Math 161 Homework 5 Solutions

(1) Identify the product f of a reflection in the line $y=-x$, a rotation through $\pi / 3$, and a reflection in the y-axis. Make sure you specify the exact nature of f and provide the matrix representation for f.

Proof. Reflection in $y=x$ has matrix $M_{\pi / 2}$ because $y=x$ makes angle $\pi / 4$ with the positive x-axis.

Rotation by $\pi / 3$ has matrix $R_{\pi / 3}$.
Reflection in y-axis has matrix M_{π} because the y-axis has angle $\pi / 2$ relative to the positive x-axis.

Multiplying $M_{\pi} R_{\pi / 3} M_{\pi / 2}=M_{\pi} M_{\pi / 3+\pi / 2}=R_{\pi-\pi / 3-\pi / 2}=R_{\pi / 6}$.
Conclusion: f is a rotation by angle $\pi / 6$ about the origin.
(2) Identify the product f of a reflection in the line $y=-x$, a rotation through $\pi / 3$, and a reflection in the y-axis. Make sure you specify the exact nature of f and provide the matrix representation for f.

Proof. Reflection in $y=-x$ has matrix $M_{3 \pi / 2}$ because $y=-x$ makes angle $3 \pi / 4$ with the positive x-axis.

Rotation by $\pi / 3$ has matrix $R_{\pi / 3}$.
Reflection in y-axis has matrix M_{π} because the y-axis has angle $\pi / 2$ relative to the positive x-axis.

Multiplying $M_{\pi} R_{\pi / 3} M_{3 \pi / 2}=M_{\pi} M_{\pi / 3+3 \pi / 2}=R_{\pi-\pi / 3-3 \pi / 2}=R_{-5 \pi / 6}$.
Conclusion: f is a rotation by angle $-5 \pi / 6$ about the origin.
(3) Identify the product of a rotation through $\pi / 6$ about the origin followed by a rotation through $\pi / 3$ about the point $A=(1,0)$. Hint: It's fairly clear that this is a rotation; the main thing is to compute the center of the rotation.

Proof. This is clearly a 90° rotation. Why? The first map has matrix $R_{\pi / 6}$ and the second map is $\tau R_{\pi / 3}$ for some translation τ (this has been discussed carefully in class). Now $\tau R_{\pi / 3} R_{\pi / 6}=\tau R_{\pi / 2}$.

The only question is: what is the centre? In other words, what is τ ? In the following, draw a picture to convince yourself.

The origin O rotates to the point B where $A O=A B$ and the angle $O A B$ is 60°. The centre must be the point C such that $C O=C B$ and $\angle O C B=90^{\circ}$.

Since $\triangle O A B$ is an isosceles triangle with a 60° angle it?s equilateral, and so $O B=1 . \triangle O C B$ is a right-angled triangle and so $O C=1 / \sqrt{2}$. Angle $A O C=60^{\circ}-45^{\circ}=15^{\circ}$.
(4) Identify the product of the reflection in the line $x+y=1$ followed by the rotation through $\pi / 4$ about the point $(1,0)$.

Proof. $R_{\pi / 4} M_{\pi / 2}=M-\pi / 4$ so the product must be a reflection in a line inclined to the positive x-axis by the angle -22.5°. Since the point $(1,0)$ lies on the axis of reflection it is fixed by the product. Therefore the product must be a reflection in the line through $(1,0)$ at an angle of -22.5°.
(5) The point $P=(1,1)$ is rotated through $\pi / 6$ about the point $(2,3)$ and then translated in the direction of $(1,2)$ (i.e. translated in the direction of the vector $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$) through a distance of 3 units. Find the coordinates of the resulting point.

Proof. Translate $(2,3)$ to the origin. So $(1,1) \rightarrow(1,-1)$. The rotation matrix for a 30° rotation about the origin is $\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]$, so $(1,-1) \rightarrow$ $\left[\begin{array}{cc}\sqrt{3} / 2 & -1 / 2 \\ 1 / 2 & \sqrt{3} / 2\end{array}\right]\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}-\frac{1+\sqrt{3}}{2} \\ \frac{\sqrt{3}-1}{2}\end{array}\right]$.

Now translate the origin back to $(2,3)$. The point now moves to $\left(\frac{3-\sqrt{3}}{2}, \frac{\sqrt{3}+5}{2}\right)$. Now translate by $\frac{3}{\sqrt{5}}(1,2)$ to get $\left(\frac{3-\sqrt{3}}{2}+\frac{3 \sqrt{5}}{5}, \frac{\sqrt{3}+5}{2}+\frac{6 \sqrt{5}}{5}\right)$.
(6) $A B C D$ is a unit square and a point P is successively rotated through $\pi / 2$ about each of the four points, in the given order. Show that, after the four rotations, the net effect will be to translate P in the direction $A D$ through a distance of 4 units.

Proof. Let the points A, B, C, D be represented by vectors $\mathbf{0}, \mathbf{a}, \mathbf{a}+\mathbf{b}, \mathbf{b}$ respectively, where \mathbf{a}, \mathbf{b} is an orthonormal basis of \mathbb{R}^{2}. Let $R=R_{\pi / 2}$ be the matrix of a 90° rotation about the origin. So here, we put A at the origin.

Then $R \mathbf{a}=\mathbf{b}$ and $R \mathbf{b}=-\mathbf{a}$. Let P be represented by vector \mathbf{v}, then the successive positions are:
$\mathbf{v} \rightarrow \mathbf{R v}$
$\rightarrow \mathbf{R}(\mathbf{R v}-\mathbf{a})+\mathbf{a}=\mathbf{R v}-\mathbf{R a}+\mathbf{a}=-\mathbf{v}-\mathbf{b}+\mathbf{a}$
$\rightarrow \mathbf{R}[-\mathbf{v}-\mathbf{b}+\mathbf{a}-(\mathbf{a}+\mathbf{b})]+\mathbf{a}+\mathbf{b}=-\mathbf{R v}-2 \mathbf{R b}+\mathbf{a}+\mathbf{b}=-\mathbf{R v}+\mathbf{3 a}+\mathbf{b}$
$\rightarrow \mathbf{R}[-\mathbf{R v}+\mathbf{3 a}+\mathbf{b}-\mathbf{b}]+\mathbf{b}=-\mathbf{R 2 v}+3 \mathbf{R a}+\mathbf{b}=\mathbf{v}+\mathbf{4 b}$.
So the product of the four rotations is a translation in the direction AD
through a distance of 4 . It?s clear that the product of four 90° rotations about any center will result in directed lines being fixed and so will be a translation. If we take A and carry out the rotations we can see geometrically that the direction and distance of the translation are as claimed.]

