Math 161 Modern Geometry Homework Questions 1 (part 2)

5) We just prove the algorithm works, i.e. it produces the greatest common divisor of a, b. Suppose algorithm produces the sequence $\left(r_{1}, r_{2}, \ldots, r_{n}, r_{n+1}=0\right)$ for some $n \geq 1$ such that:
$a=q_{1} b+r_{1}, 0 \leq r_{1}<b$,
$b=q_{2} r_{1}+r_{2}, 0 \leq r_{2}<r_{1}$,
..........
$r_{n-1}=q_{n+1} r_{n}+r_{n+1}$.
We claim that r_{n} is the $\operatorname{gcd}(a, b)$. Recall $a \geq b>0$.
First note the following easy fact: if c divides d and c divides $f-k d$ for any integer k, then c divides f. (Think about why this is true).

Claim 1: r_{n} is a common divisor of a, b.
Proof. We work backwards from the last equation up to the first equation. The last equation tells us: r_{n} divides r_{n-1}.

The second-to-last equation is: $r_{n-2}=q_{n} r_{n-1}+r_{n}$. So we get $r_{n}=r_{n-2}-q_{n} r_{n-1}$ so indeed, r_{n} divides $r_{n-2}-q_{n} r_{n-1}$. The observation above tells us r_{n} divides r_{n-2}.

By induction (or simply proceed as above), we get that r_{n} divides b (using the second equation). Using the first equation, we again get r_{n} divides a.

Claim 2: Suppose s is a common divisor of a, b. Then s divides r_{n}.
Proof. In the previous claim, we worked backwards (from the last equation up). Now we work downwards.

First equation: since s is a common divisor of a, b, s also divides $a-q_{1} b=r_{1}$.
Second equation: since s divides both r_{1}, b, s divides $q-q_{2} r_{1}=r_{2}$.
Second-to-last equation: since s divides r_{n-2}, r_{n-1}, s divides $r_{n-2}-q_{n} r_{n-1}=$ r_{n}.

The two claims imply that r_{n} is $\operatorname{gcd}(a, b)$.

