A:nen 3 an 6rthogonal matrix if
columers of A an orthonormal.
$\operatorname{dut}(A)=\operatorname{def}\left(A^{T}\right)= \pm 1$
($A^{\top} \Delta=I=A A^{\top}$), R' Ruicw' matrix for a limar
Thm: $f=\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an ${ }^{\text {conlwal }} v \mathbb{S i s o m e t r y}^{\prime}$ iff a tranafornation

$$
f(\vec{x})=A \vec{x} \quad A \quad \therefore \text { orthogonal }
$$

Proof: Whoa. assum $n=2$.
$\left(\overrightarrow{u_{1}}, \overrightarrow{e_{2}} \longrightarrow f\left(\vec{e}_{i}^{\prime}\right)\right.$, $f\left(\overrightarrow{c_{i}}\right)$ orthonormal.
$\rightarrow A$ is orthogonal.
(G) Sps A is orthogonel. Let $\vec{u}, v^{0} \in \mathbb{2}{ }^{2}$.

Lat $\vec{w}=\vec{u}-\vec{v}$.

$$
\begin{aligned}
&|A \vec{w}|^{2}=(A \vec{w})^{\top}(A \vec{w})=\vec{w}^{\top} A^{\top} A \vec{w} \\
&=\vec{w}^{\top} \vec{w}=|\vec{w}|^{2} \\
& \Rightarrow \text { So }|A \vec{w}|=|\vec{w}|
\end{aligned}
$$

Central Isometrics:

Than 1: The matrix for ρ_{θ} : rotation by angh θ is $R_{\theta}=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. Find siginvalues/
Profi Lut $P=(x, y) \quad x=r \cos \varphi, y=r \sin \varphi$

