The point at $\infty 4$ the cxtinded complex plane: (29)
Define $\infty=\lim _{n \rightarrow \infty} z_{n}$ where $\left|z_{n}\right| \rightarrow \infty$.
Riemann sphen: $S^{2}=\mathbb{C} \cup\{\infty\}$
Eg: $f: S^{2} \rightarrow S^{2} \quad f(z)=\frac{1}{z-2}$ is bijutir.

$$
\begin{aligned}
& f^{-1}(2)=2+\frac{1}{z} \\
& f(2)=\infty \quad f(\infty)=0 \quad f^{-1}(\infty)=2 \\
& \\
& \quad f^{-1}(0)=\infty .
\end{aligned}
$$

Stereographic Projection:
Can visualize S^{2} as the unit sphere with center $(0,0,0)$.
Identity \mathbb{C} with the $x-y$-plane in \mathbb{R}^{3}.
Identify ∞ with $(0,0,1)$; lit $\vec{a}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
If $z=x+i y$, identify z with th point $(x, y, 0) ; i 2 t \vec{b}=\left[\begin{array}{l}x \\ y\end{array}\right]$.
Then

$$
(e)=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\underbrace{\left[\begin{array}{c}
y \\
y \\
-1
\end{array}\right]}_{\vec{b}-\vec{a}} \text {, is the rector equation } \quad \text { of theline-joining these }
$$

Stenographic Projection is the map that associate points $z=x+i y$ an the complex plane with point $P=(\bar{X}, \bar{Y}, Z)$ on the unit $乡$ her (and it associates $(0,0,1)$ with ∞)

