Math 161 Modern Geometry Homework Questions 5
 Due: Tuesday, May 30, 2017

(1) Let f be the composition of the reflection through the line $y=x$, followed by a rotation by $\pi / 3$, and followed by a reflection through the y-axis. Identify f (i.e. determine whether f is a rotation or a reflection).
(2) Identify the product f of a reflection in the line $y=-x$, a rotation through $\pi / 3$, and a reflection in the y-axis. Make sure you specify the exact nature of f and provide the matrix representation for f.
(3) Identify the product of a rotation through $\pi / 6$ about the origin followed by a rotation through $\pi / 3$ about the point $A=(1,0)$. Hint: It's fairly clear that this is a rotation; the main thing is to compute the center of the rotation.
(4) Identify the product of the reflection in the line $x+y=1$ followed by the rotation through $\pi / 4$ about the point $(1,0)$.
(5) The point $P=(1,1)$ is rotated through $\pi / 6$ about the point $(2,3)$ and then translated in the direction of $(1,2)$ (i.e. translated in the direction of the vector $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$) through a distance of 3 units. Find the coordinates of the resulting point.
(6) $A B C D$ is a unit square and a point P is successively rotated through $\pi / 2$ about each of the four points, in the given order. Show that, after the four rotations, the net effect will be to translate P in the direction $A D$ through a distance of 4 units.

