Math 161 Modern Geometry Homework Questions 3 - Extras

Submit nothing - just extra practice for the midterm
(1) (a) Express each of the following fractions as complex numbers by rationalizing the denominator (multiplying through by the complex conjugate...)

$$
\frac{1}{2 i}, \quad \frac{1+i}{1-i}, \quad \frac{1}{2+4 i}
$$

(b) Prove that \mathbb{C} is closed under multiplicative inverses: i.e., $\forall z \in \mathbb{C} \backslash\{0\}$, prove that $\frac{1}{z} \in \mathbb{C}$.
(2) (a) Using Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$, prove that

$$
e^{a+i \theta} e^{b+i \phi}=e^{(a+i \theta)+(b+i \phi)}
$$

for any complex numbers $a+i \theta, b+i \phi$.
(b) Prove that i^{i} is a complex number.
(c) Prove by induction that, for any complex number z, we have

$$
\forall n \in \mathbb{N}, e^{n z}=\left(e^{z}\right)^{n}
$$

(d) Using $n=3$ in the expression in part (b), prove that

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

(3) Consider the stereographic projection that associates points on the complex plane with points on the unit sphere $x^{2}+y^{2}+z^{2}=1$ as in the lectures. Let $z=1+i$, compute the corresponding point $P=(X, Y, Z)$ on the unit sphere. Let $Q=(1 / 2,1 / 2,1 / \sqrt{2})$ be a point on the unit sphere. Compute the corresponding complex number $w=c+i d$.
(4) (Vectors)
(a) Prove the triangle inequality: for any vectors $\vec{a}, \vec{b},\|\vec{a}\|+\|\vec{b}\| \geq\|\vec{a}+\vec{b}\|$. When does equality occur?
(b) Let x, y, z be three positive real numbers such that $x+y+z \leq 3$. Prove that $1 / x+1 / y+1 / z \geq 3$.
(c) Find the angle between vectors $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$.

