Math 161 Modern Geometry Practice Homework

(1) Show that two hyperbolic lines cannot have more than one common perpendicular.

Proof. Let $(l),(m)$ be hyperbolic lines. Suppose $(n),\left(n^{\prime}\right)$ are two lines that are perpendicular to both (l) and (m). Let A, A^{\prime} be the intersection of (n) with $(l),(m)$ respectively; B, B^{\prime} intersection of $\left(n^{\prime}\right)$ with $(l),(m)$ respectively. Then $A A^{\prime} B^{\prime} B$ is a rectangle. This contradicts the fact that there are no rectangles in hyperbolic geometry.
(2) Prove that the summit is always larger than the base in a Saccheri quadrilateral.

Proof. Given a Saccheri quadrilateral, take one of the Lambert quadrilaterals $A B C D$ comprising half of it, where $\angle A D C<90^{\circ}$.
Choose a point M along $C D$ (extended if necessary) so that $|C M|=|A B|$. Now join $A M$. We now have a Saccheri quadrilateral $A B C M$ with base $B C$ and summit $A M$.
Since the summit angles $\angle B A M=\angle C M A$ are acute, it follows that the line segment $A M$ lies inside $A B C D$ and M lies on the segment $C D$.
The original half-summit $C D$ is longer than the original half-base $A B$.
(3) Draw a cevian line for a triangle $\triangle A B C$. Prove that the angle defect $(\pi$ radians minus the sum of the angles in the triangle) is equal to the sum of the defects of the two sub-triangles created by the cevian line.

Proof. This is easy and has been done in class.
(4) Prove that two Saccheri quadrilaterals with congruent bases and summit angles must be congruent.
Hint: suppose not and show that you can construct a rectangle.
Proof. Place the equal summits on top of each other so that the bases lie on the same side of the common summit. Suppose the quadrilaterals are not congruent. That means the sides of one quadrilateral are longer than the sides of the other (note that because we assume the summit angles are congruent; the sides of the quadrilaterals line up). This easily gives a rectangle. Contradiction.
(5) Let l and m intersect at O at an angle. Let $A, B \neq O$ be points on l and drop perpendiculars to m from A and B, intersecting m at A^{\prime}, B^{\prime}. If $O A<O B$, show that $A A^{\prime}<B B^{\prime}$.

Proof. If $\left|A A^{\prime}\right|=\left|B B^{\prime}\right|$, then $A A^{\prime} B^{\prime} B$ is a Saccheri quadrilateral. Hence $\angle A^{\prime} A B$ is acute. This means, $\angle O A A^{\prime}$ is obtuse, being complementary to $\angle O A A^{\prime}$. But then the sum of the interior angles of $\triangle O A A^{\prime}$ easily adds up to be more than two right angles. Contradiction.

If $\left|A A^{\prime}\right|>\left|B B^{\prime}\right|$, let M be between A, A^{\prime} so that $\left|A^{\prime} M\right|=\left|B B^{\prime}\right|$. Then as before, $A^{\prime} M B B^{\prime}$ is a Saccheri quadrilateral. So $\angle A M B$ is acute. By the exterior angle theorem, $\angle A M B>\angle A^{\prime} A B$. So $\angle A^{\prime} A B$ is acute. Exactly as above, we get a contradiction.
(6) Prove that two Saccheri quadrilaterals with equal bases and equal summit angles must be congruent.
Hint: suppose not and show that you can construct a quadrilateral with angles summing to 360°.

Proof. Place the equal bases on top of each other so that the summits lie on the same side of the common base. Suppose that the common summit angle is α and that the quadrilaterals are not congruent. We then have a quadrilateral with angles $\alpha, \alpha, 180^{\circ}-\alpha, 180^{\circ}-\alpha$, summing to 360°. A contradiction.
(7) The point $P=(1,1)$ is rotated through angle $\pi / 6$ about the point $(2,3)$ and then translated in the direction of $(1,2)$ through a distance of 3 units. Find the coordinates of the resulting point.

Proof. Let f be the rotation about the point $(2,3)$ map and let g be the translation in the direction of $(1,2)$ through a distance of 3 units. Now we want to write down the formula for f, g.

Let $\vec{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{x}_{f i x}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, and $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. By the formula in class,

$$
f(\vec{v})=R_{\pi / 6}\left(\vec{v}-\vec{x}_{f i x}\right)+\vec{x}_{f i x},
$$

here recall that $R_{\pi / 6}=\left[\begin{array}{cc}\cos (\pi / 6) & -\sin (\pi / 6) \\ \sin (\pi / 6) & \cos (\pi / 6)\end{array}\right]=\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]$ is the matrix of rotation by $\pi / 6$ around the origin.

$$
\text { So } f(\vec{v})=\left[\begin{array}{c}
1-\sqrt{3} / 2 \\
-1 / 2-\sqrt{3}
\end{array}\right]+\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
3-\sqrt{3} / 2 \\
3 / 2-\sqrt{3}
\end{array}\right]
$$

Now for any vector $\vec{w}, g(\vec{w})=\vec{w}+\frac{3}{\|\vec{u}\|} \vec{u}=\vec{w}+\frac{3}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. So $g(f(\vec{v}))=$ $\left[\begin{array}{l}3-\sqrt{3} / 2 \\ 3 / 2-\sqrt{3}\end{array}\right]+\left[\begin{array}{l}3 / \sqrt{5} \\ 6 / \sqrt{5}\end{array}\right]$. One could simplify further, but this is good enough.
(8) Identify the product, f, of a reflection in the line $y=x-1$, the rotation by angle π about $(1,1)$ and a glide in the y-axis through vector $(1,2)$.

Proof. Note first that the first action f_{1}, reflection in $y=x-1$, is $\tau \circ \mu_{\pi / 4}$, here τ is some translation isometry (we could calculate this exactly, but let's hold that for now) and $\mu_{\pi / 4}$ is the central reflection about the line $y=x$.

The second action f_{2}, rotation by π around $(1,1)$, is of the form $\sigma \circ \rho_{\pi}$, where σ is some translation and ρ_{π} is rotation by π around the origin. Here, see the above problem, technically, $f_{2}=\sigma_{1} \circ \rho_{\pi} \circ \sigma_{2}$ for some translations σ_{1}, σ_{2} (to see this, recall from the previous problem, for any vector \vec{v}, $f_{2}(\vec{v})=\rho_{\pi}\left(\vec{v}-\vec{x}_{f i x}\right)+\vec{x}_{f i x}$, here $\vec{x}_{f i x}$ is the fixed point of $\left.f_{2}\right)$. Then we use the theorem proved in class to write $\rho_{\pi} \circ \sigma_{2}$ as $\sigma_{2}^{\prime} \circ \rho_{\pi}$ for some translation σ_{2}^{\prime}; call this fact ($*$). Finally, $\sigma=\sigma_{1} \circ \sigma_{2}^{\prime}$.

For f_{3}, the glide in the y-axis through $(1,2), f_{3}=\delta \circ \mu_{\pi / 2}$, here δ is translation by $(1,2)$.

Using $(*)$ several times, $f_{3} \circ f_{2} \circ f_{1}$ can be written as $\epsilon \circ \mu_{\pi / 2} \circ \rho_{\pi} \circ \mu_{\pi / 4}$, where ϵ is a translation to be determined.

Now $\mu_{\pi / 2} \circ \rho_{\pi} \circ \mu_{\pi / 4}$ is a composition of central isometries, using the formulas in class, we get: the matrix for this composition is $M_{\pi} R_{\pi} M_{\pi / 2}=$ $M_{\pi} M_{3 \pi / 2}=M_{-\pi / 2}$. So this is a central reflection about the line $x+y=0$.

Now to determine ϵ, we will try to compute the image of, say the point $(0,0)$, under the composition map. First, $f_{3} \circ f_{2} \circ f_{1}(0,0)=(0,5)$. Now $(0,5)=\sigma \circ M_{-\pi / 2}(0,0)=\sigma(0,0)$. So σ is translation by vector $(0,5)$.

Conclusion: The map is the glide in the line $x+y=0$ through vector $(0,4)$.
(9) Identify the product of the reflection in the line $y=x+3$ followed by the glide in the line $-x+y=2$ through vector $(1,1)$.

Proof. The proof is similar to the above. Let f_{1} be the first action, reflection in $y=x+3$. $f_{1}=\sigma \circ \mu_{\pi / 4}$ where σ is some translation. f_{2}, the glide in $y=x+2$ through $(1,1)$, is $\tau \circ \mu_{\pi / 4}$, for some translation τ.

So $f_{2} \circ f_{1}=\epsilon \circ \mu_{\pi / 4} \circ \mu_{\pi / 4}$.
The matrix for $\mu_{\pi / 4} \circ \mu_{\pi / 4}$ is $M_{\pi / 2} M_{\pi / 2}=M_{0}$. In other words, this is the reflection about the x-axis. Now to identify ϵ, as above, compute $f_{2} \circ f_{1}(-3,0)=f_{2}(-2,-1)=(-3,0)+(1,1)=(-2,1)$ (you can take other points, if that makes your calculations easier).

Now, say ϵ is translation by \vec{v}, we have: $\epsilon \circ \mu_{0}(-3,0)=\epsilon(-3,0)=$ $(-3,0)+\vec{v}=(-2,1)$. So $\vec{v}=(-2,1)-(-3,0)=(1,1)$.

Conclusion: The map is glide in the x-axis through vector $(1,1)$.

