Math 161 Homework 5 Solutions

(1) Identify the product f of a reflection in the line y = -x, a rotation through $\pi/3$, and a reflection in the y-axis. Make sure you specify the exact nature of f and provide the matrix representation for f.

Proof. Reflection in y = x has matrix $M_{\pi/2}$ because y = x makes angle $\pi/4$ with the positive x-axis.

Rotation by $\pi/3$ has matrix $R_{\pi/3}$.

Reflection in y-axis has matrix M_{π} because the y-axis has angle $\pi/2$ relative to the positive x-axis.

Multiplying $M_{\pi}R_{\pi/3}M_{\pi/2} = M_{\pi}M_{\pi/3+\pi/2} = R_{\pi-\pi/3-\pi/2} = R_{\pi/6}$. Conclusion: f is a rotation by angle $\pi/6$ about the origin.

(2) Identify the product f of a reflection in the line y = -x, a rotation through $\pi/3$, and a reflection in the y-axis. Make sure you specify the exact nature of f and provide the matrix representation for f.

Proof. Reflection in y = -x has matrix $M_{3\pi/2}$ because y = -x makes angle $3\pi/4$ with the positive x-axis.

Rotation by $\pi/3$ has matrix $R_{\pi/3}$.

Reflection in y-axis has matrix M_{π} because the y-axis has angle $\pi/2$ relative to the positive x-axis.

Multiplying $M_{\pi}R_{\pi/3}M_{3\pi/2} = M_{\pi}M_{\pi/3+3\pi/2} = R_{\pi-\pi/3-3\pi/2} = R_{-5\pi/6}$. Conclusion: f is a rotation by angle $-5\pi/6$ about the origin.

(3) Identify the product of a rotation through $\pi/6$ about the origin followed by a rotation through $\pi/3$ about the point A = (1,0). **Hint:** It's fairly clear that this is a rotation; the main thing is to compute the center of the rotation.

Proof. This is clearly a 90° rotation. Why? The first map has matrix $R_{\pi/6}$ and the second map is $\tau R_{\pi/3}$ for some translation τ (this has been discussed carefully in class). Now $\tau R_{\pi/3}R_{\pi/6} = \tau R_{\pi/2}$.

The only question is: what is the centre? In other words, what is τ ? In the following, draw a picture to convince yourself.

The origin O rotates to the point B where AO = AB and the angle OAB is 60°. The centre must be the point C such that CO = CB and $\angle OCB = 90^{\circ}$.

Since $\triangle OAB$ is an isosceles triangle with a 60° angle it?s equilateral, and so OB = 1. $\triangle OCB$ is a right-angled triangle and so $OC = 1/\sqrt{2}$. Angle $AOC = 60^{\circ} - 45^{\circ} = 15^{\circ}$.

(4) Identify the product of the reflection in the line x + y = 1 followed by the rotation through $\pi/4$ about the point (1,0).

Proof. $R_{\pi/4}M_{\pi/2} = M - \pi/4$ so the product must be a reflection in a line inclined to the positive x-axis by the angle -22.5° . Since the point (1,0) lies on the axis of reflection it is fixed by the product. Therefore the product must be a reflection in the line through (1,0) at an angle of -22.5° .

(5) The point P = (1, 1) is rotated through $\pi/6$ about the point (2, 3) and then translated in the direction of (1, 2) (i.e. translated in the direction of the vector $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$) through a distance of 3 units. Find the coordinates of the resulting point.

Proof. Translate (2,3) to the origin. So $(1,1) \rightarrow (1,-1)$. The rotation matrix for a 30° rotation about the origin is $\begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$, so $(1,-1) \rightarrow \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$

$$\begin{bmatrix} \sqrt{3}/2 & -1/2\\ 1/2 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1+\sqrt{3}}{2}\\ \frac{\sqrt{3}-1}{2} \end{bmatrix}.$$

Now translate the origin back to (2, 3). The point now moves to $(\frac{3-\sqrt{3}}{2}, \frac{\sqrt{3}+5}{2})$. Now translate by $\frac{3}{\sqrt{5}}(1,2)$ to get $(\frac{3-\sqrt{3}}{2} + \frac{3\sqrt{5}}{5}, \frac{\sqrt{3}+5}{2} + \frac{6\sqrt{5}}{5})$.

(6) ABCD is a unit square and a point P is successively rotated through π/2 about each of the four points, in the given order. Show that, after the four rotations, the net effect will be to translate P in the direction AD through a distance of 4 units.

Proof. Let the points A, B, C, D be represented by vectors $\mathbf{0}, \mathbf{a}, \mathbf{a} + \mathbf{b}, \mathbf{b}$ respectively, where \mathbf{a}, \mathbf{b} is an orthonormal basis of \mathbb{R}^2 . Let $R = R_{\pi/2}$ be the matrix of a 90° rotation about the origin. So here, we put A at the origin.

Then $R\mathbf{a} = \mathbf{b}$ and $R\mathbf{b} = -\mathbf{a}$. Let *P* be represented by vector \mathbf{v} , then the successive positions are:

$$\mathbf{v}
ightarrow \mathbf{Rv}$$

 $\rightarrow \mathbf{R}(\mathbf{R}\mathbf{v}-\mathbf{a})+\mathbf{a}=\mathbf{R}\mathbf{v}-\mathbf{R}\mathbf{a}+\mathbf{a}=-\mathbf{v}-\mathbf{b}+\mathbf{a}$

 $\begin{array}{l} \rightarrow \mathbf{R}[-\mathbf{v}-\mathbf{b}+\mathbf{a}-(\mathbf{a}+\mathbf{b})]+\mathbf{a}+\mathbf{b}=-\mathbf{R}\mathbf{v}-\mathbf{2R}\mathbf{b}+\mathbf{a}+\mathbf{b}=-\mathbf{R}\mathbf{v}+\mathbf{3a}+\mathbf{b}\\ \rightarrow \mathbf{R}[-\mathbf{R}\mathbf{v}+\mathbf{3a}+\mathbf{b}-\mathbf{b}]+\mathbf{b}=-\mathbf{R}\mathbf{2v}+\mathbf{3R}\mathbf{a}+\mathbf{b}=\mathbf{v}+\mathbf{4b}. \end{array}$

So the product of the four rotations is a translation in the direction AD through a distance of 4. It?s clear that the product of four 90° rotations about any center will result in directed lines being fixed and so will be a translation. If we take A and carry out the rotations we can see geometrically that the direction and distance of the translation are as claimed.] \Box