## Math 161 Homework 4 Solution

(1) Consider the stereographic projection described in class.
(a) Consider the circle $(x-5)^{2}+(y-3)^{2}=1$ on the $x y$-plane (recall this is identified with the complex numbers). To what point $(X, Y, Z)$ on the unit sphere is the center of this circle mapped by the stereographic projection?
(b) Consider the plane $-7 X+2 Y+\frac{3}{2} Z=\frac{5}{2}$ in $\mathbb{R}^{3}$. Show that this plane intersects the unit sphere (Hint: compute the distance between ( $0,0,0$ ) and this plane). Let the intersection be the circle ( $c$ ). Compute the coordinates of the center and the radius of the corresponding circle on the $x y$-plane by the stereographic projection (i.e. compute the equation of the image of the circle $(c)$ under the stereographic projection).

Proof. (a): The center of the circle in question is $(5,3)$ or as a complex number: $5+3 i$. By the formula derived in lectures, the point $(X, Y, Z)$ is given by the formula: $X=\frac{2(5)}{5^{2}+3^{2}+1}=\frac{2}{7}, Y=\frac{2(3)}{5^{2}+3^{2}+1}=\frac{6}{35}, Z=$ $\frac{5^{2}+3^{2}-1}{5^{2}+3^{2}+1}=\frac{33}{35}$.
(b): To show the plane in the hypothesis intersects the unit sphere, we need to see the distance between the origin and the plane is $<1$. The distance formula (discussed in class) gives: $\frac{|5 / 2|}{\sqrt{(-7)^{2}+2^{2}+(3 / 2)^{2}}}<1$.

Now note that $5 / 2-3 / 2=1$ (i.e. $d-c=1$ as in lecture). We have $a=-7, b=2, c=3 / 2, d=5 / 2$. We conclude from our calculation that the equation of the circle on the complex plane which is the image of $(c)$ under the stereographic projection is: $(x-(-7))^{2}+(y-2)^{2}=(-7)^{2}+2^{2}-$ $2(3 / 2)-1=49$. So the circle has radius 7 and center $(-7,2)$.
(2) Consider points in the plane as ordered pairs $(x, y)$ and consider the function $f$ on the plane defined by $f(x, y)=(k x+a, k y+b)$ where $k, a, b$ are fixed real constants and $k \neq 0$. Is $f$ a transformation? Is $f$ an isometry?

Proof. $f$ is a transformation. First, we show $f$ is one-to-one. Let $(x, y) \neq$ $(v, w)$ be two distinct points. We assume $x \neq v$ (the case $y \neq w$ is similar). Then since $k, a$ are fixed and $k \neq 0, k x+a \neq k v+a$ (why? if equality occurs, then $k x+a-(k v+a)=0$; this gives $k(x-v)=0$, but $k \neq 0$, hence $x-v=0$, contradicting $x \neq v$ ). So $f(x, y) \neq f(v, w)$. So $f$ is one-to-one. Now suppose $(v, w)$ is an arbitrary point, we need to find $(x, y)$ such that $(k x+a, k y+b)=(v, w)$. Since $k \neq 0$, we easily get $x=\frac{v-a}{k}$ and $y=\frac{w-b}{k}$. This shows $f$ is onto.

Now rewrite the definition of $f$ a little bit, we get:

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=k\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)+\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

First, suppose $k=1$, then $f$ is simply the translation by vector $\left[\begin{array}{l}a \\ b\end{array}\right]$, so $f$ is an isometry.

Now suppose $k \neq 1$. Then $f$ first scales the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ by a factor of $k \neq 1$ and then translate via vector $\left[\begin{array}{l}a \\ b\end{array}\right]$. Since $k \neq 1$, clearly $f$ does not preserve lengths.
(3) Show that the matrix for the reflection map about the line through the origin that is inclined at the angle $\theta$ to the positive $x$-axis is

$$
M_{2 \theta}=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right] .
$$

Proof. Let $l$ be the line in the question and $f$ be the corresponding reflection. Let $P=(x, y)$, where $x=r \cos (\varphi)$ and $y=r \sin (\varphi)$, be an arbitrary point. Let $P^{\prime}=f(P)$. (In the following, you should draw a picture to make it easy to follow the proof). Assume without loss of generality that $\varphi<\theta$.

The angle produced by $l$ and $O P$ is $\theta-\varphi$. Hence $\angle P^{\prime} O X=\theta+(\theta-\varphi)=$ $2 \theta-\varphi$, where $\angle P^{\prime} O X$ is the angle $O P^{\prime}$ created with the $x$-axis.

And so: $X=r \cos (2 \theta-\varphi)$ and $Y=r \sin (2 \theta-\varphi)$. Expanding we get: $X=r \cos (2 \theta-\varphi)=\cos 2 \theta r \cos (\varphi)+\sin 2 \theta r \sin 2 \theta=x \cos 2 \theta+y \sin 2 \theta$ and $Y=r \sin (2 \theta-\varphi)=\sin 2 \theta r \cos \varphi-\cos 2 \theta r \sin 2 \theta=x \sin 2 \theta-y \cos 2 \theta$.
(4) Let $f$ be the composition of the reflection through the line $y=x$, followed by a rotation by $\pi / 3$, and followed by a reflection through the $y$-axis. Identify $f$ (i.e. determine whether $f$ is a rotation or a reflection).

Proof. The first map: reflection through $y=x$ is $\mu_{\pi / 4}$ (the angle between $y=x$ and the positive $x$-axis is $\pi / 4$ ); so by the previous exercise, its matrix is

$$
M_{\pi / 2}=\left[\begin{array}{cc}
\cos (\pi / 2) & \sin (\pi / 2) \\
\sin (\pi / 2) & -\cos (\pi / 2)
\end{array}\right] .
$$

. The second map: rotation by $\pi / 3$, is $\rho_{\pi / 3}$. So its matrix is

$$
R_{\pi / 3}=\left[\begin{array}{cc}
\cos (\pi / 3) & -\sin (\pi / 3) \\
\sin (\pi / 3) & \cos (\pi / 3)
\end{array}\right] .
$$

Similarly, the last map has matrix:

$$
M_{\pi}=\left[\begin{array}{cc}
\cos (\pi) & \sin (\pi) \\
\sin (\pi) & -\cos (\pi)
\end{array}\right] .
$$

Now the product (convince yourself of this by carrying out the actual multiplication)

$$
M_{\pi} R_{\pi / 3} M_{\pi / 2}=\left[\begin{array}{cc}
\cos (\pi / 6) & -\sin (\pi / 6) \\
\sin (\pi / 6) & \cos (\pi / 6)
\end{array}\right]
$$

So $f$ is rotation by $\pi / 6$ about the origin.
(5) We saw in class that every isometry can be thought of as a function $f_{A, \mathbf{c}}$ : $\mathbf{x} \mapsto \mathbf{A x}+\mathbf{c}$ where $A$ is an orthogonal matrix and $\mathbf{c}$ is a constant vector. That is, every isometry is a combination of a rotation/reflection (multiplying by $A$ ) and a translation (adding c). A rotation/reflection would have $\mathbf{c}=\mathbf{0}$, while a pure translation would have $A=I$ (the identity matrix).
(a) Prove that composition works as follows $f_{A, \mathbf{c}} \circ f_{B, \mathbf{d}}=f_{A B, A \mathbf{d}+\mathbf{c}}$. Thus the composition of any two isometries is an isometry.
(b) What is the inverse of the isometry $f_{A, \mathbf{c}}$ ? That is, if $f_{A, \mathbf{c}} \circ f_{B, \mathbf{d}}=f_{I, \mathbf{0}}$, where $I$ is the identity matrix, then what are $B, \mathbf{d}$ ?
(c) Compute the composition $f_{A, \mathbf{c}} \circ f_{I, \mathbf{d}} \circ f_{A, \mathbf{c}}^{-1}$. You should obtain a pure translation. This shows that translations form a normal subgroup of the group of isometries.
Proof.
(a) Evaluate the composition on a vector $\mathbf{x}$ :

$$
\begin{aligned}
f_{A, \mathbf{c}} \circ f_{B, \mathbf{d}}(\mathbf{x}) & =f_{A, \mathbf{c}}\left(f_{B, \mathbf{d}}(\mathbf{x})\right)=f_{A, \mathbf{c}}(B \mathbf{x}+\mathbf{d}) \\
& =A(B \mathbf{x}+\mathbf{d})+\mathbf{c}=(\mathbf{A B}) \mathbf{x}+(\mathbf{A d}+\mathbf{c}) \\
& =f_{A B, A \mathbf{d}+\mathbf{c}}(\mathbf{x})
\end{aligned}
$$

(b) If $f_{A, \mathbf{c}} \circ f_{B, \mathbf{d}}=f_{I, \mathbf{0}}$, then

$$
\left\{\begin{array}{l}
A B=I \\
A \mathbf{d}+\mathbf{c}=\mathbf{0}
\end{array} \quad \Longrightarrow B=A^{-1}, \quad \mathbf{d}=-\mathbf{A}^{-\mathbf{1}} \mathbf{c}\right.
$$

Thus $f_{A, \mathbf{c}}^{-1}=f_{A^{-1},-A^{-1} \mathbf{c}}$
(c) Just compute:

$$
\begin{aligned}
f_{A, \mathbf{c}} \circ f_{I, \mathbf{d}} \circ f_{A, \mathbf{c}}^{-1} & =f_{A, \mathbf{c}} \circ f_{I, \mathbf{d}} \circ f_{A^{-1},-A^{-1} \mathbf{c}}=f_{A I, A \mathbf{d}+\mathbf{c}} \circ f_{A^{-1},-A^{-1} \mathbf{c}} \\
& =f_{A, A \mathbf{d}+\mathbf{c}} \circ f_{A^{-1},-A^{-1} \mathbf{c}}=f_{A A^{-1}, A\left(-A^{-1} \mathbf{c}\right)+(\mathbf{A d}+\mathbf{c})} \\
& =f_{I, A \mathbf{d}}
\end{aligned}
$$

