
Math 161 Homework 4 Solution

(1) Consider the stereographic projection described in class.
(a) Consider the circle (x− 5)2 + (y − 3)2 = 1 on the xy-plane (recall this

is identified with the complex numbers). To what point (X,Y, Z) on
the unit sphere is the center of this circle mapped by the stereographic
projection?

(b) Consider the plane −7X + 2Y + 3
2Z = 5

2 in R3. Show that this plane
intersects the unit sphere (Hint: compute the distance between (0, 0, 0)
and this plane). Let the intersection be the circle (c). Compute the
coordinates of the center and the radius of the corresponding circle on
the xy-plane by the stereographic projection (i.e. compute the equation
of the image of the circle (c) under the stereographic projection).

Proof. (a): The center of the circle in question is (5, 3) or as a complex
number: 5 + 3i. By the formula derived in lectures, the point (X,Y, Z)

is given by the formula: X = 2(5)
52+32+1 = 2

7 , Y = 2(3)
52+32+1 = 6

35 , Z =
52+32−1
52+32+1 = 33

35 .

(b): To show the plane in the hypothesis intersects the unit sphere, we need
to see the distance between the origin and the plane is < 1. The distance

formula (discussed in class) gives: |5/2|√
(−7)2+22+(3/2)2

< 1.

Now note that 5/2 − 3/2 = 1 (i.e. d − c = 1 as in lecture). We have
a = −7, b = 2, c = 3/2, d = 5/2. We conclude from our calculation that
the equation of the circle on the complex plane which is the image of (c)
under the stereographic projection is: (x− (−7))2 +(y−2)2 = (−7)2 +22−
2(3/2)− 1 = 49. So the circle has radius 7 and center (−7, 2). �

(2) Consider points in the plane as ordered pairs (x, y) and consider the function
f on the plane defined by f(x, y) = (kx+ a, ky + b) where k, a, b are fixed
real constants and k 6= 0. Is f a transformation? Is f an isometry?

Proof. f is a transformation. First, we show f is one-to-one. Let (x, y) 6=
(v, w) be two distinct points. We assume x 6= v (the case y 6= w is similar).
Then since k, a are fixed and k 6= 0, kx + a 6= kv + a (why? if equality
occurs, then kx+a− (kv+a) = 0; this gives k(x−v) = 0, but k 6= 0, hence
x − v = 0, contradicting x 6= v). So f(x, y) 6= f(v, w). So f is one-to-one.
Now suppose (v, w) is an arbitrary point, we need to find (x, y) such that
(kx+ a, ky+ b) = (v, w). Since k 6= 0, we easily get x = v−a

k and y = w−b
k .

This shows f is onto.
Now rewrite the definition of f a little bit, we get:

f(

[
x
y

]
) = k(

[
x
y

]
) +

[
a
b

]
.

First, suppose k = 1, then f is simply the translation by vector

[
a
b

]
, so f

is an isometry.
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Now suppose k 6= 1. Then f first scales the vector

[
x
y

]
by a factor of

k 6= 1 and then translate via vector

[
a
b

]
. Since k 6= 1, clearly f does not

preserve lengths. �

(3) Show that the matrix for the reflection map about the line through the
origin that is inclined at the angle θ to the positive x-axis is

M2θ =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
.

Proof. Let l be the line in the question and f be the corresponding reflec-
tion. Let P = (x, y), where x = r cos(ϕ) and y = r sin(ϕ), be an arbitrary
point. Let P ′ = f(P ). (In the following, you should draw a picture to make
it easy to follow the proof). Assume without loss of generality that ϕ < θ.

The angle produced by l and OP is θ−ϕ. Hence ∠P ′OX = θ+(θ−ϕ) =
2θ − ϕ, where ∠P ′OX is the angle OP ′ created with the x-axis.

And so: X = r cos(2θ − ϕ) and Y = r sin(2θ − ϕ). Expanding we get:
X = r cos(2θ−ϕ) = cos 2θ r cos(ϕ)+sin 2θ r sin 2θ = x cos 2θ+y sin 2θ and
Y = r sin(2θ − ϕ) = sin 2θ r cosϕ− cos 2θ r sin 2θ = x sin 2θ − y cos 2θ. �

(4) Let f be the composition of the reflection through the line y = x, followed by
a rotation by π/3, and followed by a reflection through the y-axis. Identify
f (i.e. determine whether f is a rotation or a reflection).

Proof. The first map: reflection through y = x is µπ/4 (the angle between
y = x and the positive x-axis is π/4); so by the previous exercise, its matrix
is

Mπ/2 =

[
cos(π/2) sin(π/2)
sin(π/2) − cos(π/2)

]
.

. The second map: rotation by π/3, is ρπ/3. So its matrix is

Rπ/3 =

[
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

]
.

Similarly, the last map has matrix:

Mπ =

[
cos(π) sin(π)
sin(π) − cos(π)

]
.

Now the product (convince yourself of this by carrying out the actual mul-
tiplication)

MπRπ/3Mπ/2 =

[
cos(π/6) − sin(π/6)
sin(π/6) cos(π/6)

]
.

So f is rotation by π/6 about the origin. �

(5) We saw in class that every isometry can be thought of as a function fA,c :
x 7→ Ax + c where A is an orthogonal matrix and c is a constant vector.
That is, every isometry is a combination of a rotation/reflection (multiply-
ing by A) and a translation (adding c). A rotation/reflection would have
c = 0, while a pure translation would have A = I (the identity matrix).
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(a) Prove that composition works as follows fA,c ◦fB,d = fAB,Ad+c. Thus
the composition of any two isometries is an isometry.

(b) What is the inverse of the isometry fA,c? That is, if fA,c ◦fB,d = fI,0,
where I is the identity matrix, then what are B,d?

(c) Compute the composition fA,c ◦ fI,d ◦ f−1A,c,. You should obtain a pure
translation. This shows that translations form a normal subgroup of
the group of isometries.

Proof.
(a) Evaluate the composition on a vector x:

fA,c ◦ fB,d(x) = fA,c (fB,d(x)) = fA,c (Bx + d)

= A(Bx + d) + c = (AB)x + (Ad + c)

= fAB,Ad+c(x)

(b) If fA,c ◦ fB,d = fI,0, then{
AB = I

Ad + c = 0
=⇒ B = A−1, d = −A−1c

Thus f−1A,c = fA−1,−A−1c

(c) Just compute:

fA,c ◦ fI,d ◦ f−1A,c = fA,c ◦ fI,d ◦ fA−1,−A−1c = fAI,Ad+c ◦ fA−1,−A−1c

= fA,Ad+c ◦ fA−1,−A−1c = fAA−1,A(−A−1c)+(Ad+c)

= fI,Ad

�


