Math 161 Modern Geometry Homework Questions 6

- (1) (a) Find the hyperbolic line in the Poincare disk model on which lie the points (1/2, 0) and (0, 1/4).
 - (b) Use your answer to find the hyperbolic distance between the points in part (a).

Proof.

Substitute both points into the equation $x^2 + y^2 + ax + by + 1 = 0$. We obtain

$$\begin{cases} \frac{1}{4} + \frac{1}{2}a + 1 = 0\\ \frac{1}{16} + \frac{1}{4}b + 1 = 0 \end{cases} \implies a = -\frac{5}{2}, \ b = -\frac{17}{4} \end{cases}$$

The hyperbolic line is therefore the arc of the circle

$$x^{2} + y^{2} - \frac{5}{2}x - \frac{17}{4}y + 1 = 0 \iff \left(x - \frac{5}{4}\right)^{2} + \left(y - \frac{17}{8}\right)^{2} = \left(\frac{5\sqrt{13}}{8}\right)^{2}$$

To find the distance, we find the co-ordinates of the intersections R, S of the two circles:

$$\begin{cases} x^2 + y^2 - \frac{5}{2}x - \frac{17}{4}y + 1 = 0 \\ x^2 + y^2 = 1 \end{cases} \iff \begin{cases} 2 = \frac{5}{2}x + \frac{17}{4}y \\ x^2 + y^2 = 1 \end{cases}$$
$$\iff \begin{cases} 8 = 10x + 17y \\ x^2 + y^2 = 1 \end{cases}$$

Substituting the first equation in the second and solving the quadratic, we obtain

$$x = \frac{5(16 \pm 17\sqrt{13})}{389} \approx -0.56865, \ 0.97996$$

Solving for y, we obtain

$$R = \left(\frac{5(16 - 17\sqrt{13})}{389}, \frac{2(68 + 25\sqrt{13})}{389}\right) \approx (-0.5822, 0.8131)$$
$$S = \left(\frac{5(16 + 17\sqrt{13})}{389}, \frac{2(68 - 25\sqrt{13})}{389}\right) \approx (0.9935, -0.1138)$$

The hyperbolic distance d(P,Q) is then (enjoy ...)

$$\left|\ln \frac{|PR||QS|}{|PS||QR|}\right| \approx 1.25$$

If you want to investigate the web, you'll find an alternative expression for the distance which is easier to compute directly:

$$d(P,Q) = \operatorname{arccosh}\left(1 + \frac{(|\overrightarrow{OP} - \overrightarrow{OQ}|)^2}{\left(1 - |\overrightarrow{OP}|^2\right)\left(1 - |\overrightarrow{OQ}|^2\right)}\right) = \operatorname{arccosh}\frac{17}{9} = \ln\frac{17 + 4\sqrt{13}}{9} = 1.25029\dots$$

(2) Let O be the origin and P be a point in the Poincare disk. Let r be the Euclidean distance between O and P. Show that the hyperbolic distance between O and P, $d = 2 \tanh^{-1}(r)$ or equivalently, $r = \tanh(d/2)$.

Proof. Let R and S be the Omega points of the line OP. Notice OP is a straight line because O is the origin. Here O is between R and P and P is between O and S. So we have

RP = 1 + r, PS = 1 - r, OR = OS = 1.

The hyperbolic distance between O and P is:

$$\left|\ln \frac{|OS||PR|}{|OR||PS|} = \ln \frac{1+r}{1-r}.\right|$$

Recall $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ and $\tanh^{-1}(x) = 1/2 \ln \frac{1+x}{1-x}$. The above equation gives us what we want.

(3) Show that if ℓ and m are limiting parallel lines, then they cannot have a common perpendicular.

Proof. Suppose that ℓ and m had a common perpendicular PQ, where P lies on ℓ . Then the angle of parallelism of P with m is 90°. A contradiction to the exterior angle theorem for Omega triangles (or to Problem 3).

(4) Show that two hyperbolic lines cannot have more than one common perpendicular.

Proof. Suppose that two hyperbolic lines had two common perpendiculars. These together with segments of the original lines would form a rectangle. Contradiction. \Box

(5) Let $PQ\Omega$ be an Omega-triangle. Prove that the sum of the angles $\angle PQ\Omega$ and $\angle QP\Omega$ is less than 180°.

Proof. Let α be the exterior angle to angle $\angle PQ\Omega$. Note that $m(\alpha) + m(\angle PQ\Omega) = 180^{\circ}$. By the exterior angle theorem for Omega triangles, $m(\alpha) > m(\angle QP\Omega)$. This means $m(\angle QP\Omega) + m(\angle PQ\Omega) < 180^{\circ}$. \Box

(6) Suppose that an Omegra triangle is drawn with vertices at O = (0,0), $\Omega = (1,0)$ and P = (0,h) where h > 0. Prove that the hyperbolic line $P\Omega$ is an arc of a circle with equation $(x-1)^2 + (y-k)^2 = k^2$ for some k > 0.

Proof. Since $\Omega = (1,0)$, it follows that the hyperbolic line intersects the unit circle at right-angles at Ω (in other words, the tangent to this circle must be horizontal since the tangent to the unit circle at Ω is vertical), and so its center (as a Euclidean circle) must lie directly above Ω at some point (1,k). The radius of this circle is clearly k, whence it has equation $(x-1)^2 + (y-k)^2 = k^2$.

(7) Prove that any hyperbolic line in the Poincare disk model of hyperbolic geometry is either a straight line, or an arc of a circle of the form $x^2 + y^2 + ax + by + 1 = 0$ with $a^2 + b^2 > 4$. Conversely, prove that any such arc is a hyperbolic line.

Proof. If a hyperbolic line goes through the center of the Poincare disk then it is a diameter: a straight line. Otherwise it is the arc of a circle intersecting the unit circle orthogonally. If the circle centered at C, radius r, defines a hyperbolic line, then the triangle $\triangle OPC$ is right-angled at P (here P is a point of intersection of the two circles). Applying Pythagoras'

gives the distance of C from the origin: $\sqrt{1+r^2}$. If θ is the polar angle of C with the positive x-axis, then C has co-ordiantes

$$C = \left(\sqrt{1+r^2}\cos\theta, \sqrt{1+r^2}\sin\theta\right)$$

The equation of the hyperbolic line is then

$$\left(x - \sqrt{1 + r^2}\cos\theta\right)^2 + \left(y - \sqrt{1 + r^2}\sin\theta\right)^2 = r^2$$

Rearranging this, we obtain

$$x^{2} + y^{2} - 2\sqrt{1 + r^{2}}\cos\theta x - 2\sqrt{1 + r^{2}}\sin\theta y + 1 = 0$$

Thus $a = -2\sqrt{1+r^2}\cos\theta$ and $b = -2\sqrt{1+r^2}\sin\theta$ in our description, where the center $C = (-\frac{a}{2}, -\frac{b}{2})$. Moreover, $a^2 + b^2 = 4(1+r^2) > 4$ if r > 0.

Conversely, if a, b are such that $a^2 + b^2 > 4$, then define $R := \sqrt{a^2 + b^2}$, whence there is a unique $\theta \in [0, 2\pi)$ for which $a = R \cos \theta$ and $b = R \sin \theta$. Since R > 2, there is a unique r > 0 for which $R = \sqrt{1 + r^2}$. Now, by our earlier discussion, $x^2 + y^2 + ax + by + 1 = 0$ is the equation of an orthogonal circle to $x^2 + y^2 = 1$.