epsilon$ is the largest element satisfying the conditions in (b).

Now let $0^* < \delta^* < \epsilon$. $\delta = 1^*/d$ for some $c^* < d$. Let $\gamma = \delta^* + \epsilon$. So $\epsilon^* < \gamma$. It remains to show γ satisfies (b). This would give us a contradiction to the fact that ϵ is the largest element satisfying (b).

To see γ satisfies (b). We use Corollary 28E and Theorem 28F. Note that 0 is the unique element such that $\epsilon \simeq 0$ and the same for δ . In other words, $0 = st(\epsilon)$ and $0 = (\delta)$. So by Theorem 28F, $st(\gamma) = st(\epsilon^* + \delta) = st(\epsilon) + st(\delta) = 0 + 0 = 0$. In other words, γ satisfies (b). So we are done.