Math 161 Modern Geometry Homework Answers 3

1. Consider the picture. Since $P A$ is a diameter, $\triangle P Q A$ is a triangle in a semi-circle and so $\angle P Q A$ is a right angle. Similarly $\angle P Q B$ is a right angle. It follows that $\angle A Q B$ is a straight edge.
If you forgot this result, you can prove it along the way by cutting up everything into isosceles triangles and comparing angles.
2. Note that $\angle A D C=\angle A B C$ since the angles share the same arc $B D$. Similarly $\angle A B C=\angle A D C$ by sharing the arc $A C$. Finally $\angle A P B=\angle C P D$ since these angles are vertical. It follows that we have similar triangles $\triangle A B P \sim \triangle C D P$. Whence the side lengths are in ratio:

$$
\frac{A P}{B P}=\frac{P C}{P D} \Longrightarrow(A P)(P D)=(B P)(P C)
$$

3. (a) The vector joining A to B is $\mathbf{v}=\binom{b_{1}-a_{1}}{b_{2}-a_{2}}$. We must first get to the point A. Thus any point on the segment between A and B has position vector

$$
\vec{A}+t \mathbf{v}=\binom{a_{1}}{a_{2}}+t\binom{b_{1}-a_{1}}{b_{2}-a_{2}}=(1-t)\binom{a_{1}}{a_{2}}+t\binom{b_{1}}{b_{2}}
$$

where t is some real number. Clearly $t=0$ corresponds to A, and $t=1$ to B. Any number $0<t<1$ corresponds to traversing a fraction of the line segment from A to B and is thus between the points.
(b) By part (a), choosing $t=\frac{1}{2}$ gives the point $M:=\left(\frac{1}{2}\left(a_{1}+b_{1}\right), \frac{1}{2}\left(a_{2}+b_{2}\right)\right)$ as being between A and B. No we need only check that it is the midpoint. For this, compute the distance

$$
\begin{aligned}
|A M| & =\sqrt{\left(a_{1}-\frac{a_{1}+b_{1}}{2}\right)^{2}+\left(a_{2}-\frac{a_{2}+b_{2}}{2}\right)^{2}}=\sqrt{\left(\frac{a_{1}-b_{1}}{2}\right)^{2}+\left(\frac{a_{2}-b_{2}}{2}\right)^{2}} \\
& =\frac{1}{2} \sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}=\frac{1}{2}|A B| .
\end{aligned}
$$

Thus M is half way between A and B.
4. Let A, B, C, D, have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$. Then W, X, Y, Z have position vectors

$$
\mathbf{w}=\frac{1}{2}(\mathbf{a}+\mathbf{b}), \quad \mathbf{x}=\frac{1}{2}(\mathbf{b}+\mathbf{c}), \quad \mathbf{y}=\frac{1}{2}(\mathbf{c}+\mathbf{d}), \quad \mathbf{z}=\frac{1}{2}(\mathbf{d}+\mathbf{a}),
$$

respectively. Now compute:

$$
\overrightarrow{W X}=\mathbf{x}-\mathbf{w}=\frac{1}{2}(\mathbf{c}-\mathbf{a})=\mathbf{y}-\mathbf{z}=\overrightarrow{Z Y} .
$$

Similarly

$$
\overrightarrow{X Y}=\mathbf{y}-\mathbf{x}=\frac{1}{2}(\mathbf{d}-\mathbf{b})=\mathbf{z}-\mathbf{w}=\overrightarrow{W Z} .
$$

Thus opposite sides are the same vector. We have a parallelogram.
5. (a) The first picture below illustrates the problem. Take $\mathbf{u}=\binom{\cos \alpha}{\sin \alpha}$ and $\mathbf{v}=\binom{\cos \beta}{\sin \beta}$. Then

$$
\mathbf{u} \cdot \mathbf{v}=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

and

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\alpha-\beta)=\cos (\alpha-\beta)
$$

since both vectors have length 1 .
(b) The second picture shows what happens. This time, we take $B=(\cos \beta,-\sin \beta)$ before computing the dot product. The result is immediate.

(c) Consider the first picture below. Let $\phi=\frac{\pi}{2}-\theta$. Using the red and blue triangles we may compute the side lengths of the combined rectangle in two ways. It should be obvious that we have a rectangle, since the red and blue triangles are right-angled, and $\theta+\phi=\frac{\pi}{2}$: the fourth angle must also be a right angle. Two formulæ follow immediately:

$$
\begin{aligned}
& \sin \theta=\cos \phi=\cos \left(\frac{\pi}{2}-\theta\right) \\
& \cos \theta=\sin \phi=\sin \left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$

According to the definition, if $\frac{\pi}{2} \leq \theta \leq \pi$, then $\sin \theta=\sin (\pi-\theta)$. From the fourth picture, we see that

$$
\sin \theta=\sin (\pi-\theta)=\cos \phi=\cos \left(\frac{\pi}{2}-(\pi-\theta)\right)=\cos \left(\theta-\frac{\pi}{2}\right)
$$

(d) Suppose that $\alpha+\beta<\frac{\pi}{2}$. Then we certainly have $\frac{\pi}{2}-\alpha<\frac{\pi}{2}$ and $\beta \leq \frac{\pi}{2}$. Thus

$$
\begin{aligned}
\sin (\alpha+\beta) & =\cos \left(\frac{\pi}{2}-(\alpha+\beta)\right)=\cos \left(\left(\frac{\pi}{2}-\beta\right)-\alpha\right) \\
& =\cos \left(\frac{\pi}{2}-\beta\right) \cos \alpha+\sin \left(\frac{\pi}{2}-\beta\right) \sin \alpha \\
& =\sin \beta \cos \alpha+\cos \beta \sin \alpha \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta .
\end{aligned}
$$

If $\frac{\pi}{2}<\alpha+\beta \leq \pi$, then, by our assumption in the question that $\beta \leq \alpha$, we see that $\beta \leq \frac{\pi}{2}$. The calculation above is almost identical:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\cos \left((\alpha+\beta)-\frac{\pi}{2}\right)=\cos \left(\alpha-\left(\frac{\pi}{2}-\beta\right)\right) \\
& =\cos \alpha \cos \left(\frac{\pi}{2}-\beta\right)+\sin \alpha \sin \left(\frac{\pi}{2}-\beta\right) \\
& =\cos \alpha \sin \beta+\sin \alpha \cos \beta \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta .
\end{aligned}
$$

Similar arguments work for $\sin (\alpha-\beta)$. If $\alpha-\beta \leq \frac{\pi}{2}$, then

$$
\sin (\alpha-\beta)=\cos \left(\frac{\pi}{2}-(\alpha-\beta)\right)= \begin{cases}\left.\cos \left(\left(\frac{\pi}{2}-\alpha\right)+\beta\right)\right) & \text { if } \alpha \leq \frac{\pi}{2} \\ \cos \left(\beta-\left(\alpha-\frac{\pi}{2}\right)\right) & \text { if } \alpha>\frac{\pi}{2}\end{cases}
$$

while if $\alpha-\beta>\frac{\pi}{2}$, then $\alpha>\frac{\pi}{2}>\beta$, and so

$$
\left.\sin (\alpha-\beta)=\cos \left((\alpha-\beta)-\frac{\pi}{2}\right)=\cos \left(\left(\alpha-\frac{\pi}{2}\right)-\beta\right)\right)
$$

In either case, following the multiple angle formulae for cosine and translating back yields the results.

