
Math 161 Modern Geometry Practice Homework
(1) Show that two hyperbolic lines cannot have more than one common per-

pendicular.

Proof. Let (l), (m) be hyperbolic lines. Suppose (n), (n′) are two lines that
are perpendicular to both (l) and (m). Let A,A′ be the intersection of (n)
with (l), (m) respectively; B,B′ intersection of (n′) with (l), (m) respec-
tively. Then AA′B′B is a rectangle. This contradicts the fact that there
are no rectangles in hyperbolic geometry. �

(2) Prove that the summit is always larger than the base in a Saccheri quadri-
lateral.

Proof. Given a Saccheri quadrilateral, take one of the Lambert quadrilat-
erals ABCD comprising half of it, where ∠ADC < 90◦.
Choose a point M along CD (extended if necessary) so that |CM | = |AB|.
Now join AM . We now have a Saccheri quadrilateral ABCM with base
BC and summit AM .
Since the summit angles ∠BAM = ∠CMA are acute, it follows that the
line segment AM lies inside ABCD and M lies on the segment CD.
The original half-summit CD is longer than the original half-base AB.

�

(3) Draw a cevian line for a triangle 4ABC. Prove that the angle defect (π
radians minus the sum of the angles in the triangle) is equal to the sum of
the defects of the two sub-triangles created by the cevian line.

Proof. This is easy and has been done in class. �

(4) Prove that two Saccheri quadrilaterals with congruent bases and summit
angles must be congruent.
Hint: suppose not and show that you can construct a rectangle.

Proof. Place the equal summits on top of each other so that the bases lie
on the same side of the common summit. Suppose the quadrilaterals are
not congruent. That means the sides of one quadrilateral are longer than
the sides of the other (note that because we assume the summit angles
are congruent; the sides of the quadrilaterals line up). This easily gives a
rectangle. Contradiction. �

(5) Let l and m intersect at O at an acute angle. Let A,B 6= O be points on l
and drop perpendiculars to m from A and B, intersecting m at A′, B′. If
OA < OB, show that AA′ < BB′.

Proof. If |AA′| = |BB′|, then AA′B′B is a Saccheri quadrilateral. Hence
∠A′AB is acute. This means, ∠OAA′ is obtuse, being complementary to
∠OAA′. But then the sum of the interior angles of 4OAA′ easily adds up
to be more than two right angles. Contradiction.

If |AA′| > |BB′|, let M be between A,A′ so that |A′M | = |BB′|. Then
as before, A′MBB′ is a Saccheri quadrilateral. So ∠AMB is acute. By the
exterior angle theorem, ∠AMB > ∠A′AB. So ∠A′AB is acute. Exactly
as above, we get a contradiction. �
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(6) Prove that two Saccheri quadrilaterals with equal bases and equal summit
angles must be congruent.
Hint: suppose not and show that you can construct a quadrilateral with
angles summing to 360◦.

Proof. Place the equal bases on top of each other so that the summits lie
on the same side of the common base. Suppose that the common summit
angle is α and that the quadrilaterals are not congruent. We then have
a quadrilateral with angles α, α, 180◦ − α, 180◦ − α, summing to 360◦. A
contradiction. �

(7) The point P = (1, 1) is rotated through angle π/6 about the point (2, 3)
and then translated in the direction of (1, 2) through a distance of 3 units.
Find the coordinates of the resulting point.

Proof. Let f be the rotation about the point (2, 3) map and let g be the
translation in the direction of (1, 2) through a distance of 3 units. Now we
want to write down the formula for f, g.

Let ~v =

[
1
1

]
, ~xfix =

[
2
3

]
, and ~u =

[
1
2

]
. By the formula in class,

f(~v) = Rπ/6(~v − ~xfix) + ~xfix,

here recall that Rπ/6 =

[
cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

]
=

[√
3/2 −1/2

1/2
√

3/2

]
is the

matrix of rotation by π/6 around the origin.

So f(~v) =

[
1−
√

3/2

−1/2−
√

3

]
+

[
2
3

]
=

[
3−
√

3/2

3/2−
√

3

]
.

Now for any vector ~w, g(~w) = ~w + 3
||~u||~u = ~w + 3√

5

[
1
2

]
. So g(f(~v)) =[

3−
√

3/2

3/2−
√

3

]
+

[
3/
√

5

6/
√

5

]
. One could simplify further, but this is good enough.

�

(8) Identify the product, f , of a reflection in the line y = x − 1, the rotation
by angle π about (1, 1) and a glide in the y-axis through vector (1, 2).

Proof. Note first that the first action f1, reflection in y = x− 1, is τ ◦µπ/4,
here τ is some translation isometry (we could calculate this exactly, but
let’s hold that for now) and µπ/4 is the central reflection about the line
y = x.

The second action f2, rotation by π around (1, 1), is of the form σ ◦ ρπ,
where σ is some translation and ρπ is rotation by π around the origin.
Here, see the above problem, technically, f2 = σ1 ◦ρπ ◦σ2 for some transla-
tions σ1, σ2 (to see this, recall from the previous problem, for any vector ~v,
f2(~v) = ρπ(~v− ~xfix) + ~xfix, here ~xfix is the fixed point of f2).Then we use
the theorem proved in class to write ρπ ◦ σ2 as σ′2 ◦ ρπ for some translation
σ′2; call this fact (∗). Finally, σ = σ1 ◦ σ′2.

For f3, the glide in the y-axis through (1, 2), f3 = δ ◦ µπ/2, here δ is
translation by (1, 2).
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Using (∗) several times, f3 ◦ f2 ◦ f1 can be written as ε ◦µπ/2 ◦ ρπ ◦µπ/4,
where ε is a translation to be determined.

Now µπ/2 ◦ ρπ ◦ µπ/4 is a composition of central isometries, using the
formulas in class, we get: the matrix for this composition is MπRπMπ/2 =
MπM3π/2 = M−π/2. So this is a central reflection about the line x+ y = 0.

Now to determine ε, we will try to compute the image of, say the point
(0, 0), under the composition map. First, f3 ◦ f2 ◦ f1(0, 0) = (0, 5). Now
(0, 5) = σ ◦M−π/2(0, 0) = σ(0, 0). So σ is translation by vector (0, 5).

Conclusion: The map is the glide in the line x + y = 0 through vector
(0, 4).

�

(9) Identify the product of the reflection in the line y = x+ 3 followed by the
glide in the line −x+ y = 2 through vector (1, 1).

Proof. The proof is similar to the above. Let f1 be the first action, reflection
in y = x + 3. f1 = σ ◦ µπ/4 where σ is some translation. f2, the glide in
y = x+ 2 through (1, 1), is τ ◦ µπ/4, for some translation τ .

So f2 ◦ f1 = ε ◦ µπ/4 ◦ µπ/4.
The matrix for µπ/4 ◦ µπ/4 is Mπ/2Mπ/2 = M0. In other words, this

is the reflection about the x-axis. Now to identify ε, as above, compute
f2 ◦ f1(−3, 0) = f2(−2,−1) = (−3, 0) + (1, 1) = (−2, 1) (you can take other
points, if that makes your calculations easier).

Now, say ε is translation by ~v, we have: ε ◦ µ0(−3, 0) = ε(−3, 0) =
(−3, 0) + ~v = (−2, 1). So ~v = (−2, 1)− (−3, 0) = (1, 1).

Conclusion: The map is glide in the x-axis through vector (1, 1).
�


