Compactness of ω_1

Nam Trang

University of California, Irvine
UCLA Logic Colloquium
Jan 20, 2017
Assume ZFC. Let $j : V \rightarrow M$ be a (nontrivial) elementary embedding with critical point $\text{crt}(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance, κ is a measurable cardinal. Note that $V_{\kappa+1} = V_M$.

If for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j(\lambda) \subseteq x$ and $|x| < j(\kappa)$ in M, then κ is said to be λ-strongly compact.

If for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, $j(\lambda) \in M$ (or equivalently $M^\lambda \subseteq M$), then κ is λ-supercompact.

We say that κ is supercompact/strongly compact if κ is λ-supercompact/λ-strongly compact for all λ. Clearly, supercompact \rightarrow strongly compact \rightarrow measurable.
Elementary embeddings and large cardinals

Assume ZFC. Let $j : V \rightarrow M$ be a (nontrivial) elementary embedding with critical point $\text{crt}(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,
Assume ZFC. Let \(j : V \rightarrow M \) be a (nontrivial) elementary embedding with critical point \(\text{crt}(j) = \kappa \).

One can show that \(\kappa \) is a large cardinal (e.g. inaccessible). Moreover, the "closer" \(M \) is to \(V \), the "stronger" the large cardinal property of \(\kappa \) is. For instance,

- \(\kappa \) is a *measurable cardinal*. Note that \(V_{\kappa+1} = V_{\kappa+1}^M \).
Assume ZFC. Let $j : V \to M$ be a (nontrivial) elementary embedding with critical point $\text{crt}(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

- κ is a *measurable cardinal*. Note that $V_{\kappa + 1} = V_{\kappa + 1}^M$.

- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j'' \lambda \subseteq x$ and $(|x| < j(\kappa))^M$, then κ is said to be λ-*strongly compact*.
Assume ZFC. Let \(j : V \rightarrow M \) be a (nontrivial) elementary embedding with critical point \(\text{crt}(j) = \kappa \).

One can show that \(\kappa \) is a large cardinal (e.g. inaccessible). Moreover, the "closer" \(M \) is to \(V \), the "stronger" the large cardinal property of \(\kappa \) is. For instance,

- \(\kappa \) is a \textit{measurable cardinal}. Note that \(V_{\kappa+1} = V^M_{\kappa+1} \).

- if for some \(\lambda \geq \kappa \) such that \(\lambda < j(\kappa) \), there is some \(x \in M \) such that \(j'' \lambda \subseteq x \) and \((|x| < j(\kappa))^M \), then \(\kappa \) is said to be \(\lambda \)-\textit{strongly compact}.

- if for some \(\lambda \geq \kappa \) such that \(\lambda < j(\kappa) \), \(j'' \lambda \in M \) (or equivalently \(M^\lambda \subseteq M \)), then \(\kappa \) is \(\lambda \)-\textit{supercompact}.
Assume ZFC. Let $j : V \to M$ be a (nontrivial) elementary embedding with critical point $\text{crt}(j) = \kappa$.

One can show that κ is a large cardinal (e.g. inaccessible). Moreover, the "closer" M is to V, the "stronger" the large cardinal property of κ is. For instance,

- κ is a measurable cardinal. Note that $V_{\kappa+1} = V_{\kappa+1}^M$.

- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, there is some $x \in M$ such that $j'' \lambda \subseteq x$ and $|x| < j(\kappa)$, then κ is said to be λ-strongly compact.

- if for some $\lambda \geq \kappa$ such that $\lambda < j(\kappa)$, $j'' \lambda \in M$ (or equivalently $M^\lambda \subseteq M$), then κ is λ-supercompact.

We say that κ is supercompact/strongly compact if κ is λ-supercompact/\lambda-strongly compact for all λ. Clearly, supercompact \to strongly compact \to measurable.
Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

μ is a measure on a set X if

\[\mu : \mathcal{P}(X) \rightarrow \{0, 1\} \]

such that

1. \(\mu(X) = 1 \)
Recall the definition of an ultrafilter/measure.

Definition

\(\mu \) is a measure on a set \(X \) if

\[
\mu : \mathcal{P}(X) \to \{0, 1\}
\]

such that

1. \(\mu(X) = 1 \) and for every \(A \subseteq X \), \(\mu(A) = 1 - \mu(A^c) \),
Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

\(\mu \) is a measure on a set \(X \) if

\[\mu : \mathcal{P}(X) \rightarrow \{0, 1\} \]

such that

1. \(\mu(X) = 1 \) and for every \(A \subseteq X \), \(\mu(A) = 1 - \mu(A^c) \),
2. if \(\mu(A) = 1 \) and \(A \subseteq B \) then \(\mu(B) = 1 \).
Recall the definition of an ultrafilter/measure.

Definition

μ is a measure on a set X if

\[\mu : \mathcal{P}(X) \to \{0, 1\} \]

such that

1. \(\mu(X) = 1 \) and for every \(A \subseteq X \), \(\mu(A) = 1 - \mu(A^c) \),
2. if \(\mu(A) = 1 \) and \(A \subseteq B \) then \(\mu(B) = 1 \),
3. if \(\mu(A) = \mu(B) = 1 \) then \(\mu(A \cap B) = 1 \).
Recall the definition of an ultrafilter/measure.

Definition

μ is a measure on a set X if

$$\mu : \mathcal{P}(X) \rightarrow \{0, 1\}$$

such that

1. $\mu(X) = 1$ and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,
2. if $\mu(A) = 1$ and $A \subseteq B$ then $\mu(B) = 1$,
3. if $\mu(A) = \mu(B) = 1$ then $\mu(A \cap B) = 1$,

μ is **nonprincipal** if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$.
Recall the definition of an ultrafilter/measure.

Definition

μ is a measure on a set X if

$$\mu : \mathcal{P}(X) \to \{0, 1\}$$

such that

1. $\mu(X) = 1$ and for every $A \subseteq X$, $\mu(A) = 1 - \mu(A^c)$,
2. if $\mu(A) = 1$ and $A \subseteq B$ then $\mu(B) = 1$,
3. if $\mu(A) = \mu(B) = 1$ then $\mu(A \cap B) = 1$,

μ is **nonprincipal** if there is no nonempty set $Y \subseteq X$ such that if $\mu(A) = 1$ then $Y \subseteq A$.

μ is **κ-complete** if for every $\eta < \kappa$ and for every $\langle A_\alpha : \alpha < \eta \rangle \subseteq \mathcal{P}(X)$ such that $\mu(A_\alpha) = 1$ for all $\alpha < \eta$,

$$\mu(\bigcap_{\alpha<\eta} A_\alpha) = 1.$$
Recall the definition of an ultrafilter/measure.

Definition

\(\mu \) is a measure on a set \(X \) if

\[
\mu : \mathcal{P}(X) \to \{0, 1\}
\]

such that

1. \(\mu(X) = 1 \) and for every \(A \subseteq X, \mu(A) = 1 - \mu(A^c) \),
2. if \(\mu(A) = 1 \) and \(A \subseteq B \) then \(\mu(B) = 1 \),
3. if \(\mu(A) = \mu(B) = 1 \) then \(\mu(A \cap B) = 1 \),

\(\mu \) is **nonprincipal** if there is no nonempty set \(Y \subseteq X \) such that if \(\mu(A) = 1 \) then \(Y \subseteq A \).

\(\mu \) is **\(\kappa \)-complete** if for every \(\eta < \kappa \) and for every \(\langle A_\alpha : \alpha < \eta \rangle \subseteq \mathcal{P}(X) \) such that \(\mu(A_\alpha) = 1 \) for all \(\alpha < \eta \),

\[
\mu(\cap_{\alpha < \eta} A_\alpha) = 1.
\]

\(\kappa \) is a **measurable cardinal** if there is a nonprincipal, \(\kappa \)-complete measure on \(\kappa \).
Ultrafilters/measures

Recall the definition of an ultrafilter/measure.

Definition

μ is a measure on a set X if

\[\mu : \mathcal{P}(X) \rightarrow \{0, 1\} \]

such that

1. \(\mu(X) = 1 \) and for every \(A \subseteq X \), \(\mu(A) = 1 - \mu(A^c) \),
2. if \(\mu(A) = 1 \) and \(A \subseteq B \) then \(\mu(B) = 1 \),
3. if \(\mu(A) = \mu(B) = 1 \) then \(\mu(A \cap B) = 1 \),

μ is **nonprincipal** if there is no nonempty set \(Y \subseteq X \) such that if \(\mu(A) = 1 \) then \(Y \subseteq A \).

μ is **κ-complete** if for every \(\eta < \kappa \) and for every \(\langle A_\alpha : \alpha < \eta \rangle \subseteq \mathcal{P}(X) \) such that \(\mu(A_\alpha) = 1 \) for all \(\alpha < \eta \),

\[\mu(\bigcap_{\alpha < \eta} A_\alpha) = 1. \]

κ is a **measurable cardinal** if there is a nonprincipal, κ-complete measure on κ.
Let κ be a cardinal. Let X be a set such that $|X| \geq \kappa$. We write

$$\mathcal{P}_\kappa(X) = \{\sigma : \sigma \subseteq X \land |\sigma| < \kappa\}.$$
Let κ be a cardinal. Let X be a set such that $|X| \geq \kappa$. We write

$$\mathcal{P}_\kappa(X) = \{\sigma : \sigma \subseteq X \land |\sigma| < \kappa\}.$$

As usual, a measure μ on $\mathcal{P}_\kappa(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_\kappa(X)$.
Compactness ultrafilters

Let κ be a cardinal. Let X be a set such that $|X| \geq \kappa$. We write

$$\mathcal{P}_\kappa(X) = \{\sigma : \sigma \subseteq X \land |\sigma| < \kappa\}.$$

As usual, a measure μ on $\mathcal{P}_\kappa(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_\kappa(X)$.

Definition

- A measure μ is *fine* if it contains the set $\{\sigma \in \mathcal{P}_\kappa(X) : x \in \sigma\}$ for all $x \in X$.

Nam Trang

Compactness of ω_1
Let κ be a cardinal. Let X be a set such that $|X| \geq \kappa$. We write

$$P_\kappa(X) = \{\sigma : \sigma \subseteq X \land |\sigma| < \kappa\}.$$

As usual, a measure μ on $P_\kappa(X)$ is an ultrafilter on the collection of subsets of $P_\kappa(X)$.

Definition

A measure μ is *fine* if it contains the set $\{\sigma \in P_\kappa(X) : x \in \sigma\}$ for all $x \in X$.

We say that κ is X-**strongly compact** if there is a κ-complete fine measure on $P_\kappa(X)$. We say that κ is **strongly compact** if κ is X-strongly compact for all such X.
Let κ be a cardinal. Let X be a set such that $|X| \geq \kappa$. We write

$$\mathcal{P}_\kappa(X) = \{\sigma : \sigma \subseteq X \land |\sigma| < \kappa\}.$$

As usual, a measure μ on $\mathcal{P}_\kappa(X)$ is an ultrafilter on the collection of subsets of $\mathcal{P}_\kappa(X)$.

Definition

- A measure μ is *fine* if it contains the set $\{\sigma \in \mathcal{P}_\kappa(X) : x \in \sigma\}$ for all $x \in X$.

We say that κ is X-**strongly compact** if there is a κ-complete fine measure on $\mathcal{P}_\kappa(X)$. We say that κ is **strongly compact** if κ is X-strongly compact for all such X.

Strong compactness was introduced by Keisler and Tarski (1963/64) and it turns out that under ZFC, the two notions of strong compactness are equivalent. Without the Axiom of Choice, this is not true.
Compactness ultrafilters (cont.)

Let κ, X be as above. Let μ be a fine, κ-complete measure on $\mathcal{P}_\kappa(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ. Then

$$\bigtriangleup_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.$$

We say that μ is normal if and only if for every sequence $(A_x : x \in X)$ as above,

$$\bigtriangleup_x A_x \in \mu.$$
Let \(\kappa, X \) be as above. Let \(\mu \) be a fine, \(\kappa \)-complete measure on \(\mathcal{P}_\kappa(X) \). Let \((A_x : x \in X) \) be a sequence of sets in \(\mu \). Then

\[
\bigtriangleup_x A_x = \{ \sigma : \sigma \in \bigcap_{x \in \sigma} A_x \}.
\]

We say that \(\mu \) is normal if and only if for every sequence \((A_x : x \in X) \) as above,

\[
\bigtriangleup_x A_x \in \mu.
\]

Definition

Let \(\kappa, X \) be as above. We say that \(\kappa \) is \(X \)-supercompact if there is a \(\kappa \)-complete, fine, normal measure on \(\mathcal{P}_\kappa(X) \).
Let κ, X be as above. Let μ be a fine, κ-complete measure on $\mathcal{P}_\kappa(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ. Then

$$\triangle_x A_x = \{\sigma : \sigma \in \bigcap_{x \in \sigma} A_x\}.$$

We say that μ is **normal** if and only if for every sequence $(A_x : x \in X)$ as above,

$$\triangle_x A_x \in \mu.$$

Definition

Let κ, X be as above. We say that κ is **X-supercompact** if there is a κ-complete, fine, normal measure on $\mathcal{P}_\kappa(X)$.

Supercompactness was introduced by Reinhardt and Solovay (1978). Again, under ZFC, the two notions of supercompactness are equivalent.
Let κ, X be as above. Let μ be a fine, κ-complete measure on $\mathcal{P}_\kappa(X)$. Let $(A_x : x \in X)$ be a sequence of sets in μ. Then

$$\bigtriangleup_x A_x = \{\sigma : \sigma \in \bigcap_{x \in \sigma} A_x\}.$$

We say that μ is normal if and only if for every sequence $(A_x : x \in X)$ as above,

$$\bigtriangleup_x A_x \in \mu.$$

Definition

Let κ, X be as above. We say that κ is X-supercompact if there is a κ-complete, fine, normal measure on $\mathcal{P}_\kappa(X)$.

Supercompactness was introduced by Reinhardt and Solovay (1978). Again, under ZFC, the two notions of supercompactness are equivalent.

Open problem: (ZFC) Is strong compactness equiconsistent with supercompactness?
We work in ZF + DC from now on. We are interested in compactness properties of ω_1. (Why DC?)
We work in ZF + DC from now on. We are interested in compactness properties of ω_1. (Why DC?)

In particular, we are interested in the following two classes of problems:

1. Is ω_1 is strongly compact equiconsistent with ω_1 is supercompact? More locally, for a given X, is ω_1 is X-strongly compact equiconsistent with ω_1 is X-supercompact?

2. What are the "canonical" (e.g. "minimal") models of ω_1 is X-compact for a given X?
We work in ZF + DC from now on. We are interested in compactness properties of ω_1. (Why DC?)

In particular, we are interested in the following two classes of problems:

1. Is "ω_1 is strongly compact" equiconsistent with "ω_1 is supercompact"? More locally, for a given X, is "ω_1 is X-strongly compact" equiconsistent with "ω_1 is X-supercompact"?

2. What are the "canonical" (e.g. "minimal") models of "ω_1 is X-compact" for a given $X"
X-strong compactness of ω_1 versus X-supercompactness of ω_1

We work in ZF + DC from now on. We are interested in compactness properties of ω_1. (Why DC?)

In particular, we are interested in the following two classes of problems:

1. Is "ω_1 is strongly compact" equiconsistent with "ω_1 is supercompact"? More locally, for a given X, is "ω_1 is X-strongly compact" equiconsistent with "ω_1 is X-supercompact"?

2. What are the “canonical" (e.g. “minimal") models of "ω_1 is X-compact" for a given X?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.
We work in \(\text{ZF} + \text{DC} \) from now on. We are interested in compactness properties of \(\omega_1 \). (Why DC?)

In particular, we are interested in the following two classes of problems:

1. Is "\(\omega_1 \) is strongly compact" equiconsistent with "\(\omega_1 \) is supercompact"? More locally, for a given \(X \), is "\(\omega_1 \) is \(X \)-strongly compact" equiconsistent with "\(\omega_1 \) is \(X \)-supercompact"?

2. What are the "canonical" (e.g. "minimal") models of "\(\omega_1 \) is \(X \)-compact" for a given \(X \)?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.

In this talk, focus on "\(\omega_1 \) is \(\mathbb{R} \)-compact", "\(\omega_1 \) is \(\mathcal{P}(\mathbb{R}) \)-compact", and "\(\omega_1 \) is (fully) compact".
We work in ZF + DC from now on. We are interested in compactness properties of \(\omega_1\). (Why DC?)

In particular, we are interested in the following two classes of problems:

1. Is "\(\omega_1\) is strongly compact" equiconsistent with "\(\omega_1\) is supercompact"? More locally, for a given \(X\), is "\(\omega_1\) is \(X\)-strongly compact" equiconsistent with "\(\omega_1\) is \(X\)-supercompact"?

2. What are the "canonical" (e.g. "minimal") models of "\(\omega_1\) is \(X\)-compact" for a given \(X\)?

Question 1 is more tractable than the corresponding ZFC question. Both questions arise in relation with recent development in descriptive inner model theory; as compactness measures are important in studying canonical structures of large cardinals in determinacy settings.

In this talk, focus on "\(\omega_1\) is \(\mathbb{R}\)-compact", "\(\omega_1\) is \(P(\mathbb{R})\)-compact", and "\(\omega_1\) is (fully) compact".
Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^\omega$, the game G_A is determined under AD_X. AD is AD_ω.
Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^\omega$, the game G_A is determined under AD_X. AD is AD_ω.

Under AD, Solovay shows that ω_1 is a measurable cardinal.
Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^\omega$, the game G_A is determined under AD_X. AD is AD_ω.

Under AD, Solovay shows that ω_1 is a measurable cardinal.

Martin shows that the cone filter \mathcal{F} on the Turing degrees is an ultrafilter. Now define μ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$,

$$A \in \mu \iff \text{for a cone of } d, \{x \in \mathbb{R} : x \leq_T d\} \in A.$$
Recall AD_X is the statements that infinite games of perfect information on X is determined. So for $A \subseteq X^\omega$, the game G_A is determined under AD_X. AD is AD_ω.

Under AD, Solovay shows that ω_1 is a measurable cardinal.

Martin shows that the cone filter \mathcal{F} on the Turing degrees is an ultrafilter. Now define μ on $\mathcal{P}_{\omega_1}(\mathbb{R})$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$,

$$A \in \mu \iff \text{for a cone of } d, \{x \in \mathbb{R} : x \leq_T d\} \in A.$$

It is easy to check that μ is countably complete and fine. So ω_1 is \mathbb{R}-strongly compact.
Now assume $\text{AD}_\mathbb{R}$.
Now assume $\text{AD}_\mathbb{R}$.

(Solovay) For $A \subseteq P_{\omega_1}(\mathbb{R})$. Play the following game G_A: I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup \{s_i : i < \omega\} \in A$. Then define

$$A \in \mu \iff \text{II has a winning strategy in } G_A.$$
Now assume $\text{AD}_\mathbb{R}$.

(Solovay) For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$. Play the following game G_A: I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup\{s_i : i < \omega\} \in A$. Then define

$$A \in \mu \iff \text{II has a winning strategy in } G_A.$$

Solovay shows that μ is countably complete, fine, and normal.
Now assume $\text{AD}_\mathbb{R}$.

(Solovay) For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$. Play the following game G_A: I and II take turns to play finite sets of reals $(s_i : i < \omega)$. II wins the play if the set $\sigma := \bigcup \{s_i : i < \omega\} \in A$. Then define

$$A \in \mu \iff \text{II has a winning strategy in } G_A.$$

Solovay shows that μ is countably complete, fine, and normal.

What about measures on $\mathcal{P}_{\omega_1}(X)$ for X "bigger" than \mathbb{R}?
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Let

$$\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$$
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Let

$$\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$$

By Solovay, DC implies $\text{cof}(\Theta) > \omega$. So, let us assume $\text{cof}(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Let

$$\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$$

By Solovay, DC implies $\text{cof}(\Theta) > \omega$. So, let us assume $\text{cof}(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_\alpha = \{A : w(A) < \alpha\}$, where $w(A)$ is the Wadge rank of A. Let μ_α be the measure on $\mathcal{P}_{\omega_1}(\Gamma_\alpha)$ induced by the Solovay measure (unique by Woodin).
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Let

$$\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$$

By Solovay, DC implies $\text{cof}(\Theta) > \omega$. So, let us assume $\text{cof}(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_\alpha = \{A : w(A) < \alpha\}$, where $w(A)$ is the Wadge rank of A. Let μ_α be the measure on $\mathcal{P}_{\omega_1}(\Gamma_\alpha)$ induced by the Solovay measure (unique by Woodin).

Define μ on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ as:

$$A \in \mu \iff \forall^* \alpha \forall^* \mu_{f(\alpha)} \sigma \sigma \in A.$$
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Let

$$\Theta = \sup\{\alpha : \exists \pi : \mathbb{R} \to \alpha \text{ onto}\}.$$

By Solovay, DC implies $\text{cof}(\Theta) > \omega$. So, let us assume $\text{cof}(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_\alpha = \{A : w(A) < \alpha\}$, where $w(A)$ is the Wadge rank of A. Let μ_α be the measure on $\mathcal{P}_{\omega_1}(\Gamma_\alpha)$ induced by the Solovay measure (unique by Woodin).

Define μ on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ as:

$$A \in \mu \iff \forall^* \nu \forall^* \mu_{f(\alpha)} \sigma \sigma \in A.$$

The measure μ is countably complete and fine.
Assume $\text{AD}_R + \text{DC}$. Let

$$\Theta = \sup \{\alpha : \exists \pi : R \to \alpha \text{ onto}\}.$$

By Solovay, DC implies $\text{cof}(\Theta) > \omega$. So, let us assume $\text{cof}(\Theta) = \omega_1$. Let ν be the (club) measure on ω_1 (Solovay). Let $f : \omega_1 \to \Theta$ be cofinal, increasing, continuous.

For $\alpha < \Theta$, let $\Gamma_\alpha = \{A : w(A) < \alpha\}$, where $w(A)$ is the Wadge rank of A. Let μ_α be the measure on $P_{\omega_1}(\Gamma_\alpha)$ induced by the Solovay measure (unique by Woodin).

Define μ on $P_{\omega_1}(P(R))$ as:

$$A \in \mu \iff \forall^* \nu \forall^* \mu_{f(\alpha)} \sigma \sigma \in A.$$

The measure μ is countably complete and fine.

So we get ω_1 is $P(R)$-strongly compact. To get a normal measure on $P_{\omega_1}(P(R))$, we seem to need Θ is measurable. It is known that $\text{AD}_R + \text{DC}$ is not enough.
Suppose $V \models \text{ZFC}+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ, $j : V \to M$ be the μ-ultrapower map, and $G \subseteq \text{Col}(\omega, < \kappa)$.

Classical constructions of models with ω_1 being \mathbb{R}-compact
Suppose $V \models \text{ZFC}+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ, $j : V \to M$ be the μ-ultrapower map, and $G \subseteq \text{Col}(\omega, < \kappa)$.

Let $R_G = R^{V[G]}$. Define a filter F in $V[G]$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(R_G)$,

$$A \in F \iff V[G] \models \text{Col}(\omega, < j(\kappa)) R_G \in j(A).$$

One can show that $L(\mathbb{R}, F) \models "\omega_1 \text{ is } \mathbb{R}-\text{supercompact}".$
Suppose $V \models \text{ZFC}^+$ there is a measurable cardinal. Let κ is a measurable witnessed by μ, $j : V \to M$ be the μ-ultrapower map, and $G \subseteq \text{Col}(\omega, < \kappa)$.

Let $\mathbb{R}_G = \mathbb{R}^{V[G]}$. Define a filter F in $V[G]$ as follows: for $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}_G)$,

$$A \in F \iff V^G \models \text{Col}(\omega, < j(\kappa)) \mathbb{R}_G \in j(A).$$

One can show that $L(\mathbb{R}, F) \models \text{“} \omega_1 \text{ is } \mathbb{R}\text{-supercompact.} \text{”}$

Though, for example, if $V = L[\mu]$, the minimal model of a measurable cardinal, then $L(\mathbb{R}, F)$ fails to satisfy AD.
With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R}-strongly compact;
- ω_1 is \mathbb{R}-supercompact;
- $\text{ZFC}+$ there is a measurable cardinal.
With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R}-strongly compact;
- ω_1 is \mathbb{R}-supercompact;
- ZFC+ there is a measurable cardinal.

With AD, we have some separation of the two.

Theorem

The following are equiconsistent.

1. AD.
2. AD + ω_1 is \mathbb{R}-strongly compact.
With or without AD

Without AD,

Theorem

The following are equiconsistent.

- ω_1 is \mathbb{R}-strongly compact;
- ω_1 is \mathbb{R}-supercompact;
- ZFC + there is a measurable cardinal.

With AD, we have some separation of the two.

Theorem

The following are equiconsistent.

1. AD.
2. AD + ω_1 is \mathbb{R}-strongly compact.
By Woodin, the above are equiconsistent with “ZFC + $\exists \omega$ many Woodin cardinals". \mathbb{R}-supercompactness requires ω^2 many Woodin cardinals.
By Woodin, the above are equiconsistent with “ZFC + \(\exists \omega \) many Woodin cardinals". R-supercompactness requires \(\omega^2 \) many Woodin cardinals.

Theorem (Woodin)

The following are equiconsistent.

1. AD + \(\omega_1 \) is R-supercompact.
2. There are \(\omega^2 \) many Woodin cardinals.
By Woodin, the above are equiconsistent with “ZFC + ∃ω many Woodin cardinals".
R-supercompactness requires ω² many Woodin cardinals.

Theorem (Woodin)

The following are equiconsistent.

1. AD + ω₁ is R-supercompact.
2. There are ω² many Woodin cardinals.

Corollary

“AD + ω₁ is R-supercompact" is strictly stronger (consistencywise) than “AD + ω₁ is R-strongly compact".
Under $\text{AD}_\mathbb{R}$, Woodin (early 1980’s) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \models \ \text{"\mu is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R}) \ \text{(under AD).}$.

Note: Los theorem fails for the ultrapower embedding induced by μ on V.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R}-supercompact, let $M_\sigma = HOD_\sigma \cup \{\sigma\}$ and $M = \prod_\sigma M_\sigma / \mu$. Then Los theorem holds for this ultraproduct. The key to the proof is the use of normality of μ.

Nam Trang
Under AD$_\mathbb{R}$, Woodin (early 1980’s) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \models \text{“}\mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R})\text{ (under AD).}$$

Without AD, there may be more than one model of the form $L(\mathbb{R}, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form $L(\mathbb{R}, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies AD + “μ witnesses ω_1 is \mathbb{R}-supercompact.”

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R}-supercompact, let $M_\sigma = \text{HOD}_\sigma \cup \{ \sigma \}$ and $M = \prod_\sigma M_\sigma / \mu$. Then Los theorem holds for this ultraproduct. The key to the proof is the use of normality of μ.

Note: Los theorem fails for the ultrapower embedding induced by μ on V.

Canonically models of ω_1 is \mathbb{R}-supercompact

Nam Trang
Under \(\text{AD}_\mathbb{R} \), Woodin (early 1980’s) has shown that the Solovay measure on \(\mathcal{P}_{\omega_1}(\mathbb{R}) \) is unique and asked about uniqueness of models of the form \(L(\mathbb{R}, \mu) \models "\mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R}) \text{ (under AD)}." \)

Without AD, there may be more than one model of the form \(L(\mathbb{R}, \mu) \) (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form \(L(\mathbb{R}, \mu) \).

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form \(V = L(\mathbb{R}, \mu) \) that satisfies "AD + \mu witnesses \(\omega_1 \) is \(\mathbb{R} \)-supercompact".
Under $\text{AD}_\mathbb{R}$, Woodin (early 1980’s) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \models "\mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R}) \text{ (under AD)}."$

Without AD, there may be more than one model of the form $L(\mathbb{R}, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form $L(\mathbb{R}, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies “$\text{AD} + \mu \text{ witnesses } \omega_1 \text{ is } \mathbb{R}\text{-supercompact}$$".$

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.
Under AD$_R$, Woodin (early 1980’s) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$ is unique and asked about uniqueness of models of the form $L(\mathbb{R}, \mu) \models \text{“} \mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R}) \text{ (under AD).} \text{”}$

Without AD, there may be more than one model of the form $L(\mathbb{R}, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form $L(\mathbb{R}, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(\mathbb{R}, \mu)$ that satisfies “AD + μ witnesses ω_1 is \mathbb{R}-supercompact”.

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(\mathbb{R}, \mu)$ where μ witnesses ω_1 is \mathbb{R}-supercompact, let $M_\sigma = HOD_{\sigma \cup \{ \sigma \}}$ and $M = \prod_\sigma M_\sigma / \mu$. Then Los theorem holds for this ultrapower. The key to the proof is the use of normality of μ.

Remarks:

- **Los theorem** fails for the ultrapower embedding induced by μ on V.
- **Normality** of μ is crucial in the proof.
- The proof involves advanced techniques in set theory.
Under AD_R, Woodin (early 1980’s) has shown that the Solovay measure on $\mathcal{P}_{\omega_1}(R)$ is unique and asked about uniqueness of models of the form $L(R, \mu) \models " \mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(R) \text{ (under } \text{AD}).$

Without AD, there may be more than one model of the form $L(R, \mu)$ (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form $L(R, \mu)$.

Theorem (Rodriguez-Trang, 2015)

Assume AD, then there is at most one model of the form $V = L(R, \mu)$ that satisfies "AD + μ witnesses ω_1 is R-supercompact".

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in $L(R, \mu)$ where μ witnesses ω_1 is R-supercompact, let $M_\sigma = \text{HOD}_{\sigma \cup \{ \sigma \}}$ and $M = \prod_\sigma M_\sigma / \mu$. Then Los theorem holds for this ultrapower. The key to the proof is the use of normality of μ.

Note: Los theorem fails for the ultrapower embedding induced by μ on V.
Under AD_{\mathbb{R}}, Woodin (early 1980’s) has shown that the Solovay measure on \mathcal{P}_{\omega_1}(\mathbb{R}) is unique and asked about uniqueness of models of the form \textit{L}(\mathbb{R}, \mu) \models "\mu \text{ is a supercompact measure on } \mathcal{P}_{\omega_1}(\mathbb{R})" \text{ (under AD).}

Without AD, there may be more than one model of the form \textit{L}(\mathbb{R}, \mu) (D. Rodriguez). With AD, Woodin (early 1980’s) conjectured that there is at most one model of the form \textit{L}(\mathbb{R}, \mu).

Theorem (Rodriguez-Trang, 2015)

\textit{Assume AD, then there is at most one model of the form } \textit{V} = \textit{L}(\mathbb{R}, \mu) \text{ that satisfies "AD + } \mu \text{ witnesses } \omega_1 \text{ is } \mathbb{R}\text{-supercompact".}

Rodriguez subsequently proved the conclusion of the above theorem also holds assuming ZFC.

The combinatorial heart of the above results come from the following fact: in \textit{L}(\mathbb{R}, \mu) where \mu witnesses \omega_1 is \mathbb{R}-supercompact, let \textit{M}_\sigma = HOD_{\sigma \cup \{\sigma\}} \text{ and } \textit{M} = \prod_\sigma \textit{M}_\sigma / \mu. Then Los theorem holds for this ultrapower. The key to the proof is the use of normality of \mu.

Note: Los theorem fails for the ultrapower embedding induced by \mu on \textit{V}.
Assume $\text{AD}_\mathbb{R} + \text{DC}$. Recall that working in a minimal model of $\text{AD}_\mathbb{R} + \text{DC}$ (so $\text{cof}(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$ by “integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$".
Assume $\text{AD}_R + \text{DC}$. Recall that working in a minimal model of $\text{AD}_R + \text{DC}$ (so $\text{cof}(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(R))$ by “integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$".

Theorem (Trang-Wilson, 2014-2015)

The following are equiconsistent.

- $\text{AD}_R + \text{DC}$.
- $\text{ZF} + \text{DC} + \omega_1$ is $\mathcal{P}(R)$-strongly compact.

These theories are strictly weaker than

- $\text{ZF} + \text{DC} + \omega_1$ is $\mathcal{P}(R)$-supercompact compact.\(^a\)

\(^a\)We don’t know the exact consistency strength of this theory.
Assume $\text{AD}_R + \text{DC}$. Recall that working in a minimal model of $\text{AD}_R + \text{DC}$ (so $\text{cof}(\Theta) = \omega_1$), we can construct a countably complete, fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(R))$ by “integrating the Solovay measure along a cofinal, continuous function $f : \omega_1 \to \Theta$".

Theorem (Trang-Wilson, 2014-2015)

The following are equiconsistent.

- $\text{AD}_R + \text{DC}$.
- $\text{ZF} + \text{DC} + \omega_1$ is $\mathcal{P}(R)$-strongly compact.

These theories are strictly weaker than

- $\text{ZF} + \text{DC} + \omega_1$ is $\mathcal{P}(R)$-supercompact compact.\(^a\)

\(^a\)We don’t know the exact consistency strength of this theory.
From ZF + DC + "ω_1 is $\mathcal{P}(\mathbb{R})$-supercompact", one obtains the sharp for a model of $\text{AD}_\mathbb{R} + \text{DC}$.
From ZF + DC + “\(\omega_1\) is \(\mathcal{P}(\mathbb{R})\)-supercompact"", one obtains the sharp for a model of \(\text{AD}_\mathbb{R} + \text{DC}\).

To see this, note that from the proof of the above theorem, we get a model \(L(\Omega^*, \mathbb{R}) \models \text{AD}_\mathbb{R} + \text{DC}\), where \(\Omega^* \subseteq \mathcal{P}(\mathbb{R})\). Fix a countably complete, fine, normal measure \(\mu\) on \(\mathcal{P}_{\omega_1}(\Omega^*)\). Then note that by normality,

\[
\forall^* \sigma \ M_\sigma = L(\Omega^*_\sigma, \mathbb{R}_\sigma) \models \text{AD}_\mathbb{R} + \text{DC},
\]

where we have that \(\Omega^* = [\sigma \mapsto \Omega^*_\sigma]_\mu\) and \(\mathbb{R} = [\sigma \mapsto \mathbb{R}_\sigma]_\mu\).
From ZF + DC + “ω₁ is \(\mathcal{P}(\mathbb{R}) \)-supercompact", one obtains the sharp for a model of AD\(\mathbb{R}\) + DC.

To see this, note that from the proof of the above theorem, we get a model
\(L(\Omega^*, \mathbb{R}) \models AD_{\mathbb{R}} + DC \), where \(\Omega^* \subseteq \mathcal{P}(\mathbb{R}) \). Fix a countably complete, fine, normal measure \(\mu \) on \(\mathcal{P}_{\omega_1}(\Omega^*) \). Then note that by normality,

\[
\forall^* \sigma \ M_\sigma = L(\Omega^*_\sigma, \mathbb{R}_\sigma) \models AD_{\mathbb{R}} + DC,
\]

where we have that \(\Omega^* = [\sigma \mapsto \Omega^*_\sigma]_\mu \) and \(\mathbb{R} = [\sigma \mapsto \mathbb{R}_\sigma]_\mu \).

Now, \(\forall^* \sigma (\Omega^*_\sigma, \mathbb{R}_\sigma)^\# \) exists (because \(\omega_1 \) is measurable); by normality again, the sharp for
\(L(\Omega^*, \mathbb{R}) \) exists. This demonstrates that the theory ZF + DC + “ω₁ is \(\mathcal{P}(\mathbb{R}) \)-supercompact" is strictly stronger than ZF + DC + “ω₁ is \(\mathcal{P}(\mathbb{R}) \)-strongly compact".
From ZF + DC + "ω₁ is ℙ(ℝ)-supercompact"}, one obtains the sharp for a model of ADₐ + DC.

To see this, note that from the proof of the above theorem, we get a model
L(Ω*, ℝ) ⊨ ADᵣ + DC, where Ω* ⊆ ℙ(ℝ). Fix a countably complete, fine, normal measure μ on ℙₙ₁(Ω*). Then note that by normality,

∀*µ σ Mσ = L(Ω*, Rσ) ⊨ ADᵣ + DC,

where we have that Ω* = [σ ↦ Ω*']μ and R = [σ ↦ Rσ]μ.

Now, ∀*µ σ (Ω*, Rσ)# exists (because ω₁ is measurable); by normality again, the sharp for
L(Ω*, ℝ) exists. This demonstrates that the theory ZF + DC + "ω₁ is ℙ(ℝ)-supercompact" is
strictly stronger than ZF + DC + "ω₁ is ℙ(ℝ)-strongly compact".
Some determinacy theories

Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α.
Recall Θ is the supremum of α such that there is a surjection of \(\mathbb{R} \) onto α.

Definition (AD + DC\(\mathbb{R} \))

The Solovay sequence is a sequence \((\theta_\alpha : \alpha \leq \Omega)\) such that

1. \(\theta_0\) is the sup of α such that there is an OD surjection from \(\mathbb{R} \) onto α.
2. \(\theta_\Omega = \Theta\).
3. \(\theta_\alpha\) is the sup of \(\theta_\beta\) for \(\beta < \alpha\) and \(\alpha\) is limit.
4. For \(\alpha < \Omega\), let A be of Wadge rank \(\theta_\alpha < \Theta\), \(\theta_{\alpha+1}\) is the sup of α such that there is an OD(A) surjection from \(\mathbb{R} \) onto α.
Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α.

Definition (AD + DC$_\mathbb{R}$)

The Solovay sequence is a sequence $(\theta_\alpha : \alpha \leq \Omega)$ such that

1. θ_0 is the sup of α such that there is an OD surjection from \mathbb{R} onto α.
2. $\theta_\Omega = \Theta$.
3. θ_α is the sup of θ_β for $\beta < \alpha$ and α is limit.
4. For $\alpha < \Omega$, let A be of Wadge rank $\theta_\alpha < \Theta$, $\theta_{\alpha+1}$ is the sup of α such that there is an OD(A) surjection from \mathbb{R} onto α.

Here are some determinacy theories in increasing strength: (1) AD, (2) AD$^+ + \Theta > \theta_0$, (3) AD\mathbb{R}, (4) AD\mathbb{R} + DC, (5) AD\mathbb{R} + Θ is regular, (6) AD\mathbb{R} + Θ is measurable, (7) AD\mathbb{R} + Θ is Mahlo, (8) AD$^+ + \Theta = \theta_{\alpha+1} + \theta_\alpha$ is the largest Suslin cardinal (LSA).
Recall Θ is the supremum of α such that there is a surjection of \mathbb{R} onto α.

Definition (AD + DC$_{\mathbb{R}}$)

The Solovay sequence is a sequence $(\theta_\alpha : \alpha \leq \Omega)$ such that

1. θ_0 is the sup of α such that there is an OD surjection from \mathbb{R} onto α.
2. $\theta_\Omega = \Theta$.
3. θ_α is the sup of θ_β for $\beta < \alpha$ and α is limit.
4. For $\alpha < \Omega$, let A be of Wadge rank $\theta_\alpha < \Theta$, $\theta_{\alpha+1}$ is the sup of α such that there is an OD(A) surjection from \mathbb{R} onto α.

Here are some determinacy theories in increasing strength: (1) AD, (2) AD$^+ + \Theta > \theta_0$, (3) AD$_{\mathbb{R}}$, (4) AD$_{\mathbb{R}} + $ DC, (5) AD$_{\mathbb{R}} + \Theta$ is regular, (6) AD$_{\mathbb{R}} + \Theta$ is measurable, (7) AD$_{\mathbb{R}} + \Theta$ is Mahlo, (8) AD$^+ + \Theta = \theta_{\alpha+1} + \theta_\alpha$ is the largest Suslin cardinal (LSA).
ZFC and large cardinals
Two classes of problems
When $X = \mathbb{R}$
Beyond \mathbb{R}-compactness
Some questions

Hierarchies

- Large Cardinals
 - Supercompact
 - WLW
 - ?
 - Θ reg-hypo
 - non-domestic
 - $\text{AD}_\mathbb{R}$-hypo
 - ω Woodins

- Determinacy
 - $\text{AD}_\mathbb{R} + \Theta$ regular
 - $\text{AD}_\mathbb{R} + \text{DC}$
 - $\text{AD}_\mathbb{R}$
 - AD

- HOD
 - Regular limit of Wdns
 - ω_1 Woodins
 - ω Woodins
 - 1 Woodin

- Combinatorial Theories
 - PFA
 - ω_1 is (str/super)compact
 - ω_1 is $\mathcal{P}(\mathbb{R})$-spct
 - ω_1 is $\mathcal{P}(\mathbb{R})$-str.cpct.
 - $\text{AD} + \omega_1$ is \mathbb{R}-str.cpct.

Nam Trang
Compactness of ω_1
The Chang$^+$ model

For each $\lambda \geq \omega$, let \mathcal{F}_λ be the club filter on $\mathcal{P}_{\omega_1}(\lambda^\omega)$, and define the Chang$^+$ model

$$
\mathcal{C}^+ = L[\bigcup_\lambda \lambda^\omega][\mathcal{F}_\lambda : \lambda \in ON].
$$

\mathcal{C}^+ satisfies ZF + DC.
The Chang$^+$ model

For each $\lambda \geq \omega$, let \mathcal{F}_λ be the club filter on $\mathcal{P}_{\omega_1}(\lambda^\omega)$, and define the Chang$^+$ model

$$C^+ = L[\bigcup \mathcal{F}_\lambda][F_\lambda : \lambda \in \text{ON}].$$

C^+ satisfies ZF + DC.

Theorem (Woodin)

*Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \models \omega_1$ is supercompact. Furthermore, $C^+ \models AD_\mathbb{R}$.***
The Chang$^+$ model

For each $\lambda \geq \omega$, let \mathcal{F}_λ be the club filter on $\mathcal{P}_{\omega_1}(\lambda^\omega)$, and define the Chang$^+$ model
$$C^+ = L[\bigcup \lambda \lambda^\omega][\mathcal{F}_\lambda : \lambda \in \text{ON}].$$

C^+ satisfies ZF + DC.

Theorem (Woodin)

*Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \models \omega_1$ is supercompact. Furthermore, $C^+ \models \text{AD}_\mathbb{R}$.***

Theorem

- (Trang) $\text{Con}(\omega_1$ is supercompact) implies $\text{Con}(\text{AD}_\mathbb{R} + \Theta$ is regular).
- (Sargsyan-Trang) $\text{Con}(\text{AD} + \omega_1$ is supercompact) implies $\text{Con}(\text{LSA})$.
The Chang$^+$ model

For each $\lambda \geq \omega$, let \mathcal{F}_λ be the club filter on $\mathcal{P}_{\omega_1}(\lambda^\omega)$, and define the Chang$^+$ model

$$C^+ = L[\bigcup_\lambda \lambda^\omega][(\mathcal{F}_\lambda : \lambda \in \text{ON})].$$

C^+ satisfies $ZF + DC$.

Theorem (Woodin)

Suppose there is a proper class of Woodin limits of Woodin cardinals. Then $C^+ \models \omega_1$ is supercompact. Furthermore, $C^+ \models AD_\mathbb{R}$.

Theorem

- (Trang) $\text{Con}(\omega_1$ is supercompact) implies $\text{Con}(AD_\mathbb{R} + \Theta$ is regular).
- (Sargsyan-Trang) $\text{Con}(AD + \omega_1$ is supercompact) implies $\text{Con}(LSA)$.
Some questions

Rodriguez’s construction of distinct models of the form $L(\mathbb{R}, \mu)$ needs a measurable of Mitchell order 2.
Some questions

Rodriguez’s construction of distinct models of the form $L(\mathbb{R}, \mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of “ω_1 is \mathbb{R}-supercompact” from a measurable cardinal?
Some questions

Rodriguez’s construction of distinct models of the form $L(\mathbb{R}, \mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of “ω_1 is \mathbb{R}-supercompact” from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$-supercompact?
Some questions

Rodriguez’s construction of distinct models of the form $L(\mathbb{R}, \mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of “ω_1 is \mathbb{R}-supercompact” from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$-supercompact?

Conjecture

The following are equiconsistent.

- $\text{ZF} + \text{DC} + (\text{AD}/\text{AD}_\mathbb{R}) + \omega_1$ is strongly compact.
- $\text{ZF} + \text{DC} + (\text{AD}/\text{AD}_\mathbb{R}) + \omega_1$ is supercompact.
- $\text{ZFC}+$ there is a proper class of Woodin limits of Woodins.
Some questions

Rodriguez’s construction of distinct models of the form $L(\mathbb{R}, \mu)$ needs a measurable of Mitchell order 2.

Question

Can one construct distinct models of “ω_1 is \mathbb{R}-supercompact” from a measurable cardinal?

Question

Can one prove Rodriguez-Trang, Rodriguez theorems regarding uniqueness of models of the theory ω_1 is $\mathcal{P}(\mathbb{R})$-supercompact?

Conjecture

The following are equiconsistent.

- $\text{ZF} + \text{DC} + (\text{AD}/\text{AD}_\mathbb{R}) + \omega_1$ is strongly compact.
- $\text{ZF} + \text{DC} + (\text{AD}/\text{AD}_\mathbb{R}) + \omega_1$ is supercompact.
- $\text{ZFC}^+ \text{ there is a proper class of Woodin limits of Woodins.}$
Thank you!