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Abstract

In water-limited regions, competition for water resources results in the formation of vegetation patterns;

on sloped terrain, one finds that the vegetation typically aligns in stripes or arcs. We consider a two-

component reaction-diffusion-advection model of Klausmeier type describing the interplay of vegetation and

water resources and the resulting dynamics of these patterns. We focus on the large advection limit on

constantly sloped terrain, in which the diffusion of water is neglected in favor of advection of water downslope.

Planar vegetation pattern solutions are shown to satisfy an associated singularly perturbed traveling wave

equation, and we construct a variety of traveling stripe and front solutions using methods of geometric singular

perturbation theory. In contrast to prior studies of similar models, we show that the resulting patterns are

spectrally stable to perturbations in two spatial dimensions using exponential dichotomies and Lin’s method.

We also discuss implications for the appearance of curved stripe patterns on slopes in the absence of terrain

curvature.

1 Introduction

Large parts of earth have an arid climate (deserts) with low mean annual precipitation and little to no vegetation;

even larger parts of earth have a semi-arid climate with somewhat more precipitation, which allows (some)

vegetation to grow. However, human pressure and global climate change have been turning semi-arid climates

into arid climates, with severe consequences for life in these areas [53, 24]. This so-called desertification process

has been studied extensively over the years, from both ecological and mathematical perspectives. These studies

have shown the importance and omnipresence of spatial patterning of vegetation, which is widely recognized as

the first step in the desertification process [3, 43, 24, 42, 39, 37, 44, 25]. On flat ground, the reported patterns are

gaps, labyrinths and spots, while on sloped terrain, (curved) banded or striped patterns can form [55, 41, 16, 22];

this article is focused on the latter, and in particular the stabilizing effect of terrain slope on striped vegetation

patterns.

To understand the formation and dynamics of vegetation patterns in semi-arid climates, many conceptual models

have been formulated [35, 55, 41, 23]. All of these dryland models describe the interplay between the available

water and the density of vegetation, in different levels of detail. The simplest models only have two components:

U , the water in the system and V , the vegetation. These two-component models generally have the following

(rescaled) form: Ut = D∆U + SUx + a− U −G(U, V )V,

Vt = ∆V −mV +R(V )G(U, V )V.
(1.1)
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Figure 1 – The qualitative form of R(V )G(U, V ) for fixed U based on ecological intuition of dryland ecosystems.

In (1.1), the movement of water is modeled as a combined effect of diffusion (D∆U) and advection (SUx), where

D is the diffusion constant and S is a measure for the slope of the terrain. We assume the terrain is constantly

sloped, so that uphill corresponds to the positive x direction. The dispersal of plants is described by diffusion

(∆V ). The reaction terms describe the change in water due to rainfall (+a), evaporation of water (−U) and

uptake by plants (−G(U, V )V ). Simultaneously, the change of plant biomass is due to mortality (−mV ) and

plant growth (R(V )G(U, V )V ).

In this formulation, G and R are functions that describe, respectively, the amount of water that is taken up by

the plant’s roots and the density-dependent growth rate of the vegetation. Because the presence of vegetation

increases the soil’s permeability, G is typically assumed to increase with both U and V . The conversion rate

R is decreasing with V and for a specific V ∗ > 0 we have R(V ∗) = 0. This value, V ∗, is called the carrying

capacity of the system and describes the total concentration of vegetation that can be supported at a certain

location. In light of these ecological intuitions, one expects that the function R(V )G(U, V ) should take the from

as depicted in Figure 1 (for fixed U). A simple choice which satisfies these constraints is given by R(V ) = 1− bV
and G(U, V ) = UV , where 1/b is the carrying capacity. For clarity of presentation, we fix this choice for the

remainder of this paper; however, we emphasize that, with minor modifications, the following analysis can be

shown to hold for a different choice of the functions R and/or G which take the same qualitative form.

Finally, in (1.1), the displacement of water is modeled as a combined effect of diffusion and advection. However,

in reality banded patterns are mainly observed on sloping grounds, where movement of water is dominated by

the downhill flow and diffusive motion is of lesser importance [55, 41, 16, 22]. Note that this agrees with recent

studies on ecosystem models that show banded vegetation is unstable against lateral perturbations of sufficiently

small wavenumber when diffusion is large enough (i.e. D large enough compared to S) [50, 48]. Therefore, as a

first step, we ignore the diffusion of water completely (as in [35]) and set D = 0. Moreover, due to the separation

of scales between movement of water and dispersion of vegetation, we take S =
1

ε
, where 0 < ε � 1 is a small

parameter.

To summarize, the dryland model we consider in this article is given byUt =
1

ε
Ux + a− U −G(U, V )V,

Vt = ∆V −mV +R(V )G(U, V )V,
(1.2)

where a,m, b > 0, 0 < ε� 1 and the functions R and G are given by

G(U, V ) = UV, R(V ) = 1− bV (1.3)

Remark 1.1. Notably, one of the first dryland ecosystem models, by Klausmeier [35], takes G(U, V ) = UV and

R(V ) = 1. This corresponds to the assumption that vegetation growth in drylands is always water-limited, and

hence to the assumption of infinite carrying capacity, i.e. taking b = 0, in our formulation. Therefore in the

limit b ↓ 0 our model is the original Klausmeier model, and our model can thus be seen as a modified Klausmeier
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model. We emphasize, however, that the results in this article hold only for b > 0. The limiting case b = 0 turns

out to be highly degenerate (see Remark 2.12) and requires additional technical considerations; this is analyzed

in detail in [7].

The model (1.2) admits a spatially homogeneous steady state

(U, V ) = (U0, V0) = (a, 0), (1.4)

corresponding to the desert-state of the system. When
a

m
> 2

(
b+

√
1 + b2

)
there are also two additional

vegetated steady state solutions, (U1, V1) and (U2, V2), where

U1,2 = m

(
a

m
− V1,2

1− bV1,2

)
= m

a
m + 2 a

mb
2 + 2b±

√
( am )2 − 4

(
1 + a

mb
)

2(1 + b2)
;

V1,2 =

a
m ∓

√
( am )2 − 4

(
1 + a

mb
)

2
(
1 + a

mb
) .

(1.5)

For
a

m
= 2

(
b+

√
1 + b2

)
these two steady states coincide. The desert state, (U0, V0), is stable against all

homogeneous perturbations; the first vegetated state, (U1, V1), is unstable against these perturbations and the

last steady state, (U2, V2), is stable if V2 >
1

2b
– see Appendix A. The condition V2 >

1

2b
, corresponding to

a

m
> 4b +

1

b
, is not strict; however in the following analysis of banded vegetation patterns we nonetheless

restrict our results to this region.

Remark 1.2. Ecologically, the parameter a is a measure for the rainfall and m for the mortality of plants.

Therefore,
a

m
is a natural measure for the amount of resources needed for vegetation (patterns) to exist: if m

is large, vegetation dies faster and more water is needed to maintain vegetation; when m is small, plants die

slowly and less water is needed. Hence,
a

m
is a natural bifurcation parameter. Also note that

a

m
usually is taken

as a small bifurcation parameter in studies of the extended-Klausmeier or generalized Klausmeier-Gray-Scott

systems [54, 2, 48, 17].

In this article we aim to study patterned solutions to (1.2), which arise as traveling wave solutions to (1.2).We

define the traveling wave coordinate ξ := x − ct, where c is the movement speed. Here, c < 0 corresponds to

downhill movement of the traveling wave and c > 0 to uphill movement. Moreover, we set (U, V )(x, y, t) =

(u, v)(ξ, y, t), which results in the equationut =
1

ε
uξ + cuξ + a− u−G(u, v)v,

vt = (∂2
ξ + ∂2

y)v + cvξ −mv +R(v)G(u, v)v.
(1.6)

Stationary solutions to (1.6) which are constant in y correspond to traveling wave solutions of (1.2); these

solutions satisfy the first order traveling wave ODE
uξ =

ε

1 + εc
(u− a+G(u, v)v) ,

vξ = q,

qξ = mv −R(v)G(u, v)v − cq.

(1.7)

This equation has an equilibrium at (u, v, q) = (a, 0, 0) which represents the homogeneous desert state (U0, V0)

of (1.2). There are two additional equilibrium points at (u, v, q) = (u1,2, v1,2, 0) corresponding to the other

homogeneous steady states (U1,2, V1,2) of (1.2).

Based on the parameters of the model, several different patterned solutions to (1.2) can emerge that correspond

to homoclinic or heteroclinic orbits of (1.7). Single vegetation stripe patterns occur as orbits that are homoclinic
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Figure 2 – Shown are the different patterned solutions of (1.2) that are studied in this paper. Presented figures

show cross-sections of the water, u(x), (blue) and the vegetation, v(x), (red) of direct numerical simulations with

ε = 0.01, m = 0.45, b = 0.5 and a = 1.2 (a) or a = 2.0 (b-d). The 2D pattern is a trivial extension of these patterns

in the y-direction, visualization of which is shown in Figure 19.

to the desert state. Similarly, vegetation gap patterns occur as orbits that are homoclinic to the vegetated state

(u2, v2, 0). Besides these, there are also heteroclinic connections between the vegetated state and the desert state

(and vice-versa) that represent transitions, or infiltration waves, between these uniform stationary states. Plots

of these patterned solutions are shown in Figure 2.

In this article, we first establish existence of the aforementioned patterns rigorously. To that end, we exploit

the scale separation in (1.7) using the methods of geometric singular perturbation theory [21]. Using a fast-slow

decomposition, these patterns are shown to correspond to the union of trajectories on so-called invariant slow

manifolds of (1.7) and fast connections between these slow manifolds. Specifically, (1.7) has three slow manifolds:

one manifold, M` (` for left), consists of states without vegetation and the two others, Mm (middle) and Mr

(right), consist of states with vegetation. Fast front-type solutions φ† exist which connect M` to Mr, and

likewise there exist fast front solutions φ� which connect Mr to M`. Using these, stripes, gaps and fronts can

be constructed for various parameter values. Pulse solutions to (1.2) consist of trajectories on M` and Mr and

two fast front-type connections; front solutions to (1.2) only posses one fast front-type connection. In Figure 3

these patterns are shown in the ε = 0 limit, where they are characterized by their speed in a sample bifurcation

diagram.

The main theme of this paper is the spectral stability of the patterns. Because the main building blocks of all of

the patterns are normally hyperbolic slow manifolds and fast front-type connections between these, we argue that

destabilization can, a priori, only be caused by a ‘small’ eigenvalue, one of which is created by every front-type

connection. However, using formal asymptotic computations this possibility is excluded: all described patterns

to (1.2) – stripes, gaps and fronts – are thus (always) stable against two-dimensional perturbations. These

formal arguments are also verified rigorously by carefully constructing eigenfunctions using techniques previously

employed to prove stability of traveling pulses in the FitzHugh–Nagumo system in [6]; similar arguments were

also used in [30, 31]. However, in those previous works, only stability with respect to perturbations in one spatial

dimension was considered. By performing a Fourier decomposition in the transverse (y) direction, we show that

these methods can also be used to obtain 2D spectral stability of the full planar traveling waves.

Furthermore, in this paper we show that the 2D stability of the (straight) planar vegetation patterns implies that

slightly curved variants of the same patterns, sometimes called corner defect solutions, are also solutions to (1.2)

that are – again – 2D stable. An example of one of these solutions is given in Figure 4. Existing techniques

developed in [28, 27] can be applied to infer that the orientation of these patterns is related to the speed c of their

associated straight patterns; in particular we predict that when c > 0 the corresponding corners are oriented

convex upslope, and when c < 0 they are convex downslope.

Besides these mathematical findings, this paper also provides novel insights in the context of ecology – and the

study of desertification in particular. In simple dryland ecosystem models, typically vegetation patterns are found

where the vegetation stripes (or gaps) have only a (very) small width, which is not very realistic [55, 41, 16, 22].
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Figure 3 – A sample singular ε = 0 bifurcation diagram in (a/m, c) parameter space. The solid green line indicates

stripe solutions, while the solid purple line denotes the gap solutions. Vegetation-to-desert fronts are indicated by

the dashed green line. Finally, desert-to-vegetation front solutions are given by the dashed and solid purple lines.

Schematic depictions of the associated singular limit geometries are depicted in the insets, where the labels D and V

denote the locations of the desert and vegetated equilibrium states, respectively. The precise bifurcation structure

depends on the value of the parameter b; see §2.4.
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(a) Straight vegetation stripe
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(b) Curved vegetation ‘corner’

Figure 4 – A snapsthot of a straight (a) and slightly bent (b) traveling vegetation stripe solution (with c > 0),

obtained via direct numerical simulation of (1.2) with ε = 0.01, m = 0.45, b = 0.5 and a = 1.2.
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In this article, however, patterns are found that do have a more sizable width, that can even be expressed in

terms of the model parameters. These larger widths are caused by the addition of a carrying capacity in (1.2)

which limits the amount of vegetation at one place and forces the patterns to become wider instead. Moreover,

this study indicates the kind of (striped) patterns that are possible based on the values of the model parameters;

see Figure 3. Vegetation stripe patterns only exist in relatively dry conditions (i.e. when
a

m
is small). For every

so slightly more humid conditions, it is possible to find vegetation gap patterns and invading front patterns (both

invading vegetation and invading desert fronts). For even more humid conditions, only invading vegetation fronts

can be found. Finally, we also found slightly curved variants of the aforementioned planar vegetation patterns,

an example of which is given in Figure 4. In this paper, we show that these curved vegetation patterns can be

formed through the internal dynamics of (1.2), and provide a possible explanation for the observed vegetation

arcs – even in the absence of topographic mechanisms [22].

Remark 1.3. In an ecological context, traveling (spatially) periodic orbits are perhaps more relevant than the

traveling pulse solutions constructed in this paper. However, once these pulse solutions are found, the periodic

ones typically follow naturally [48] – as is the case here. Furthermore, properties of these periodic orbits are

closely related to those of the pulse solutions. See also § 2.4.4.

The set-up for the rest of this article is as follows. In §2, we study (1.7) as a slow/fast system in the context

of geometric singular perturbation theory. We determine the slow manifolds M`, Mm and Mr and the fast

connections φ† and φ� that connect the manifolds M` and Mr, which are then used to construct singular

stripe, gap and front solutions to (1.7). In §3, we prove the persistence of these solutions for sufficiently small

ε > 0. Next, in §4, we compute the essential and point spectra of all these patterns using (formal) asymptotic

computations, and show that all patterns are stable against all two dimensional perturbations. Subsequently,

in §5 these stability statements are made rigorous by carefully constructing eigenfunctions. In §6 we inspect

existence and stability of weakly bent (corner) solutions to (1.7). Then, in §7 we present the results of numerical

computations on closely related spatially periodic patterns and numerical simulations of both straight and bent

patterns. We conclude with a brief discussion of the results in §8.

2 Slow-fast analysis of traveling wave equation

In this section, we study the traveling wave equation (1.7) as a slow-fast system in the singular limit ε = 0.

A discussion of the critical manifolds is given in §2.1. In §2.2, we describe the singular layer problem, and we

construct families of singular front solutions. We describe the reduced flow on the critical manifolds in §2.3,

and we construct singular traveling front and stripe solutions in §2.4, which consist of fast segments that are

heteroclinic solutions to the singular layer problem and of slow segments that are solutions of the reduced flow

on the critical manifolds. Finally, §2.5 contains statements of our main existence results.

2.1 Critical manifolds

The traveling wave ODE (1.7) is a two-fast-one-slow system. We obtain the fast subsystem or layer problem by

setting ε = 0 in (1.7), which results in the system
u′ = 0,

v′ = q,

q′ = mv −R(v)G(u, v)v − cq,
(2.1)
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or, equivalently, the collection of planar ODEsv′ = q,

q′ = mv −R(v)G(u, v)v − cq,
(2.2)

parameterized by u. We note that (v, q) = (0, 0) =: p0(u) is always an equilibrium of (2.2); there are additional

equilibria (v, 0) whenever v satisfies R(v)G(u, v) = m. Thus we see that there are additional equilibria p±(u) :=

(v±(u), 0), where

v±(u) =
1±

√
1− 4bm/u

2b
, (2.3)

provided u ≥ 4bm. We see that (2.2) admits three equilibria for u > 4bm, two equilibria for u = 4bm, and a

single equilibrium for u < 4bm.

Denoting the right-hand-side of (2.2) by

F (v, q;u) :=

(
q

mv −R(v)G(u, v)v − cq

)
, (2.4)

we consider the linearization of (2.2) about each of the three equilibria p0, p± that is given by

D(v,q)F (0, 0;u) =

(
0 1

m −c

)
, (2.5)

D(v,q)F (v±(u), 0;u) =

 0 1

u− 4mb±
√
u2 − 4mbu

2b
−c

 . (2.6)

For c > 0, we deduce that the equilibrium p0(u) is always a saddle. When u > 4bm, the equilibrium p−(u) is a

stable node or spiral, and the equilibrium p+(u) is a saddle. When u = 4bm, the equilibrium p+(4bm) = p−(4bm)

is not hyperbolic.

In the full system, the equilibria of the layer problem (2.2) form critical manifolds, given by three normally

hyperbolic branches

M`
0 = {v = q = 0},

Mm
0 = {p−(u) : u > 4bm},
Mr

0 = {p+(u) : u > 4bm},
(2.7)

with the branches Mm
0 ,Mr

0 meeting at a nonhyperbolic fold point F = p+(4bm) = p−(4bm); see Figure 5. For

u1, u2 ∈ R, we will use the notation

Mj
0[u1, u2] :=Mj

0 ∩ {u1 ≤ u ≤ u2} (2.8)

to refer to a compact segment of one of the critical manifolds Mj
0, j = `,m, r.

We recall that there are (up to) three equilibria of the full system, given by (u, v, q) = (a, 0, 0) and (u, v, q) =

(u1,2, v1,2, 0); see Figures 5 and 6. The equilibrium at (u, v, q) = (a, 0, 0) lies on the left branch M`
0 and

corresponds to p0(a), while that at (u, v, q) = (u1, v1, 0) corresponds to p−(u1) and lies on the middle branch

Mm
0 . The location of the equilibrium (u, v, q) = (u2, v2, 0) depends on the parameter values: if a/m < 4b+ 1/b,

then it lies on the middle branch Mm
0 at p−(u2), while if a/m > 4b + 1/b, then it lies on the right branch Mr

0

at p+(u2). When a/m = 4b+ 1/b, the equilibrium (u, v, q) = (u2, v2, 0) coincides with the fold F .
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Figure 5 – Shown are the three branches of the critical manifold M0 and the associated reduced flow (2.20)-(2.22)
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a

m
< 2

(
b+

√
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)
. There is a single equilibrium at p0(a) on the left branchM`

0 corresponding to the

desert state (u, v, q) = (a, 0, 0).
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Figure 6 – Shown are the three branches of the critical manifoldM0 and the associated reduced flow (2.20)-(2.22) in

the case
a

m
> 2

(
b+

√
1 + b2

)
. The reduced problem admits two addtional equilibria corresponding to the vegetated

states (u, v, q) = (uj , vj , 0), j = 1, 2. The equilibrium (u, v, q) = (u1, v1, 0) corresponds to p−(u1) and lies on the

middle branch Mm
0 . If

a

m
< 4b + 1/b, the equilibrium (u, v, q) = (u2, v2, 0) lies on the middle branch Mm

0 and

corresponds to p−(u2), while if
a

m
> 4b+ 1/b, it lies on the right branch Mr

0 at p+(u2).
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Figure 7 – Shown are the singular fronts fronts φ�(ξ;u), φ†(ξ;u) of the layer problem (2.2).

2.2 Layer fronts

In the previous section we have constructed the critical manifolds M`
0, Mm

0 and Mr
0, and determined the

location of the desert state p0(a) on M`
0 and the vegetation state p+(u2) on Mr

0 – under certain conditions on

the parameters. In this section, we study the connections between the outer manifolds M`
0 and Mr

0 – which

present themselves as fronts in the fast layer problem (2.2) for certain values of u and c. Ultimately, the goal is

to construct homoclinic and heteroclinic solutions to the equilibrium states p0(a) and/or p+(u2). Therefore, it

is necessary to find front solutions that land on these states (because of the instability of these points on their

respective critical manifolds). As these fronts are characterized by a specific speed c, a homoclinic connection

can then only be constructed if a front connection going the other way can also be found for the same speed c

(but possibly different value of u). In this section, we first catalogue the possible front connections betweenM`
0

and Mr
0, and give the corresponding speeds. Subsequently, we determine wether we can find a pair of fast front

connections – one from Mr
0 to M`

0, and one from M`
0 to Mr

0 – that exist for the same speed c, such that one

lands precisely at an equilibrium state and a singular homoclinic connection can be found. We first find those

relevant pairs that land on p0(a) and then those that land on p+(u2).

2.2.1 Front connections between M`
0 and Mr

0

We are interested in fronts between the two saddle equilibria p0(u) = (0, 0) and p+(u) = (v+(u), 0); equivalently,

we search for connections between the outer branches M`
0,Mr

0. For each value of u > 4mb, there are two such

fronts, φ�(ξ;u) = (v�(ξ;u), q�(ξ;u))T and φ†(ξ;u) = (v†(ξ;u), q†(ξ;u))T , with explicit v profiles given by

v�(ξ;u) =
v+(u)

2

(
1− tanh

(
v+

√
ub

2
√

2
ξ

))
,

v†(ξ;u) =
v+(u)

2

(
1 + tanh

(
v+

√
ub

2
√

2
ξ

))
,

(2.9)

and wave speeds

c∗�(u) =

√
2bu

2
(v+(u)− 2v−(u))

c∗†(u) = −
√

2bu

2
(v+(u)− 2v−(u)) .

(2.10)

The �-fronts connect p+ to p0, while the †-fronts connect p0 to p+; see Figure 7.

When u = 4mb, the situation is slightly different as the equilibria p±(u) collide in a saddle-node bifurcation at

the fold point F , and the equilibrium p+(u) is no longer a saddle. However, it is still possible to find fronts

between p0 and p+(4bm) = p−(4bm). In particular, there exists a front connecting p+(4bm) to p0(4bm) for any

c ≤ c�,crit = b
√

2m (v+(4bm)− 2v−(4bm))

= −
√
m

2
.

(2.11)
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When c = c�,crit this front decays exponentially in backwards time, while for lesser speeds it decays only

algebraically. Similarly, there exists a front connecting p0(4bm) to p+(4bm) for any

c ≥ c†,crit = −b
√

2m (v+(4bm)− 2v−(4bm))

=

√
m

2
.

(2.12)

When c = c†,crit this front decays exponentially in forwards time, while for greater speeds it decays only alge-

braically.

2.2.2 Fronts asymptotic to p0(a)

In particular, provided a > 4bm, the fronts (2.9) exist when u = a. Therefore we have a front connecting p+(a)

to p0(a) – the equilibrium (a, 0, 0) of the full system (1.7) – when

c = c∗�(a)

=
1

2
√

2b

(
−√a+ 3

√
a− 4bm

)
.

(2.13)

We now search for fronts which exist simultaneously for the same speed but different value of u, in particular for

u ≤ a. We have the following.

Lemma 2.1. For each
a

m
≥ 9

2
b, there exists a pair of fronts φ�(ξ; a), φ†(ξ;u

∗(a)) with speed

c = c∗(a) :=
1

2
√

2b

(
−√a+ 3

√
a− 4bm

)
. (2.14)

The front φ�(ξ; a) connects p+(a) to p0(a) in the layer system (2.2) for u = a, while the front φ†(ξ;u
∗(a))

connects p0(u∗(a)) to p+(u∗(a)) in the layer system (2.2) for u = u∗(a) ≤ a, where

u∗(a) :=


1

8

(
17a− 18bm− 15

√
a2 − 4abm

)
,

9

2
b ≤ a

m
<

25

4
b;

4bm,
a

m
≥ 25

4
b.

(2.15)

Proof. When
a

m
=

9

2
b, we have c∗�(a) = 0 = c∗†(a). Thus, the layer problem is Hamiltonian and therefore both

heteroclinic orbits lie simultaneously in the plane u = a, forming a heteroclinic loop. For values of
9

2
b <

a

m
<

25

4
b,

the second heteroclinic orbit exists for a value of 4bm < u∗ < a given by (2.15), which can be obtained by solving

the relation c∗�(a) = c∗†(u) for u = u∗(a).

For a ≥ 25bm

4
, the second heteroclinic orbit occurs when u = u∗(a) = 4bm; the decay is exponential in forward

time when a =
25bm

4
, and algebraic for a >

25bm

4
.

Remark 2.2. In the case 4b ≤ a

m
≤ 9

2
b, there (also) exists a second front φ†(ξ;u

∗(a)) with speed c = c∗(a) that

connects p0(u∗(a)) to p+(u∗(a)) in the layer system (2.2) for u = u∗(a), where

u∗(a) =
1

8

(
17a− 18bm− 15

√
a2 − 4abm

)
.

However, in this case u∗(a) > a, which – because of the flow on Mr
0 (see §2.3) – prevents the existence of a

homoclinic connection in the full system.
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2.2.3 Fronts asymptotic to p+(u2)

We recall that for a/m > 4b+1/b, the equilibrium p+(u2) on the right branchMr
0 corresponds to the equilibrium

(u2, v2, 0) of the full system (1.7). For a/m = 4b + 1/b, this equilibrium lies precisely on the fold F . We now

search for singular fronts to this equilibrium for values of a/m ≥ 4b+ 1/b, and the argument is similar as above.

When a/m > 4b+ 1/b, there exists a front connecting p0(u2) to p+(u2) when

c = c∗†(u2)

= − 1

2
√

2b

(
−√u2 + 3

√
u2 − 4bm

)
,

(2.16)

and when a/m = 4b + 1/b this front exists for each c ≥ c†,crit, with exponential decay in forward time for

c = c†,crit and algebraic decay when c > c†,crit. We again search for fronts which exist simultaneously for the

same speed but different value of u, and we have the following lemma, analogous to Lemma 2.1.

Lemma 2.3. Concerning the layer problem (2.2), the following hold.

(i) For each 4b +
1

b
<

a

m
≤ 9

2
b +

2

b
, there exists a pair of fronts φ�(ξ; û2(a)), φ†(ξ;u2) with speed ĉ(a) =

c∗†(u2). The front φ†(ξ;u2) connects p0(u2) to p+(u2) in the layer system (2.2) for u = u2, while the front

φ�(ξ; û2(a)) connects p+(û2(a)) to p0(û2(a)) in the layer system (2.2) for u = û2(a), where

û2(a) :=
1

8

(
17u2 − 18bm− 15

√
u2

2 − 4u2bm

)
. (2.17)

(ii) When a/m = 4b+ 1/b, for each c ≥ c†,crit, there exists a pair of fronts φ†(ξ;u2), φ�(ξ; û(c)), where û(c) is

an increasing function of c which satisfies û(c†,crit) = û2(4mb+m/b).

Proof. For (i), when
a

m
=

9

2
b +

2

b
, we have c∗�(u2) = 0 = c∗†(u2), and therefore both heteroclinic orbits lie

simultaneously in the plane u = u2, forming a heteroclinic loop. For values of 4b+
1

b
<

a

m
<

9

2
b+

2

b
, the second

heteroclinic orbit exists for a value of û2 > u2 given by the solution of (2.17), which can be obtained by solving

the relation c∗�(u) = c∗†(u2) for u = û2.

For (ii), when a/m = 4b+1/b, the equilibrium p+(u2) lies precisely on the fold F and hence we obtain the fronts

φ†(ξ;u2) for each c ≥ c†,crit. The facts regarding û(c) follow by noticing that the relation

c∗�(u) =

√
2bu

2
(v+(u)− 2v−(u))

=
1

2
√

2b

(
−√u+ 3

√
u− 4bm

) (2.18)

defines c∗�(u) as a strictly increasing function of u, and that u2 = 4bm when a/m = 4b+ 1/b, so that û2(4mb+

m/b) = 25bm/4, and c∗�(25bm/4) = c†,crit.

2.3 Slow flow

We now examine the slow flow restricted to the critical manifolds M`
0 and Mr

0. We rescale τ = εξ and obtain

the corresponding slow system 
uτ =

1

1 + εc
(u− a+G(u, v)v)

εvτ = q

εqτ = mv −R(v)G(u, v)v − cq.

(2.19)
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By setting ε = 0, we obtain the reduced flow on M`
0 as

uτ = u− a, (2.20)

on Mm
0 as

uτ = u− a+G(u, v−(u))v−(u), (2.21)

and on Mr
0 as

uτ = u− a+G(u, v+(u))v+(u). (2.22)

See Figures 5 and 6 for depictions of the reduced flow, depending on the value of a/m. We see that for u < a, under

the reduced flow on M`
0, u is always decreasing, while on Mr

0, u is always increasing, provided a/m < 4b+ 1/b.

When a/m = 4b+ 1/b, there exists an equilibrium of the full system (u2, v2, 0) which coincides with the fold F ,

which thus takes the form of a canard point [36]. As a increases through this value, this equilibrium moves up

along the right branch Mr
0. In that case, the flow is away from this equilibrium point; that is, u is decreasing

when u < u2 and increasing when u > u2.

2.4 Singular orbits

In the previous sections we have studied the slow flow on the manifolds M`
0 and Mr

0 and the dynamics of fast

transitions between these manifolds. In this section, we use this knowledge to construct families of singular

orbits, which will serve as the basis for constructing traveling front and pulse solutions to (1.2). These singular

orbits are constructed for open regions in (a, b,m) parameter space, with the wavespeed c in general determined

uniquely by the value of (a, b,m). The bifurcation structure, as well as the singular limit geometry of the

associated solution orbits, is depicted in the bifurcation diagrams in Figures 8a and 8b. These diagrams show

the dependence of the wave speed c on the value of the quantity a/m, in the regions b < 2/3 and b > 2/3, as the

bifurcation structure changes qualitatively as b crosses through the critical value 2/3.

We first consider traveling pulse solutions, which can be thought of as two front-type solutions glued together to

create a profile which is bi-asymptotic to one of the equilibrium states with a plateau in between. These come in

two varieties: vegetation stripe solutions, considered in §2.4.1, which manifest as homoclinic orbits to the desert

equilibrium state p0(a), and vegetation gap solutions, considered in §2.4.2, which arise as homoclinic orbits to

the equilibrium p+(u2). In both cases, the corresponding homoclinic orbits are composed of two portions of the

slow manifolds M`
0 and Mr

0 concatenated with two fast jumps in between, which exist for the same value of c.

The singular limit geometry for these solutions is shown in the bifurcation diagrams Figures 8a and 8b (see also

Figure 9 for more details), in which the stripe solutions are defined along the upper solid green, and the gap

solutions are defined along the upper solid purple curve. The distinction between the cases b < 2/3 and b > 2/3

is related to the manner in which these two curves interact; this is discussed in more detail in §2.4.1.

Next we consider singular front solutions in §2.4.3, characterized by a sharp transition from the uniform desert

state to the uniformly vegetated state or vica versa. In the slow/fast framework of the traveling wave equa-

tion (1.7), these solutions manifest as heteroclinic orbits between the equilibria p0(a) and p+(u2), and are

composed of a single slow segment along one of the manifoldsM`
0 andMr

0 concatenated with a fast jump to the

opposite slow manifold. In the diagrams Figures 8a and 8b, these singular front solutions are defined along the

upper solid and dashed green and purple curves in the region a/m > 4b+ 1/b. The green curves correspond to

front solutions in which the vegetated state is downslope of the desert state, while the desert state is downslope

of the vegetated state along the purple curves.

We briefly discuss periodic orbits in §2.4.4, and in the following section §2.5, we state our main existence results

regarding traveling front, stripe, and gap solutions to (1.2).
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a

m

b <
2

3

9b

2

25b

4
4b +

1

b

9b

2
+

2

b

homoclinic to
desert state

homoclinic to
vegetated state

c

c = c⇤(a, b, m)

c = ĉ(a, b, m)

(a)
c

a

m

9b

2
4b +

1

b

9b

2
+

2

b

homoclinic to
desert state

homoclinic to
vegetated state

adh

m

b > 2/3

c = ĉ(a, b, m)

c = c⇤(a, b, m)

(b)

Figure 8 – Shown are the singular ε = 0 bifurcation diagrams in (a, c) parameter space in the cases b < 2/3 (a) and

b > 2/3 (b).
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2.4.1 Homoclinic orbits to the desert state p0(a)

By Lemma 2.1, for each
a

m
≥ 9b

2
, there exists a pair of fronts φ�(ξ; a), φ†(ξ;u

∗(a)) with the same speed

c = c∗(a) :=
1

2
√

2b

(
−√a+ 3

√
a− 4bm

)
. (2.23)

We can concatenate these fronts with portions of the critical manifolds M`,r
0 in order to construct singular

homoclinic solutions to the equilibrium p0(a). However, when a/m > 4b + 1/b, the equilibrium p+(u2) lies on

Mr
0 and can block these orbits. For each

a

m
≥ 9b

2
, we have a candidate singular homoclinic orbit to the desert

state p0(a) given by

Hd(a) :=M`
0[u∗(a), a] ∪ φ†(u∗(a)) ∪Mr

0[u∗(a), a] ∪ φ�(a), (2.24)

corresponding to a vegetation stripe solution (see Figure 9), where the notationMj
0[u1, u2] was defined in (2.8).

This orbit will be blocked if the equilibrium p+(u2) lies on Mr
0 with u∗(a) ≤ u2. There are two cases based on

the expression for u∗(a) in (2.15). If a/m ≥ 25b/4, then this orbit is blocked whenever p+(u2) lies on Mr
0, that

is, for any value of a/m ≥ 4b+ 1/b. If a/m < 25b/4, then this orbit is blocked if u2 ≥ u∗(a), which occurs when

a

m
≥ ādh := 2b+

5
√

3b2

2
√

4 + 3b2
+

8√
12 + 9b2

. (2.25)

We therefore expect a different singular bifurcation diagram for the cases 4b+ 1/b > 25b/4 or 4b+ 1/b < 25b/4

(i.e. b < 2/3 respectively b > 2/3). In the former case the singular front φ†(ξ;u
∗(a)) can jump precisely onto the

fold point F ; in the latter case this is not possible. Equivalently, the structure changes depending on whether

b < 2/3 or b > 2/3 (see Figures 8a and 8b). We define the quantity

ā(b) :=

4b+ 1/b b ≤ 2/3

ādh b > 2/3
. (2.26)

Then for each b,m > 0, we can construct the singular homoclinic orbits Hd(a) for
9

2
b ≤ a

m
≤ ā(b). We note

that when b ≤ 2/3 and
a

m
∈ [4b + 1/b, 25b/4], the front φ†(u

∗(a)) jumps precisely onto the nonhyperbolic fold

point F . While it is possible to construct homoclinic orbits in this regime as well as determine the stability of

the underlying traveling wave solution [4, 6, 9] using geometric blow-up methods, we do not consider this case

here. Rather we restrict our attention to orbits which jump on/off normally hyperbolic portions of the critical

manifold. To that end, we define the quantity

āhyp(b) :=

25b/4 b ≤ 2/3

ādh b > 2/3
, (2.27)

and consider only the singular homoclinic orbits Hd(a) for
9

2
b ≤ a

m
< āhyp(b).

Remark 2.4. In addition to the class of homoclinic orbits described above, there also exist singular homoclinic

orbits to the equilibrium p0(a) lying entirely in the plane u = a. These orbits in fact correspond to solutions of

the layer problem (2.2) for u = a and c = 0, and they are depicted along the lower green curves in the bifurcation

diagrams in Figures 8a and 8b. As with the singular homoclinic orbits Hd(a) constructed in this section, it is

possible to show that these layer homoclinic orbits also persist for sufficiently small ε > 0 using geometric singular

perturbation arguments, and in fact they lie on the same continuation branch; see Figure 16. Furthermore, the

bifurcation structure near these orbits is surprisingly rich; a detailed analysis is carried out in [8]. However,

unlike the orbits Hd(a), the resulting traveling wave solutions are typically unstable as solutions to (1.2), and we

therefore refrain from analyzing these solutions in this work.
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M`
0 Mm

0 Mr
0

v

0

q

u

�†

�⇧

Figure 9 – Shown is the singular orbit Hd(a) homoclinic to the desert state p0(a). The orbit first traverses a portion

of the manifoldM`
0, then the front φ†(u

∗(a)), followed by a portion of the critical manifoldMr
0, and finally the front

φ�(a).

2.4.2 Homoclinic orbits to the vegetated state p+(u2)

Similarly, we can construct singular homoclinic orbits to the vegetated state p+(u2), using the fronts from

Lemma (2.3). By similar arguments as above, we obtain singular homoclinic orbits

Hv(a) :=Mr
0[u2, û2(a)] ∪ φ�(û2(a)) ∪M`

0[u2, û2(a)] ∪ φ†(u2), (2.28)

corresponding to vegetation gap solutions. For each b,m > 0, these orbits can be constructed for parameters

ā(b) ≤ a

m
≤ 9

2
b+ 2/b.

Remark 2.5. Additionally, in the case b < 2/3, using Lemma 2.3 (ii), when a = 4bm + m/b, we also obtain

homoclinic orbits

Ĥv(c) :=Mr
0[u2, û(c)] ∪ φ�(û(c)) ∪M`

0[u2, û(c)] ∪ φ†(u2) (2.29)

for each c†,crit ≤ c ≤ c∗(4bm+m/b).

Remark 2.6. Similarly as in §2.4.1, there exist singular homoclinic orbits p+(u2) lying entirely in the plane

u = u2 for c = 0; see Remark 2.4. These orbits are depicted in Figures 8a and 8b along the lower purple curves.

We remark on their presence here, but we refer to [8] for a detailed singular bifurcation analysis.

2.4.3 Heteroclinic orbits connecting desert state p0(a) and vegetated state p+(u2)

To construct singular heteroclinic solutions that connect the steady state p0(a) to the steady state p+(u2), we

can concatenate M`
0 with a front φ† that limits onto the fixed point p+(u2). The latter fronts only exist when

p+(u2) lies on Mr
0, i.e. when

a

m
> 4b +

1

b
. Hence, a singular heteroclinic orbit connecting p0(a) to p+(u2) is

given by

Hdv(a) :=M`
0[u2, a] ∪ φ†(u2), (2.30)

the speed of which is c = ĉ(a).
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Similarly, a heteroclinic orbit connecting p+(u2) to p0(a) can be found by concatenating Mr
0 with a front φ�

that limits onto the fixed point p0(a). Again, this can only happen when
a

m
> 4b+

1

b
; a candidate orbit is given

by

Hvd(a) :=Mr
0[u2, a] ∪ φ�(a), (2.31)

the speed of which is c = c∗(a).

Remark 2.7. We note that there exist additional heteroclinic orbits for values of 2(b+
√

1 + b2) <
a

m
< 4b+

1

b
.

However, in this parameter regime, the steady state (U2, V2) corresponding to the equilibrium p+(u2) is unstable

(against some non-uniform perturbations) in the original PDE (1.2). Hence a heteroclinic orbit in this regime

corresponds to a front which invades the unstable vegetated state. We do not analyze such invasion fronts in this

work; rather, we focus on the bistable regime, corresponding to the singular heteroclinic orbits Hvd(a) described

above.

2.4.4 Periodic orbits

In this section, we comment briefly on periodic orbits. Following the construction as for singular homoclinic

orbits in §2.4.1–2.4.2, it is also possible to construct singular periodic orbits by concatenating portions of the

critical manifolds M`
0,Mr

0 with fast layer transitions in between, provided the relevant segments of M`
0,Mr

0 do

not contain either of the equilibria p0(a) or p+(u2). Hence, one expects to find singular periodic orbits for any

value of
9b

2
<

a

m
<

9b

2
+

2

b
, and any value of the wavespeed 0 < c < min{c∗(a, b,m), ĉ(a, b,m)}. Further, general

theory predicts that such periodic orbits persist for small ε > 0 [52]; these solutions correspond to wavetrain

solutions of (1.2), or periodic vegetation stripes. While such solutions are perhaps more ecologically relevant,

in the following we focus on traveling pulse solutions as the question of stability, particularly in two spatial

dimensions, is more analytically tractable.

We remark that periodic wavetrain solutions have been found in a similar slow-fast context in the FitzHugh–

Nagumo equation [5, 29], and furthermore, their spectral stability (in one spatial dimension) has been studied

in [20].

2.5 Main existence results

In this section, we have studied (1.2) in the singular limit ε ↓ 0. Here, we have found several singular homoclinic

and heteroclinic orbits. These orbits persist for ε > 0, as we will prove in §3. To summarize our findings, we end

this section with our main existence results.

Theorem 2.8 (Vegetation stripe solution). Fix b,m > 0 and a such that
a

m
∈
(

9

2
b, āhyp(b)

)
. There exists

ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling pulse solution φd(ξ; a, ε) = (ud, vd)(ξ; a, ε) with speed

cd(a, ε) = c∗(a) +O(ε) (2.32)

and satisfying lim
|ξ|→∞

(ud, vd)(ξ; a, ε) = (U0, V0). The length of the vegetation stripe is given to leading order by

εLd :=

∫ a

u∗(a)

du

u− a+ uv+(u)2
. (2.33)

Theorem 2.9 (Vegetation gap solution). Fix b,m > 0 and a such that
a

m
∈
(
ā(b),

9

2
b+

2

b

)
. There exists

ε0 > 0 such that for ε ∈ (0, ε0), (1.2) admits a traveling pulse solution φv(ξ; a, ε) = (uv, vv)(ξ; a, ε) with speed

cv(a, ε) = ĉ(a) +O(ε) (2.34)
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and satisfying lim
|ξ|→∞

(uv, vv)(ξ; a, ε) = (U2, V2). The length of the vegetation gap is given to leading order by

εLv :=

∫ u2

û2

du

u− a = log

(
u2(a)− a
û2 − a

)
. (2.35)

Theorem 2.10 (Desert front solution). Fix b,m > 0 and a such that
a

m
> 4b +

1

b
. There exists ε0 > 0 such

that for ε ∈ (0, ε0), (1.2) admits a traveling front solution φdv(ξ; a, ε) = (udv, vdv)(ξ; a, ε) with speed

cdv(a, ε) = c∗(a) +O(ε) (2.36)

and satisfying lim
ξ→−∞

(udv, vdv)(ξ; a, ε) = (U0, V0) and lim
ξ→∞

(udv, vdv)(ξ; a, ε) = (U2, V2).

Theorem 2.11 (Vegetation front solution). Fix b,m > 0 and a such that
a

m
> 4b+

1

b
. There exists ε0 > 0 such

that for ε ∈ (0, ε0), (1.2) admits a traveling front solution φvd(ξ; a, ε) = (uvd, vvd)(ξ; a, ε) with speed

cvd(a, ε) = ĉ(a) +O(ε) (2.37)

and satisfying lim
ξ→−∞

(uvd, vvd)(ξ; a, ε) = (U2, V2) and lim
ξ→∞

(uvd, vvd)(ξ; a, ε) = (U0, V0).

Remark 2.12. We recall that the case b = 0 corresponds to the original Klausmeier model [35]; see Remark 1.1.

From the geometry of the critical manifold (see Figure 5), the degeneracy of the limit b → 0 becomes apparent.

In particular, the branch Mr
0 of the critical manifold is sent to infinity, and the left branch M`

0 coincides with

the hyperbola v = m/u in the plane q = 0. In the current analysis, we will consider only the case b > 0.

However, we note that under appropriate rescalings, it is possible to unfold the degenerate case b = 0 and

construct traveling wave solutions. Additional complications arise in the singular perturbation analysis due to

loss of normal hyperbolicity along the critical manifold, for which blow up desingularization techniques are needed.

We refer to [7] for the details.

3 Persistence of solutions for 0 < ε� 1

In this section, we prove that the singular orbits constructed in §2.4 perturb to solutions of (1.7) for sufficiently

small ε > 0 using methods of geometric singular perturbation theory. In §3.1, we prove technical lemmata

regarding the transversality of the fast connections φ†,�, and we discuss the proofs of Theorems 2.8–2.11 in §3.2.

3.1 Transversality along singular orbits

We consider the layer system (2.1) 
u′ = 0

v′ = q

q′ = mv − (1− bv)uv2 − cq.
(3.1)

As outlined in §2.2, this system possesses heteroclinic connections φ�,† = (v�,†, q�,†) between the left and right

critical manifoldsM`,r
0 , where the speed c for a given heteroclinic orbit depends on the value of u (as well as the

other parameters). We define the stable and unstable manifolds, Ws(Mj
0) and Wu(Mj

0), of a critical manifold

Mj
0, j = `, r, as the union of the stable and unstable manifolds, respectively, of the corresponding equilibria of

the layer problem (3.1).

Then an orbit φ† lies in the intersection of Wu(M`
0) and Ws(Mr

0), while an orbit φ� lies in the intersection of

Wu(Mr
0) andWs(M`

0). For a given orbit φ†, which we suppose exists for some values of (c, u) = (c0, u0), we aim

to determine how this connection breaks as (c, u) varies near (c0, u0); that is, we determine the transversality of

the intersection of Wu(M`
0) and Ws(Mr

0) with respect to (c, u). We find the following.
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Lemma 3.1. Consider a heteroclinic orbit φ† which lies in the intersection of Wu(M`
0) and Ws(Mr

0) for some

(c, u) = (c0, u0). Then this intersection is transverse in (c, u), and we compute the splitting of Wu(M`
0) and

Ws(Mr
0) along φ† via the distance function

D†(c̃, ũ) = M c
† c̃+Mu

† ũ+O(c̃2 + ũ2) (3.2)

where c̃ := c− c0, ũ := u− u0, and

M c
† =

∫ ∞
−∞

ec0ξq†(ξ)
2dξ > 0,

Mu
† =

∫ ∞
−∞

ec0ξ(1− bv†(ξ))v†(ξ)2q†(ξ)dξ > 0.

(3.3)

Proof. We use Melnikov theory to compute the distance between Wu(M`
0) and Ws(Mr

0) to first order in |c− c0|
and |u− u0|. We consider the adjoint equation of the linearization of (3.1) about the front φ† given by

ψ′ =

 0 −m+ uv†(ξ)(2− 3bv†(ξ))

−1 c

ψ. (3.4)

The space of bounded solutions is one-dimensional and spanned by

ψ†(ξ) := ec0ξ

(
q′†(ξ)

−v′†(ξ)

)

= ec0ξ

(
q′†(ξ)

−q†(ξ)

) (3.5)

Let F0 denote the right hand side of (3.1), and define the Melnikov integrals

Mν
† :=

∫ ∞
−∞

DνF0(φ†(ξ)) · ψ†(ξ)dξ, (3.6)

for ν = c, u. The quantities M c
† ,M

u
† measure the distance between Wu(M`

0) and Ws(Mr
0) to first order in

|c− c0| and |u− u0|, respectively. We compute

M c
† =

∫ ∞
−∞

ec0ξq†(ξ)
2dξ > 0,

Mu
† =

∫ ∞
−∞

ec0ξ(1− bv†(ξ))v†(ξ)2q†(ξ)dξ > 0.

As these are nonzero, we deduce that the intersection of Wu(M`
0) and Ws(Mr

0) along φ† is transverse in both c

and u, and we arrive at the distance function (3.2).

Analogously, we can determine the transversality of the intersection ofWu(Mr
0) andWs(M`

0) along an orbit φ�.

We have the following lemma, which follows from a similar computation as in the proof Lemma 3.1.

Lemma 3.2. Consider a heteroclinic orbit φ� which lies in the intersection of Wu(Mr
0) and Ws(M`

0) for some

(c, u) = (c0, u0). Then this intersection is transverse in (c, u), and we compute the splitting of Wu(Mr
0) and

Ws(M`
0) along φ� via the distance function

D�(c̃, ũ) = M c
� c̃+Mu

� ũ+O(c̃2 + ũ2), (3.7)

where c̃ := c− c0, ũ := u− u0, and

M c
� =

∫ ∞
−∞

ec0ξq�(ξ)
2dξ > 0,

Mu
� =

∫ ∞
−∞

ec0ξ(1− bv�(ξ))v�(ξ)2q�(ξ)dξ < 0.

(3.8)
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Figure 10 – The traveling pulse solution of Theorem 2.8 is obtained for 0 < ε� 1 as a perturbation of the singular

homoclinic orbit Hd(a).

3.2 Proof of existence results

In this section, we conclude the proof of Theorem 2.8. The proof of Theorem 2.9 is similar. The proofs of

Theorems 2.10 and 2.11 also follow a similar argument – albeit less involved – and we omit the details.

Proof of Theorem 2.8. Based on the analysis in §2, we obtain a traveling pulse solution of (1.2) as a perturbation

from the singular homoclinic orbit Hd(a) (see (2.24) and Figure 10) within the traveling wave ODE (1.7) for a

speed c ≈ c∗(a). We will construct a homoclinic orbit for 0 < ε� 1 as an intersection of the stable and unstable

manifolds Ws(p0(a)) and Wu(p0(a)) of the equilibrium p0(a) corresponding to the desert state.

For ε0 > 0 sufficiently small, from standard methods of geometric singular perturbation theory, as the left

branchM`
0 of the critical manifold is normally hyperbolic, it persists for ε ∈ (0, ε0) as a one-dimensional locally

invariant slow manifold M`
ε. Similarly, away from the fold F , the right branch Mr

0 of the critical manifold is

normally hyperbolic and persists for ε ∈ (0, ε0) as a one-dimensional locally invariant slow manifold Mr
ε. The

two-dimensional (un)stable manifolds Wu(Mj
0) and Ws(Mj

0), j = `, r, persist for ε ∈ (0, ε0) as two-dimensional

locally invariant manifolds Wu(Mj
ε) and Ws(Mj

ε), j = `, r.

As the equilibrium p0(a) is repelling with respect to the reduced flow on M`
0 (see §2.3), for sufficiently small

ε > 0, the two-dimensional unstable manifoldWu(p0(a)) of p0(a) coincides withWu(M`
ε). The equilibrium p0(a)

also admits a one-dimensional stable manifold Ws(p0(a)) which precisely corresponds the strong stable fiber of

Ws(M`
ε) with basepoint p0(a). We note that for ε = 0 and c = c∗(a), the manifold Ws(p0(a)) is precisely the

singular front φ�(a).

Using the results of Lemma 3.1 for c0 = c∗(a), u0 = u∗(a), for each fixed c ≈ c∗(a) the two-dimensional manifolds

Wu(M`
0) andWs(Mr

0) intersect transversely along the front φ†(u
∗(a)). This transversality persists for sufficiently

small ε > 0, and using the fact that Wu(p0(a)) =Wu(M`
ε), we deduce the transverse intersection of Wu(p0(a))

and Ws(Mr
ε) for each c ≈ c∗(a) and each sufficiently small ε > 0. We now track Wu(p0(a)) as it passes near

Mr
ε; by the exchange lemma [32, 47], there is a constant η > 0 such that Wu(p0(a)) aligns C1-O(e−η/ε)-close to

Wu(Mr
ε) upon exiting a neighborhood of Mr

ε near the front φ�(a).

Using Lemma 3.2 for c0 = c∗(a), u0 = a, we can compute the distance between Wu(Mr
ε) and Ws(p0(a)) along
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the singular front φ�(a) using the distance function (3.7). In order to find a homoclinic orbit, we are interested

in intersections of Wu(p0(a)) and Ws(p0(a)). By the C1-O(e−η/ε)-closeness of Wu(p0(a)) and Wu(Mr
ε), the

resulting distance function differs only by O(e−η/ε) terms. Hence we compute the distance between Wu(p0(a))

and Ws(p0(a)) along φ�(a) as

D(c̃, ũ, ε) = M c
� c̃+O(ε+ c̃2), (3.9)

where M c
� 6= 0 and c̃ = c− c∗(a). We solve for D(c̃, ũ, ε) = 0 when

c = cd(a, ε) = c∗(a) +O(ε), (3.10)

which corresponds to an intersection of Wu(p0(a)) and Ws(p0(a)) along a homoclinic orbit of (1.7).

4 Stability

In the previous sections we have constructed several different localized solutions to (1.6): homoclinics to the desert

state (u, v) = (U0, V0) = (a, 0), homoclinics to the vegetated state (u, v) = (U2, V2) – see (1.5) – and heteroclinics

connecting these states. In this section we study the linear stability of these solutions using formal arguments;

rigorous proofs follows in §5. We denote a steady state solution to (1.6) by (us, vs) – without specifying yet which

steady state solution – and we linearize around this state by setting (u, v)(ξ, t) = (us, vs)(ξ) + eλt+i`y(ū, v̄)(ξ).

The linear stability problem then readsλū =
1 + εcs
ε

ūξ −
(
1 + v2

s

)
ū− 2usvsv̄,

λv̄ = v̄ξξ + csv̄ξ +
(
−m− `2 + (2− 3bvs)usvs

)
v̄ + (1− bvs)v2

s ū.
(4.1)

Here, cs denotes the speed of the steady state under consideration. With the introduction of q̄ := v̄ξ we can

write this stability problem in matrix form as ūξ

v̄ξ

q̄ξ

 = A

 ū

v̄

q̄

 , where A =


ε

1 + εcs

[
1 + λ+ v2

s

] ε

1 + εcs
2usvs 0

0 0 1

−(1− bvs)v2
s m+ `2 + λ− (2− 3bvs)usvs −cs

 . (4.2)

The rest of this section is devoted to finding the spectrum Σ of this eigenvalue problem for the different stationary

solutions to (1.6), using formal computations. The spectrum consists of an essential spectrum Σess and a point

spectrum Σpt, which can each be interpreted in relation to the eigenvalue problem (4.2). The essential spectrum,

which we consider in §4.1, can be determined from properties of the asymptotic matrices obtained by taking the

limit ξ → ±∞ in (4.2). We then study the point spectrum in §4.2, which consists of eigenvalues for which (4.2)

admits exponentially localized eigenfunctions. In §4.3 we formulate theorems based on our findings, the proofs

of which are given in §5.

4.1 Essential spectrum

The essential spectrum consists of all eigenvalues λ such that an asymptotic matrix of (4.2) has a spatial

eigenvalue with real part zero. Depending on the type of steady state solution we are inspecting, the asymptotic

matrix or matrices might be different. However, since we are only considering steady state solutions that limit

to either the desert state (u, v) = (a, 0) or the vegetated state (u, v) = (U2, V2), there are only two possible

asymptotic matrices; when (us, vs) limits to (a, 0) (for either ξ → ∞ or ξ → −∞) we have Ad as asymptotic
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matrix and when (us, vs) limits to (U2, V2) we have Av, where these matrices are given by

Ad(λ; `) =


ε

1 + εcs
[1 + λ] 0 0

0 0 1

0 m+ `2 + λ −cs

 (4.3)

Av(λ; `) =


ε

1 + εcs

[
1 + λ+ V 2

2

] ε

1 + εcs
2U2V2 0

0 0 1

−(1− bV2)V 2
2 m+ `2 + λ− (2− 3bV2)U2V2 −cs

 , (4.4)

where the values for U2 and V2 are given in (1.5).

Lemma 4.1. Concerning the asymptotic matrices Ad, Av defined in (4.3)–(4.4), we have the following.

(i) The matrix Ad is hyperbolic for all λ ∈ C satisfying

Reλ > −min{m+ `2, 1}. (4.5)

(ii) For values of a,m, b > 0 satisfying
a

m
> 4b+

1

b
, the matrix Av is hyperbolic for all λ ∈ C satisfying

Reλ > −min

1 +
1

4b2
,

2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

+ `2

 < 0. (4.6)

Proof. For (i), a straightforward computation reveals that Ad is non-hyperbolic when λ ∈ {λ ∈ C : Reλ =

−1} ∪ {λ = −m− `2 − k2 + icsk; k ∈ R}; see Figure 11.

For (ii), we compute that Av is non-hyperbolic when(
ε

1 + εcs

(
1 + λ+ V 2

2

)
− iν

)(
iνcs − ν2 −m− `2 − λ+ (2− 3bV2)U2V2

)
− ε

1 + εcs
2U2V2(1− bV2)V 2

2 = 0,

(4.7)

for some ν ∈ R. We note that

Re
(
iνcs − ν2 −m− `2 − λ+ (2− 3bV2)U2V2

)
< 0 (4.8)

whenever

Reλ > −m− `2 + (2− 3bV2)U2V2. (4.9)

Furthermore, using the expressions (1.5), when
a

m
> 4b+

1

b
, we have that V2 >

1

2b
and

−m− `2 + (2− 3bV2)U2V2 = −
2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

− `2

< 0.

for all ` ∈ R. By rearranging (4.7), we deduce that Av is non-hyperbolic when

λ = −1− V 2
2 +

2U2V2(1− bV2)V 2
2

(iνc− ν2 −m− `2 − λ+ (2− 3bV2)U2V2)
+ iν

1 + εcs
ε

. (4.10)

Taking real parts of (4.10) in the region

Reλ > −
2m
(
b
√
a2 − 4m(m+ ab)−m

)
2m+ ab− b

√
a2 − 4m(m+ ab)

− `2, (4.11)

we have that Reλ < −1− V 2
2 , and noting V2 >

1

2b
, the result follows.
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Figure 11 – Shown is the essential spectrum Σess associated with the desert state (u, v) = (a, 0) in the case ` = 0.

Thus, since both Ad and Av stay hyperbolic for all λ with Reλ ≥ 0 for the relevant parameter values, the

essential spectrum of all of the types of steady state solutions found in Section 2 is located in the left half-plane.

4.2 Point spectrum

In this section we study the point spectrum Σpt using formal perturbation theory. Here we focus on 1D stability,

that is ` = 0. Rigorous proofs of the statements in this section, and the extension to all ` ∈ R, follow in §5.

We observe that the slow manifolds M`,r
0 are hyperbolic (away from the fold point F) and consist entirely of

saddle equilibria of the fast layer problem (2.1). Hence, we expect that these slow manifolds do not contribute

any eigenvalues; the only eigenvalues come from the contribution of the fast fronts φ† and φ�. That is, eigenvalues

in the point spectrum lie close to the eigenvalues of the fast-reduced subsystem (2.1). Since φ† and φ� are fronts

and (2.1) is translational invariant, standard Sturm-Liouville theory indicates that they carry an eigenvalue λ = 0

and possibly several other eigenvalues that are all real and negative. Therefore, if there are potentially unstable

eigenvalues in the point spectrum Σpt they need to lie close to λ = 0. Specifically, there are as many eigenvalues

close to 0 as there are fronts in the steady state solution (us, vs) under consideration.

Because the full system (1.6) is translational invariant, λ = 0 is an eigenvalue of the full system. When we study

the stability of a heteroclinic connection (connecting the desert state p0(a) to the vegetated state p+(u2) or

vice-versa) this is the only eigenvalue close to 0; in particular Σpt\{0} ⊂ {λ ∈ C : Reλ < 0}. On the other hand,

when we study the stability of a homoclinic connection (connecting either the desert state p0(a) or the vegetated

state p+(u2) to itself), there is an additional eigenvalue close to 0. This eigenvalue – of the homoclinic steady

state solutions – can, in principle, move either to the left or to the right (making the steady state unstable).

In this section, we use perturbation theory to track this movement and pinpoint the location of the second

eigenvalue formally.

4.2.1 Formal computation of small eigenvalues

Let (us, vs) be an exact solution to (1.6). The linearized stability problem (4.1) can be recast to the following

form

L(`)

(
ū

v̄

)
= λ

(
ū

v̄

)
, L(`) :=

(
ε−1(1 + εcs)∂ξ − (1 + v2

s) −2usvs

(1− bvs)v2
s ∂2

ξ + cs∂ξ −m− `2 + (2− 3bvs)usvs

)
.

(4.12)

For simplicity, we focus on the operator L(0) corresponding to the case ` = 0; the case of ` ∈ R is similar and is

carried out in detail in §5.
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Since we are looking for a small (orderO(ε)) eigenvalue closely related to the derivatives of the fast fronts (u†, v†)
T

and (u�, v�)
T , in particular at leading order, (4.12) is satisfied in the fast ξ-fields by any linear combination of

(u′†, v
′
†)
T and (u′�, v

′
�)
T . We denote the fast region with the front (u†, v†)

T by I† and the fast region with the

front (u�, v�)
T by I�. Then, to find the small eigenvalues we therefore use regular expansion and determine the

eigenvalues with a Fredholm solvability condition. In particular, we first focus on the fast fields and we expand

the eigenvalue and (ū, v̄)T in these fast regions as(
ū

v̄

)
= αj

(
u′†
v′†

)
+ ε

(
ūj,1

v̄j,1

)
+O(ε2), (ξ ∈ Ij , j = †, �) (4.13)

λ = 0 + ελ̃ +O(ε2), (4.14)

where α†,� are constants to be determined. Moreover, we also need to expand the exact solution (us, vs)
T as

well as the speed cs: (
us

vs

)
=

(
uj

vj

)
+ ε

(
uj,1

vj,1

)
+O(ε2), (ξ ∈ Ij , j = †, �) (4.15)

cs = c0 + εc1 +O(ε2), (4.16)

where (uj , vj)
T (j = †, �) and c0 are the leading order approximations of the exact solutions as constructed

in §2.5, Theorems 2.8 and 2.9. Substitution in (4.12) leads at order O(ε) to the following equation (the O(1)

equations are automatically satisfied):ū
′
j,1 = 2αjujvjv

′
j ,

Lrj v̄j,1 =
(
λ̃− c1∂ξ − [2− 6bvj ]ujvj,1 − [2− 3bvj ] vjuj,1

)
αjv
′
j − [1− bvj ] v2

j ūj,1,
(ξ ∈ Ij , j = †, �) (4.17)

where

Lrj := ∂2
ξ + c0∂ξ −m+ (2− 3bvj)ujvj . (4.18)

In (4.17) terms with c1, vj,1 and uj,1 appear, and to determine these, we expand the existence problem (1.7) in

ε as well. In the fast fields the order O(ε) terms readu′j,1 = uj − a+ ujv
2
j ,

Lrjvj,1 = −(1− bvj)vjuj,1 − c1v′j .
(ξ ∈ Ij , j = †, �) (4.19)

Taking the derivative with respect to ξ of the second equation then yields

Lrjv′j,1 = (−c1∂ξ − [2− 6bvj ]ujvj,1 − [2− 3bvj ] vjuj,1) v′j − [1− bvj ] v2
ju
′
j,1 (4.20)

Substitution in (4.17) then reduces the core stability problem toū′j,1 = 2αjujvjv
′
j ,

Lrj v̄j,1 = αjLrjv′j,1 + λ̃αjv
′
j + [1− bvj ] v2

j

(
αju

′
j,1 − ūj,1

)
.

(ξ ∈ Ij , j = †, �) (4.21)

From this equation it is clear that ūj,1 can be found by integration (regardless of the value of λ̃, α† and α�).

However, since Lrj has a non-trivial kernel, we have to impose a solvability condition on v̄j,1. We define v∗j as a

solution to the adjoint equation (Lrj)∗v∗j = 0 and note that

v∗j (ξ) = ec0ξv′j(ξ), (ξ ∈ Ij , j = †, �). (4.22)

Thus we obtain the following Fredholm solvability condition

0 = αj λ̃

∫ ∞
−∞

(v′j)
2ec0ξdξ +

∫ ∞
−∞

[1− bvj ] v2
j e
c0ξv′j

(
αju

′
j,1 − ūj,1

)
dξ (j = †, �) (4.23)

23



We observe from (4.17) and (4.19) that αju
′
j,1− ūj,1 is constant in the fast fields Ij (j = †, �). Thus the Fredholm

condition reduces to

0 = αj λ̃

∫ ∞
−∞

(v′j)
2ec0ξdξ +

(
αju

′
j,1 − ūj,1

) ∫ ∞
−∞

[1− bvj ] v2
j e
c0ξv′j dξ (j = †, �) (4.24)

Note that we thus have two solvability conditions. Only when both are satisfied simultaneously, it is possible to

find (ū, v̄)T that solve (4.12). The terms in (4.24) change depending on the type of steady state solution we are

considering, and in particular, to which equilibrium state these solutions are homoclinic, as this determines the

value of αju
′
j,1 − ūj,1.

4.2.2 Homoclinics to desert state

In this situation, u′�,1(ξ)→ 0 for ξ →∞ in I�, since the jump here is onto the fixed point. Moreover, ū�,1(ξ)→ 0

for ξ →∞ in I� to ensure integrability of the eigenfunction. Thus, the condition in I� is

α�λ̃M
d
�,λ = 0, (4.25)

where

Md
�,λ :=

∫ ∞
−∞

v′�(ξ)
2ec
∗(a)ξ dξ > 0. (4.26)

Therefore, either λ̃ = 0 or α� = 0. The former gives us back the translational invariant eigenvalue (with

eigenfunction (ū, v̄)T = (u′s, v
′
s)
T , so we focus on the latter possibility. Note that α� = 0 implies that ū�,1 = 0

in the fast field I�. Thus, this provides a matching condition for the equations in the slow field between the fast

fields I† and I�. By expanding the slow field equation in the slow variable, it immediately follows, from this fact,

that the eigenfunction must be 0 in the slow field between I† and I� as well. Hence we conclude that ū†,1(ξ)→ 0

for ξ → ∞ in I† as well. Moreover, u†,1(ξ) → u† − a − u†v+(u†)
2 = u∗(a) − a + u∗(a)v+(u∗(a))2 for ξ → ∞ in

I† – see equation (4.19) and Theorem 2.8. Thus the second solvability condition becomes

α†
[
λ̃Md
†,λ +Md

†,ε
]

= 0, (4.27)

where

Md
†,λ :=

∫ ∞
−∞

v′†(ξ)
2ec
∗(a)ξ dξ > 0, (4.28)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞
−∞

(1− bv†(ξ))v†(ξ)2ec
∗(a)ξv′†(ξ) dξ > 0. (4.29)

The signs of these are positive, since v† is increasing with ξ, and the quantity
(
u∗(a)− a+ u∗(a)v+(u∗(a))2

)
is

positive per construction. Because taking α† = 0 leads to the trivial solution (on R), we therefore obtain the

additional eigenvalue λ = ελ̃ = −ε
Md
†,ε

Md
†,λ

< 0, which indicates that the eigenvalue λ close to zero has moved into

the stable half-plane {λ ∈ C : Reλ < 0}. A plot of the corresponding eigenfunction, computed numerically, is

given in Figure 13b.

4.2.3 Homoclinics to the vegetated state

This case is very similar. However, now the solution in I† limits to the fixed point of (1.7). Using similar

arguments, we then find the following condition in I†:

α†λ̃M
v
†,λ = 0, (4.30)

where

Mv
†,λ :=

∫ ∞
−∞

v′†(ξ)
2eĉ(a)ξ dξ > 0. (4.31)
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This time we need to take α† = 0. Similar to before, matching through the slow field yields ū†,1(ξ) → 0 and

u�,1 → u� − a = û2(a)− a for ξ →∞ in I�. Therefore the second condition for this steady state reads

α�
[
λ̃Mv
�,λ +Md

�,ε
]

= 0, (4.32)

where

Mv
�,λ :=

∫ ∞
−∞

v′�(ξ)
2eĉ(a)ξ dξ > 0, (4.33)

Mv
�,ε := [û2(a)− a]

∫ ∞
−∞

(1− bv�(ξ))v�(ξ)2eĉ(a)ξv′�(ξ) dξ > 0. (4.34)

Because û2(a) − a < 0 and v� is decreasing with ξ, the sign of all these terms are positive again. Therefore we

obtain the additional eigenvalue λ = ελ̃ = −εM
v
�,ε

Mv
�,λ

< 0, and again the eigenvalue has moved into the stable

half-plane.

4.3 Main stability results

In the previous sections we have formally determined the spectrum of the various steady state solutions to (1.6).

The computations in these sections hold for 1D perturbations of the steady state in question. We do, however,

also want to understand the stability of these steady states under 2D perturbations. For that, we linearize around

this state by setting (u, v)(ξ, y, t) = (us, vs)(ξ) + eλt+i`y(ū, v̄)(ξ), where ` ∈ R is the transverse wavenumber,

which results in the family of linearized PDE operators

L(`) :=

(
ε−1(1 + εcs)∂ξ − 1− v2

s −2usvs

(1− bvs)v2
s ∂2

ξ + `2 + cs∂ξ −m+ (2− 3bvs)usvs

)
. (4.35)

Linear stability is then determined by the corresponding family of eigenvalue problems

L(`)

(
U

V

)
= λ

(
U

V

)
, ` ∈ R. (4.36)

Introducing Ψ := (ū, v̄, v̄′)T we write the eigenvalue problem (4.36) as the first order nonautonomous ODE

Ψ′ = A(ξ;λ, `, ε)Ψ, A(ξ;λ, `, ε) =


ε

1 + εcs

[
1 + λ+ v2

s

] ε

1 + εcs
2usvs 0

0 0 1

−(1− bvs)v2
s m+ λ+ `2 − (2− 3bvs)usvs −cs

 . (4.37)

The essential spectrum associated with this problem was treated in §4.1. By introducing λ̃ = λ+ `2 the previous

formal computations for the point spectrum in §4.2 still hold up to leading order by replacing λ with λ̃. To

summarize our findings, we formulate several stability theorems for the various types of steady state solutions;

these are proved rigorously in §5.

Theorem 4.2 (Spectrum of traveling front solutions). Let a, b,m, ε as in Theorem 2.10 or 2.11 and let φh

denote a traveling front solution as in the same theorem. Then, the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and the spectrum of

the operator L(`), ` 6= 0 is contained in the set {λ ∈ C : Reλ < 0}.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of L(`), |`| ≤ LM for some

LM � 1, satisfying λ′0(0) = 0 and

λ0(`) = −`2 +O(|ε log ε|2), λ′′0(`) = −2 +O(|ε log ε|2), |`| ≤ LM . (4.38)
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(iii) The remaining spectrum of L(`) is bounded away from the imaginary axis uniformly in ε > 0 sufficiently

small and ` ∈ R.

Theorem 4.3 (Spectrum of vegetation stripe solutions). Let a, b,m, ε as in Theorem 2.8 and let φd be a traveling

pulse ‘stripe’ solution as in Theorem 2.8. Then, the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and the spectrum of

the operator L(`), ` 6= 0 is contained in the set {λ ∈ C : Reλ < 0}.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of L(`), |`| ≤ LM for some

LM � 1, satisfying λ′0(0) = 0 and

λ0(`) = −`2 +O(|ε log ε|2), λ′′0(`) = −2 +O(|ε log ε|2), |`| ≤ LM . (4.39)

(iii) The operator L(`), |`| ≤ LM admits an additional critical eigenvalue

λc(`) = −`2 −
Md
†,ε

Md
†,λ
ε+O(|ε log ε|2), |`| ≤ LM , (4.40)

where Md
†,λ and Md

†,ε are as defined in (4.28) and (4.29).

(iv) The remaining spectrum of L(`) is bounded away from the imaginary axis uniformly in ε > 0 sufficiently

small and ` ∈ R.

Theorem 4.4 (Spectrum of vegetation gap solutions). Let a, b,m, ε as in Theorem 2.9 and let φv be a travelling

pulse ‘gap’ solution as in Theorem 2.9. Then, the following hold.

(i) The spectrum of the operator L(0) is contained in the set {λ ∈ C : Reλ < 0} ∪ {0}, and the spectrum of

the operator L(`), ` 6= 0 is contained in the set {λ ∈ C : Reλ < 0}.

(ii) The eigenvalue λ0(0) = 0 of L(0) is simple and continues to an eigenvalue of L(`), |`| ≤ LM for some

LM � 1, satisfying λ′0(0) = 0 and

λ0(`) = −`2 +O(|ε log ε|2), λ′′0(`) = −2 +O(|ε log ε|2), |`| ≤ LM . (4.41)

(iii) The operator L(`), |`| ≤ LM admits an additional critical eigenvalue

λc(`) = −`2 − Mv
�,ε

Mv
�,λ
ε+O(|ε log ε|2), |`| ≤ LM , (4.42)

where Mv
�,λ and Mv

�,ε are as defined in (4.33) and (4.34).

(iv) The remaining spectrum of L(`) is bounded away from the imaginary axis uniformly in ε > 0 sufficiently

small and ` ∈ R.

5 Rigorous proof for stability theorems

The theorems in §4.3 are based on computations of the essential spectrum in §4.1 and a formal computation

of the point spectrum in §4.2. The former directly provides proof for the theorem statements concerning the

essential spectrum. The latter, however, does not provide a rigorous proof for the theorem statements concern-

ing the point spectrum; to that end, in this section we provide the rigorous justification for the formal point

spectrum computations in §4.2. We restrict ourselves to the study of the traveling pulse ‘stripe’ solution φd as
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Figure 12 – Shown are the results of Theorem 4.3. The left panel depicts the spectrum of the ` = 0 operator L(0),

corresponding to 1D stability. The point spectrum contains two critical eigenvalues λ0, λc close to the origin, while

the remainder of the spectrum is bounded away from the imaginary axis in the left half plane. The right panel

depicts a schematic of the continuation of the critical eigenvalue λ0 for |`| > 0.
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Figure 13 – Shown is the numerically computed 1D spectrum (left panel) associated with a traveling pulse solution

of (1.2) found for a = 1.61, b = 0.6,m = 0.5, ε = 0.003. The v profile of the solution is shown in the right panel,

along with the eigenfunction corresponding to the critical eigenvalue λc.
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Figure 14 – Sketch of the regions R1(δ), R2(δ,M) and R3(M) as considered in the analysis of the point spectrum.

in Theorem 2.8 and Theorem 4.3. The setup and proof for the traveling ‘gap’ solution φv as in Theorem 2.9 and

Theorem 4.4 is similar; the setup and proofs for the traveling heteroclinic orbits φvd and φdv as in Theorem 2.10,

Theorem 2.11 and Theorem 4.2 are also very similar, though less involved. Therefore, the details of these are

omitted.

To analyze the point spectrum, we search for exponentially localized solutions to the family of eigenvalue

problems (4.37) parametrized by the transverse wavenumber ` ∈ R. To this end, we use exponential di-

chotomies/trichotomies and Lin’s method to construct potential eigenfunctions, based on similar techniques

used in the study of stability of traveling pulses in the FitzHugh–Nagumo equation [6]. We briefly review the

notions of exponential dichotomies/trichotomies in §5.1.

To determine eigenvalues of (4.37), it is useful to split the complex plane in several regions. For M � 1 and

δ � 1 fixed independent of ε, we define the following regions (see Figure 14)

R1(δ) := {ζ ∈ C : |ζ| ≤ δ}
R2(δ,M) := {ζ ∈ C : δ < |ζ| < M,Re ζ > −δ}
R3(M) := {ζ ∈ C : |ζ| > M, | arg(ζ)| < 2π/3}.

(5.1)

In §5.2, we first show that large wavenumbers ` do not contribute eigenvalues, and hence it suffices to restrict

to a region of bounded `. We then set λ̃(`) := λ + `2 and study the behavior of solutions to (4.37) for λ̃ in the

various regions (5.1). The region R3 is considered in §5.3. In §5.4, we collect preliminary results in order to set

up the analysis for λ̃(`) in the regions R1 and R2, which are analyzed in §5.5 and 5.6, respectively. We briefly

conclude the proof of Theorem 4.3 in §5.7.

5.1 Exponential dichotomies/trichotomies

Exponential dichotomies extend the notion of hyperbolicity to nonautonomous linear systems such as (4.37) by

separating the dynamics into subspaces of solutions which satisfy exponential growth/decay estimates. Consider

a linear system

Ψξ = A(ξ)Ψ, Ψ ∈ Cn (5.2)
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and let T (ξ, ξ̂) denote the corresponding evolution operator. Let I ⊆ R denote an interval. The system (5.2)

is said to admit an exponential dichotomy on I with constants C, µ > 0 and projections P u,s(ξ), ξ ∈ I if the

following hold for all ξ, ξ̂ ∈ I

P u(ξ) + P s(ξ) = 1

T (ξ, ξ̂)P u,s(ξ̂) = P u,s(ξ)T (ξ, ξ̂)

|T (ξ, ξ̂)P s(ξ̂)|, |T (ξ̂, ξ)P u(ξ)| ≤ Ce−µ(ξ−ξ̂), ξ ≥ ξ̂.

We will sometimes write T u,s(ξ, ξ̂) := T (ξ, ξ̂)P u,s(ξ̂) to denote the corresponding stable/unstable evolution

operators.

Exponential trichotomies allow for a ‘center’ subspace which does not satisfy the same exponential decay estimates

required for an exponential dichotomy. The system (5.2) is said to admit an exponential trichotomy on I with

constants C > 0 and µ1 > µ2 > 0 and projections P u,c,s(ξ), ξ ∈ I if the following hold for all ξ, ξ̂ ∈ I

P u(ξ) + P c(ξ) + P s(ξ) = 1

T (ξ, ξ̂)P u,c,s(ξ̂) = P u,c,s(ξ)T (ξ, ξ̂)

|T (ξ, ξ̂)P s(ξ̂)|, |T (ξ̂, ξ)P u(ξ)| ≤ Ce−µ1(ξ−ξ̂), if ξ ≥ ξ̂
|T (ξ, ξ̂)P c(ξ̂)| ≤ Ceµ2|ξ−ξ̂|.

Our analysis will make use of exponential di-/trichotomies in order to build exponentially localized eigenfunctions,

and in particular we will make use roughness properties, which guarantee that exponential di-/trichotomies persist

under small perturbations of the linear system (5.2). For more information on dichotomies and their properties,

as well as their applications to stability analysis, see [13, 40, 46].

5.2 Reduction to region of bounded |`|

In this section, we show that it suffices to consider bounded wavenumbers |`| ≤ LM for some LM � 1.

5.2.1 The region |`| � 1

We first consider the region of large transverse wavenumber, that is we consider (λ, `) such that λ ∈ R1(δ) ∪
R2(δ,M)∪R3(M) and |`| ≥ LM for a fixed constant 1� LM �M independent of ε. In this region, we perform a

rescaling of the stability problem (4.37) and show that the rescaled problem is a small perturbation of a constant

coefficient problem which admits exponential di/trichotomies and no exponentially localized solutions.

We rescale ξ̄ =
√
λ+ `2ξ, q̄ = q/

√
λ+ `2, which results in the system

dΨ

dξ̄
= Ā(ξ̄;λ, `, ε)Ψ, Ā(ξ̄;λ, `, ε) = Ā1(λ, `, ε) + Ā2(ξ̄; `, ε) (5.3)

where Ā1(λ, `, ε) is the constant coefficient matrix

Ā1(λ, `, ε) =


ε

1 + εcs

λ√
λ+ `2

0 0

0 0 1

0
λ+ `2

|λ+ `2| 0


and

Ā2(ξ̄; `, ε) = O
(

1√
λ+ `2

)
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uniformly in ξ̄, ε. We consider |`| ≥ LM for some sufficiently large, fixed constant LM . We can compute the

eigenvalues of Ā1(λ, `, ε) explicitly as

ν± = ±
√

λ+ `2

|λ+ `2| , νε =
ε

1 + εcd

λ√
λ+ `2

.

For λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) for any δ � 1 and M � LM , we note that the pair of eigenvalues ν±
have absolute real part greater than 1/2, because | arg

√
(λ+ `2)/|λ+ `2|| < π/3. One of these eigenvalues has

negative real part and the other positive real part.

For the third eigenvalue νε, there are three cases: Re νε > 1/4, |Re νε| ≤ 1/4, or Re νε < −1/4. If Re νε > 1/4,

then, by roughness, (5.3) admits exponential dichotomies and hence no exponentially localized solutions. If

|Re νε| ≤ 1/4, by roughness (5.3) admits exponential trichotomies with one-dimensional center subspace. Any

bounded solution must lie entirely in the center subspace. By continuity, the eigenvalues of the asymptotic

matrix Ā±∞(λ, `, ε) = lim
ξ̄→±∞

Ā(ξ̄;λ, `, ε) are separated so that only the eigenvalue νε has absolute real part less

than 1/4 + κ for some small κ > 0. For λ to the right of the essential spectrum, we have that Re νε > 0. Let Ψc

be the corresponding eigenvector. Any solution Ψ(ξ) in the center subspace satisfies lim
ξ→±∞

Ψ(ξ)e−νεξ = ζ±Ψc for

some ζ± ∈ C \ {0}, which contradicts the fact that Ψ(ξ) is bounded. Finally we note that the case Re νε < −1/4

cannot occur for λ to the right of the essential spectrum since in this region the asymptotic matrix Ā±∞(λ, `, ε)

has two eigenvalues of positive real part and one of negative real part.

Thus we conclude that for |`| ≥ LM and any λ ∈ R1(δ) ∪ R2(δ,M) ∪ R3(M) to the right of the essential

spectrum, (4.37) admits no exponentially localized solutions.

5.2.2 Setup for |`| ≤ LM

In the following sections, we will consider the region where |`| is bounded. We begin by setting λ̃ = λ̃(`) := λ+`2.

Under this transformation, (4.37) becomes

Ψ′ = Ã(ξ; λ̃, `, ε)Ψ, (5.4)

where

Ã(ξ; λ̃, `, ε) := A(ξ; λ̃− `2, `, ε) =


ε

1 + εcs

[
1 + λ̃− `2 + v2

s

] ε

1 + εcs
2usvs 0

0 0 1

−(1− bvs)v2
s m+ λ̃− (2− 3bvs)usvs −cs

 . (5.5)

In the following we characterize all eigenvalues λ ∈ C such that

(λ̃, `) ∈ R1(δ) ∪R2(δ,M) ∪R3(M)× [−LM , LM ]. (5.6)

This characterizes all eigenvalues λ ∈ C with Reλ > −`2 − δ and thus all eigenvalues λ ∈ C with Reλ > −δ. In

particular, all potential unstable eigenvalues with Reλ ≥ 0 are captured by this characterization.

5.3 The region (λ̃(`), `) ∈ R3(M)× [−LM , LM ]

In this region, we follow a similar strategy to that in §5.2.1 and perform the rescaling ξ̂ =

√
|λ̃|ξ, q̂ = q/

√
|λ̃|,

which results in the system

dΨ

dξ̂
= Â(ξ̂; λ̃, `, ε)Ψ, Â(ξ̂; λ̃, `, ε) = Â1(λ̃, `, ε) + Â2(ξ̂; λ̃, `, ε) (5.7)

30



where Â1(λ̃, `, ε) is the constant coefficient matrix

Â1(λ̃, `, ε) =


ε

1 + εcs

λ̃√
|λ̃|

0 0

0 0 1

0
λ̃

|λ̃|
0


and

Â2(ξ̂; λ̃, `, ε) = O

 1√
|λ̃|

 ,

uniformly in ξ̂, ε, and |`| ≤ LM , where we recall that 1 � LM � M . The remainder of the argument follows

analogously as in §5.2.1, and we conclude that for any fixed LM , any sufficiently large M and any (λ̃(`), `) ∈
R3(M) × [−LM , LM ] with λ = λ̃ − `2 to the right of the essential spectrum, (4.37) admits no exponentially

localized solutions.

5.4 Setup for the region (λ̃(`), `) ∈ R1(δ) ∪R2(δ,M)× [−LM , LM ]

In the previous section we have deduced that all eigenvalues need to be located in the region (λ̃(`), `) ∈ R1(δ) ∪
R2(δ,M)× [−Lm, Lm]. The analysis in this region is more involved and we need a specific set-up for this region,

the details of which are explained in the next subsections.

5.4.1 Estimates from the existence analysis

To study the stability of the traveling pulse solution φd, we need to be able to approximate it pointwise by its

singular limit, and bound the resulting error terms. The following theorem establishes these estimates.

Theorem 5.1. For each ν > 0 sufficiently large, there exists ε0 > 0 such that the following holds. Let φd(ξ) =

(ud(ξ), vd(ξ))T be a traveling-pulse solution as in Theorem 2.8 for 0 < ε < ε0, and define Lε := −ν log ε and

Φd(ξ) := (ud(ξ), vd(ξ), v′d(ξ))T . There exists 0 < Zε = O(1/ε) such that:

(i) For ξ ∈ I` := (−∞,−Lε], Φd(ξ) is approximated by the left slow manifold M`
0 with

d(Φd(ξ),M`
0) = O(ε).

(ii) For ξ ∈ I† := [−Lε, Lε], Φd(ξ) is approximated by the front φ†(ξ) = (v†(ξ), q†(ξ))
T with∣∣∣∣∣Φd(ξ)−

(
u∗(a)

φ†(ξ)

)∣∣∣∣∣ = O(εlog ε),

∣∣∣∣∣Φ′d(ξ)−
(

0

φ′†(ξ)

)∣∣∣∣∣ = O(εlog ε).

(iii) For ξ ∈ Ir := [Lε, Zε − Lε], Φd(ξ) is approximated by the right slow manifold Mr
0 with

d(Φd(ξ),Mr
0) = O(ε).

(iv) For ξ ∈ I� := [Zε − Lε,∞), Φd(ξ) is approximated by the front φ�(ξ) = (v�(ξ), q�(ξ))
T with∣∣∣∣∣Φd(ξ)−

(
a

φ�(ξ − Zε)

)∣∣∣∣∣ = O(εlog ε),

∣∣∣∣∣Φ′d(ξ)−
(

0

φ′�(ξ − Zε)

)∣∣∣∣∣ = O(εlog ε)
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Proof. The proof is similar to Theorem 4.3 in [6]. The estimates are based on the proximity of the solution to the

singular limit; along each of the slow manifolds, and along each of the fast jumps outside small neighborhoods of

the slow manifolds, these estimates follow directly from the existence analysis, and Φd(ξ) is within O(ε) of the

corresponding singular profile. The regions in between, i.e. where Φd(ξ) transitions from a fast jump to a slow

manifold or vice versa, are more delicate and require corner-type estimates, which result in the O(ε log ε) errors;

see, e.g. [6, Theorem 4.5] or [20, 30].

5.4.2 Weighted eigenvalue problem

In this section we introduce a small exponential weight to the stability problem (5.4). This weight is introduced to

deal with the inconvenience that arises due to the fact that when ε = 0, along the critical manifoldsM`
0,Mr

0 the

matrix A admits three spatial eigenvalues: one negative, one positive, and a zero eigenvalue which corresponds to

the slow direction. On the other hand, for ε > 0 the asymptotic matrix Ad is hyperbolic with two positive spatial

eigenvalues and one negative eigenvalue. In the following, we will construct exponential dichotomies for (5.4)

along each of the slow manifolds M`
ε,Mr

ε and each of the fast jumps, and for the following computations it will

be convenient to preserve this dichotomy splitting at ε = 0 and preserve the exponential decay in forward (resp.

backward) time within the corresponding stable (resp. unstable) dichotomy subspaces. To this end, for each

η ≥ 0 we consider the weighted eigenvalue problem

Ψ′ = Aη(ξ; λ̃, `, ε)Ψ, (5.8)

where

Aη(ξ; λ̃, `, ε) := Ã(ξ; λ̃, `, ε) + ηI =


ε

1 + εc

[
1 + λ̃− `2 + v2

d

]
+ η

ε

1 + εc
2udvd 0

0 η 1

−(1− bvd)v2
d m+ λ̃− (2− 3bvd)udvd η − c

 . (5.9)

The effect of introducing the weight η is to shift the spectrum (i.e. the spatial eigenvalues) of the matrix

Ã(ξ; λ̃, `, ε) to the right. For any λ̃ chosen so that λ = λ̃ − `2 lies to the right of the essential spectrum of L,

the asymptotic matrix Ã±∞(λ̃, `, ε) = lim
ξ→∞

Ã(ξ; λ̃, `, ε) admits two eigenvalues of positive real part and one of

negative real part. Provided η is chosen so that A±∞η (λ̃, `, ε) = lim
ξ→∞

Aη(ξ; λ̃, `, ε) retains this spectral splitting,

the original eigenvalue problem (4.37) admits a nontrivial exponentially localized solution Ψ(ξ) if and only if the

weighted problem (5.8) admits a solution given by eηξΨ(ξ).

We proceed by determining η > 0 such that the spectrum of the coefficient matrix Aη(ξ; λ̃, `, ε) of (5.8) has a

consistent splitting into one unstable and two stable eigenvalues for any λ̃ ∈ R1(δ)∪R2(δ,M) such that λ = λ̃−`2
lies to the right of the essential spectrum of L and any ξ ∈ I` ∪ Ir, where I`, Ir are as in Theorem 5.1. This

consistent splitting will be used to construct exponential dichotomies for (5.8) on the intervals I`, Ir. This is the

content of the following proposition.

Proposition 5.2. There exists C, µ, η, ε0 > 0 such that for ε ∈ (0, ε0), (5.8) admits exponential dichotomies

on the intervals I` = (−∞,−Lε] and Ir = [Lε, Zε − Lε) with constants C, µ > 0, and the associated projections

Qu,s
`,r(ξ; λ̃, ε) are analytic in λ̃ ∈ R1(δ) ∪R2(δ,M) and satisfy∥∥∥[Qs

` − P](−Lε; λ̃, ε)
∥∥∥ ,∥∥∥[Qs

r − P](Lε; λ̃, ε)
∥∥∥ ,∥∥∥[Qs

r − P](Zε − Lε; λ̃, ε)
∥∥∥ ≤ C|εlog ε|,

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of the coefficient matrix Aη(ξ; λ̃, `, ε)

in (5.8).

Proof. By Theorem 5.1, for ξ ∈ I` ∪ Ir, the pulse solution is O(ε)-close to the slow manifolds M`
ε and Mr

ε,

respectively. For |`| ≤ LM bounded and any λ̃ ∈ R1(δ) ∪ R2(δ,M), on I` the matrix Aη(ξ; λ̃, `, ε) has slowly
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varying coefficients and is an O(ε) perturbation of the constant-coefficient matrix

A`η(ξ; λ̃, `, ε) =

η 0 0

0 η 1

0 m+ λ̃ η − c∗(a)

 . (5.10)

For any sufficiently small η > 0 fixed independently of ε and λ̃ ∈ R1(δ) ∪ R2(δ,M), this matrix is hyperbolic

with two eigenvalues with positive real part and one with negative real part and a spectral gap with lower

bound independent of λ̃ ∈ R1(δ) ∪ R2(δ,M). By continuity this also holds for Aη(ξ; λ̃, `, ε) for ξ ∈ I`, and

since Aη(ξ; λ̃, `, ε) has slowly varying coefficients on this interval (see [13, Proposition 6.1]), as in the proof of [6,

Proposition 6.5], we can construct exponential dichotomies for (5.8) on I` with constants C, µ independent of

λ̃ ∈ R1(δ) ∪R2(δ,M) and all sufficiently small ε.

We proceed similarly along Ir, noting that here the matrix Aη(ξ; λ̃, `, ε) again has slowly varying coefficients but

is now an O(ε) perturbation of the matrix

Arη(ξ; λ̃, `, ε) =

 η 0 0

0 η 1

−(1− bvd)vd m+ λ̃− (2− 3bvd)udvd η − c∗(a)

 . (5.11)

where (ud, vd) lies within O(ε) of the set {(u, v) = (u, v+(u)) : u ∈ [u∗(a), a]} where v+ is as in (2.3). On this

set, we note that since m = (1− bv+(u))uv+(u), u > 0 and v+(u) ≥ 1

2b
, we have that

m− (2− 3bv+(u))uv+(u) = (−1 + 2bv+(u))uv+(u) ≥ 0. (5.12)

Hence for δ > 0 sufficiently small Arη(ξ; λ̃, `, ε) is hyperbolic with two eigenvalues with positive real part and one

with negative real part and a spectral gap with lower bound independent of λ̃ ∈ R1(δ)∪R2(δ,M). The existence

of exponential dichotomies for Aη(ξ; λ̃, `, ε) on Ir then proceeds similarly to the case of I` above.

5.5 The region (λ̃(`), `) ∈ R1(δ)× [−LM , LM ]

The argument below is based on the analysis in [6] regarding the stability of traveling pulse solutions in the

FitzHugh–Nagumo equation. The fundamental idea is to construct potential eigenfunctions as solutions to (4.37)

using Lin’s method: the solutions are constructed along three separate intervals which form a partition of the real

line and are matched at two locations corresponding to the two fast jumps in the layer problem; see Figure 15.

The resulting matching conditions give bifurcation equations which can be solved using the eigenvalue λ as a

free parameter, and to leading order these conditions correspond to the Fredholm conditions (4.25) and (4.27).

5.5.1 Reduced eigenvalue problems along fast jumps

We consider the reduced eigenvalue problems

Ψ′ = Aj,η(ξ)Ψ, Aj,η(ξ) :=

 η 0 0

0 η 1

−(1− bvj(ξ))vj(ξ)2 m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

 , j = †, �,

(5.13)

obtained by considering (5.8) with ε = λ̃ = 0 and approximating φd by the fast front solutions φj , j = †, �, and

we denote the corresponding evolutions by Tj(ξ, ξ̂) for j = †, �. In (5.13), vj(ξ) denotes the v-component of

φj(ξ), and u† = u∗(a), u� = a. Hence, for ξ ∈ I† = [−Lε, Lε], (5.8) can be written as the perturbation

Ψ′ =
(
A†,η(ξ) +B†(ξ; λ̃, `, ε)

)
Ψ, B†(ξ; λ̃, `, ε) := Aη(ξ; λ̃, `, ε)−A†,η(ξ) (5.14)
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Figure 15 – Shown is the geometric setup for the construction of potential eigenfunctions using Lin’s method. The

solutions are constructed along the three intervals (−∞, 0], [0, Zε], [Zε,∞) and are then matched at ξ = 0 and ξ = Zε

corresponding to the two fast jumps in the layer problem (2.2).

and for ξ ∈ [−Lε,∞), (5.8) can be written as the perturbation

Ψ′ =
(
A�,η(ξ) +B�(ξ; λ̃, `, ε)

)
Ψ, B�(ξ; λ̃, `, ε) := Aη(ξ + Zε; λ̃, `, ε)−A�,η(ξ). (5.15)

We note by Theorem 5.1 (ii) and (iv) that the perturbation matrices B†, B� satisfy

‖B†(ξ; λ̃, `, ε)‖ ≤ C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε, Lε],
‖B�(ξ; λ̃, `, ε)‖ ≤ C(ε|log ε|+ |λ̃|), ξ ∈ [−Lε,∞).

(5.16)

Next, we note that (5.13) has a lower triangular block structure and leaves the two-dimensional subspace {0} ×
C2 ⊂ C3 invariant, the dynamics on which are given by

ψ′ = Cj,η(ξ)ψ, Cj,η(ξ) :=

(
η 1

m− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, �. (5.17)

The space of bounded solutions of (5.17) is one-dimensional and spanned by

ψj(ξ) := eηξφ′j(ξ), j = †, �. (5.18)

Likewise, the associated adjoint system

ψ′ = −Cj,η(ξ)∗ψ, j = †, �, (5.19)

has a one-dimensional space of bounded solutions spanned by

ψj,ad(ξ) :=

(
q′j(ξ)

−v′j(ξ)

)
e(c∗(a)−η)ξ, j = †, �. (5.20)

Note the similarities with (4.22) in the formal computation. The system (5.17) admits exponential dichotomies

on both half-lines, which can be extended to the full system (5.13) by exploiting the lower triangular block

structure and using variation of constants formulae. This is the content of the following proposition.
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Proposition 5.3. There exist C, µ > 0 such that the following hold.

(i) The system (5.17) admits exponential dichotomies on R± with constants C, µ > 0, projections Πu,s
j,±(ξ), and

corresponding (un)stable evolutions Su,s
j,±(ξ, ξ̂), j = †, �. The projections can be chosen so that

R(Πs
j,+(0)) = Span(ψj(0)) = R(Πu

j,−(0)), R(Πu
j,+(0)) = Span(ψj,ad(0)) = R(Πs

j,−(0)), j = †, �. (5.21)

(ii) The system (5.13) admits exponential dichotomies on R± with constants C, µ > 0, projections Qu,s
j,±(ξ), j =

†, �, and (un)stable evolutions T u,s
j,±(ξ, ξ̂). We have that

Qs
j,+(ξ) =

 0 0

−
∫ ξ

0

e−η(ξ−ξ̂)Ss
j,+(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs

j,+(ξ)

 = 1−Qu
j,+(ξ), ξ ≥ 0,

Qs
j,−(ξ) =

 0 0

−
∫ ξ

−∞
e−η(ξ−ξ̂)Ss

j,−(ξ, ξ̂)Fj(ξ̂)dξ̂ Πs
j,−(ξ)

 = 1−Qu
j,−(ξ), ξ ≤ 0,

(5.22)

where Fj(ξ) :=
(
0,−(1− bvj(ξ))vj(ξ)2

)T
. Furthermore, the projections satisfy

R(Qu
j,+(0)) = Span(ωj,ad(0),Ψ0), R(Qs

j,+(0)) = Span(ωj(0)),

R(Qu
j,−(0)) = Span(ωj(0),Ψj,∞), R(Qs

j,−(0)) = Span(ωj,ad(0)),
(5.23)

where

ωj(ξ) :=

(
0

ψj(ξ)

)
, ωj,ad(ξ) :=

(
0

ψj,ad(ξ)

)
, Ψ0 :=

 1

0

0

 , Ψj,∞ := Qu
j,−(0)Ψ0, j = †, �,

(5.24)

with ψj(ξ) and ψj,ad(ξ) defined in (5.18) and (5.20), respectively.

Proof. For (i), we refer to [6, Proposition 6.6]. The exponential dichotomies in (ii) can be constructed from

those in (i) using variation of constants formulae, by exploiting the block triangular structure in (5.13); see [6,

Corollary 6.7].

5.5.2 Construction of eigenfunctions

In this section, we use the exponential dichotomies from Proposition 5.3, variation of constants formulae, and the

estimates from Theorem 5.1 to construct potential eigenfunctions. These eigenfunctions are constructed in three

pieces along the intervals (−∞, 0], [0, Zε], [Zε,∞) (see Figure 15), and then matched together at ξ = 0, Zε; the

associated matching conditions can then be solved to find eigenvalues λ̃. We begin with the following proposition,

which describes potential eigenfunctions along each of the three intervals.

Proposition 5.4. Let Bj be as in (5.14) and (5.15), and ωj ,Ψ0,Ψj,∞ as in (5.24) for j = †, �. There exists

δ, ε0, C, q > 0 such that for λ̃ ∈ R1(δ) and ε ∈ (0, ε0), the following hold.

(i) Any solution Ψ†,−(ξ, λ̃) to (5.8), which decays exponentially in backward time, satisfies

Ψ†,−(0, λ̃) = β†,−ω†(0) + ζ†,−Ψ†,∞ + β†,−

∫ 0

−Lε

T s
†,−(0, ξ̂)B†(ξ̂; λ̃, `, ε)ω†(ξ̂)dξ̂ +H†,−(β†,−, ζ†,−), (5.25)

for some β†,−, ζ†,− ∈ C, where H†,− is a linear map satisfying

‖H†,−(β†,−, ζ†,−)‖ ≤ C
(

(ε|log ε|+ |λ̃|)|ζ†,−|+ (ε|log ε|+ |λ̃|)2|β†,−|
)
.
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(ii) Any solution Ψsl(ξ, λ̃) to (5.8) which is bounded along the slow manifold Mr
ε satisfies

Ψsl(0, λ̃) = β†ω†(0) + β†

∫ 0

Lε

T u
†,+(0, ξ̂)B†(ξ̂; λ̃, `, ε)ω†(ξ̂)dξ̂ +H†(β†, β�, ζ�), (5.26)

Ψsl(Zε, λ̃) = β�ω�(0) + ζ�Ψ�,∞ + β�

∫ 0

−Lε

T s
�,−(0, ξ̂)B�(ξ̂; λ̃, `, ε)ω�(ξ̂)dξ̂ +H�(β†, β�, ζ�), (5.27)

for some β†, β�, ζ� ∈ C, where H† and H� are linear maps satisfying

‖H†(β†, β�, ζ�)‖ ≤ C
(

(ε|log ε|+ |λ̃|)2|β†|+ e−q/ε(|β�|+ |ζ�|)
)
,

‖H�(β†, β�, ζ�)‖ ≤ C
(

(ε|log ε|+ |λ̃|)|ζ�|+ (ε|log ε|+ |λ̃|)2|β�|+ e−q/ε|β†|
)
.

(iii) Any solution Ψ�,+(ξ, λ̃) to (5.8) which decays exponentially in forward time satisfies

Ψ�,+(Zε, λ̃) = β�,+ω�(0) + β�,+

∫ 0

∞
T u
�,+(0, ξ̂)B�(ξ̂; λ̃, `, ε)ω�(ξ̂)dξ̂ +H�,+(β�,+), (5.28)

for some β�,+ ∈ C, where H�,+ is a linear map satisfying

‖H�,+(β�,+)‖ ≤ C(ε|log ε|+ |λ̃|)2|β�,+|,

Moreover, the functions Ψ†,−(ξ, λ̃), Ψsl(ξ, λ̃), and Ψ�,+(ξ, λ̃) are analytic in λ̃.

Proof. Using the exponential dichotomies from Propositions 5.2 and 5.3(ii), the proof is nearly identical to the

proofs of Propositions 6.8–6.10 in [6].

It remains to solve the matching conditions which arise when attempting to glue together the three solutions

from Proposition 5.4 (i)–(iii) at ξ = 0 and ξ = Zε, in order to construct an exponentially localized eigenfunction.

Theorem 5.5. There exists δ, ε0 > 0 such that for ε ∈ (0, ε0) and |`| ≤ LM , the eigenvalue problem (5.8) has

precisely two eigenvalues λ̃0(`), λ̃c(`) ∈ R1(δ) given by

λ̃0(`) = O(|εlog ε|2), λ̃c(`) = −
Md
†,ε

Md
†,λ̃
ε+O

(
|εlog ε|2

)
,

where

Md
†,λ̃ :=

∫ ∞
−∞

v′†(ξ; a)2ec
∗(a)ξ dξ > 0, (5.29)

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞
∞

(1− bv†(ξ))v†(ξ)2ec
∗(a)ξv′†(ξ) dξ > 0. (5.30)

The derivatives of λ̃0(`) with respect to ` satisfy the same estimates, and λ̃0(0) = λ̃′0(0) = 0.

Proof. We recall from Proposition 5.4 that any exponentially localized solution must satisfy the conditions (5.25)–

(5.28) at ξ = 0, Zε for some β†,−, ζ†,−, β†, β�, ζ�, β�,+ ∈ C. Therefore, to obtain an exponentially localized solution

to (5.8) we match the solutions Ψ†,−,Ψsl at ξ = 0 and the solutions Ψsl,Ψ�,+ at ξ = Zε, which results in matching

conditions which must be satisfied by λ̃ and ε which can be solved to find eigenfunctions. Since the projections

Qu,s
j,+(0) associated with the exponential dichotomy of (5.13) established in Proposition 5.3(ii) satisfy

Qu
j,+(0) +Qs

j,+(0) = I, j = †, �,

this is equivalent to ensuring that the differences Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃) vanish under

the projections Qu,s
†,+(0) and Qu,s

�,+(0), respectively.
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We first note that we must have β† = β†,− and β� = β�,+. This can be seen by applying Qs
j,+(0), j = †, �, to the

differences Ψ†,−(0, λ̃)−Ψsl(0, λ̃) and Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃), respectively, using the expressions (5.25)–(5.28).

We next recall the vectors ωj,ad(0) and Ψ0 defined in (5.24). By (5.23) the vectors Ψ0 and

Ψj,⊥ := ωj,ad(0)−
(∫ 0

−∞
eηξ 〈ψj,ad(ξ), Fj(ξ)〉 dξ

)
Ψ0, Fj(ξ) =

(
0

−(1− bvj(ξ))vj(ξ)2

)
, j = †, �,

span R(Qu
j,+(0)). Hence we aim to show that the inner products of the differences Ψ†,−(0, λ̃) − Ψsl(0, λ̃) and

Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃) with Ψ0 and Ψj,⊥ vanish for j = †, �, respectively. Using (5.25)–(5.28) we first project

along along Ψ0, whereby

0 =
〈

Ψ0,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)
〉

= ζ†,− +O
((
ε|log ε|+ |λ̃|

)
(|β†|+ |ζ†,−|) + e−q/ε(|β�|+ |ζ�|)

)
,

0 =
〈

Ψ0,Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃)
〉

= ζ� +O
((
ε|log ε|+ |λ̃|

)
(|β�|+ |ζ�|) + e−q/ε|β†|

)
,

(5.31)

where we used Theorem 5.1 (ii) and (iv), and (5.16). Provided |λ̃|, ε > 0 are sufficiently small, we can solve (5.31)

for ζ†,− and ζ� to obtain

ζ†,− = O
(

(ε|log ε|+ |λ̃|)|β†|+ e−q/ε|β�|
)

ζ� = O
(

(ε|log ε|+ |λ̃|)|β�|+ e−q/ε|β†|
)
.

(5.32)

We substitute (5.32) into (5.25)–(5.28) and noting Ψj,⊥ ∈ Ker (Qu
j,−(0)∗) = R(Qs

j,−(0)∗) ⊂ R(Qu
j,+(0)∗) for

j = †, �, we obtain the final conditions by projecting with Ψj,⊥, j = †, �, whereby

0 =
〈

Ψ†,⊥,Ψ†,−(0, λ̃)−Ψsl(0, λ̃)
〉

= β†

∫ Lε

−Lε

〈
T†(0, ξ)

∗Ψ†,⊥, B†(ξ; λ̃, `, ε)ω†(ξ)
〉
dξ︸ ︷︷ ︸

=:I†

+O
((

ε|log ε|+ |λ̃|
)2

|β†|+ e−q/ε|β�|
)
, (5.33)

0 =
〈

Ψ�,⊥,Ψsl(Zε, λ̃)−Ψ�,+(Zε, λ̃)
〉

= β�

∫ ∞
−Lε

〈
T�(0, ξ)

∗Ψ�,⊥, B�(ξ; λ̃, `, ε)ω�(ξ)
〉
dξ︸ ︷︷ ︸

=:I�

+O
((

ε|log ε|+ |λ̃|
)2

|β�|+ e−q/ε|β†|
)
, (5.34)

where we recall that Tj(ξ, ξ̂) denotes the evolution for the reduced system (5.13).

To estimate the integrals Ij for j = †, � appearing in (5.33)–(5.34), we note that Tj(0, ξ)
∗Ψj,⊥ is the solution to

the adjoint equation

Ψ′ = −A∗j,ηΨ (5.35)

of (5.13) satisfying Ψ(0) = Ψj,⊥; hence we calculate

Tj(0, ξ)
∗Ψj,⊥ =

 −
∫ ξ

−∞

〈
ψj,ad(ξ̂), Fj(ξ̂)

〉
dξ̂

ψj,ad(ξ)

 =


−
∫ ξ

−∞
e(c∗(a)−η)ξ̂(1− bvj(ξ̂))vj(ξ̂)2v′j(ξ̂)dξ̂

e(c∗(a)−η)ξq′j(ξ)

−e(c∗(a)−η)ξv′j(ξ)

 , (5.36)

for ξ ∈ R and j = †, �. We now approximate Ij by first extracting the leading order λ̃ contribution, whereby we
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obtain

I† =

∫ Lε

−Lε

〈
eηξT†(0, ξ)

∗Ψ†,⊥, B†(ξ; 0, `, ε)φ′d(ξ)
〉
dξ︸ ︷︷ ︸

=:J†

−Md
†,λ̃λ̃+O

(
|εlog ε|(|λ̃|+ |εlog ε|)

)
(5.37)

I� =

∫ ∞
−Lε

〈
eηξT�(0, ξ)

∗Ψ�,⊥, B�(ξ; 0, `, ε)φ′d(ξ + Zε)
〉
dξ︸ ︷︷ ︸

=:J�

−Md
�,λ̃λ̃+O

(
|εlog ε|(|λ̃|+ |εlog ε|)

)
,

(5.38)

where

Md
†,λ̃ :=

∫ ∞
−∞

ec
∗(a)ξ

(
v′†(ξ)

)2
dξ =

∫ Lε

−Lε

ec
∗(a)ξ

(
v′†(ξ)

)2
dξ +O(ε) (5.39)

Md
�,λ̃ :=

∫ ∞
−∞

ec
∗(a)ξ (v′�(ξ))

2
dξ =

∫ ∞
−Lε

ec
∗(a)ξ (v′�(ξ))

2
dξ +O(ε), (5.40)

where we used the fact that the integrands decay exponentially to estimate the tails of the integrals. Finally, in

order to obtain the leading order ε contribution, it remains to estimate the integrals Jj for j = †, � which appear

in the expressions (5.37)–(5.38). To do this, we note that the derivative Φ′d(ξ) = (u′d(ξ), v′d(ξ), q′d(ξ))T of the

pulse solution solves the linearized equations when ` = 0, and therefore satisfies

Φ′′d(ξ) = (A†,0(ξ) +B†(ξ; 0, 0, ε)) Φ′d(ξ), ξ ∈ [−Lε, Lε] (5.41)

and

Φ′′d(ξ + Zε) = (A�,0(ξ) +B�(ξ; 0, 0, ε)) Φ′d(ξ + Zε), ξ ∈ [−Lε,∞). (5.42)

In particular, for ξ ∈ [−Lε, Lε], we obtain

B†(ξ; 0, `, ε)Φ′d(ξ) = [∂ξ −A†,0(ξ) +B†(ξ; 0, `, ε)−B†(ξ; 0, 0, ε)] Φ′d(ξ)

=

 0

[∂ξ − C†,0(ξ)]

(
v′d(ξ)

q′d(ξ)

)+

 u′′d(ξ)− ε`2

1 + εcd
u′d(ξ)

0

(1− bv†(ξ))v†(ξ)2u′d(ξ)


and similarly

B�(ξ; 0, `, ε)Φ′d(ξ + Zε) = [∂ξ −A�,0(ξ) +B�(ξ; 0, `, ε)−B�(ξ; 0, 0, ε)] Φ′d(ξ + Zε)

=

 0

[∂ξ − C�,0(ξ)]

(
v′d(ξ + Zε)

q′d(ξ + Zε)

)+

u
′′
d(ξ + Zε)−

ε`2

1 + εcd
u′d(ξ + Zε)

0

(1− bv�(ξ))v�(ξ)2u′d(ξ + Zε)


for ξ ∈ [−Lε,∞). Using the fact that ψj,ad(ξ) solves (5.19), we have

[∂ξ − Cj,0(ξ)]
∗ (
eηξψj,ad(ξ)

)
= 0, j = †, �, (5.43)

and we therefore obtain

J† =

∫ Lε

−Lε

〈
eηξT†(0, ξ)

∗Ψ†,⊥,

 u′′d(ξ)− ε`2

1 + εcd
u′d(ξ)

0

(1− bv†(ξ))v†(ξ)2u′d(ξ)


〉
dξ

= −
∫ Lε

−Lε

(
ec
∗(a)ξv′†(ξ)(1− bv†(ξ))v†(ξ)2u′d(ξ) + u′′d(ξ)

∫ ξ

−∞
ec
∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ

+
ε`2

1 + εcd

∫ Lε

−Lε

(
u′d(ξ)

∫ ξ

−∞
ec
∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ +O(ε2),
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where we used the fact that the integrands decay exponentially. Integrating by parts, we have that

J† = −
∫ Lε

−Lε

d

dξ

(
u′d(ξ)

∫ ξ

−∞
ec
∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

)
dξ

+
ε`2

1 + εcd

[
ud(ξ)

∫ ξ

−∞
ec
∗(a)ξ̂(1− bv†(ξ̂))v†(ξ̂)2v′†(ξ̂)dξ̂

]Lε

−Lε

− ε`2

1 + εcd

∫ Lε

−Lε

ud(ξ)ec
∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2)

= −u′d(Lε)

∫ Lε

−∞
ec
∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2|log ε|)

= −ε
[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2|log ε|),

where we again used the fact that the integrands decay exponentially, and we estimated ud(ξ) = u∗(a)+O(ε log ε)

for ξ ∈ [−Lε, Lε] and

u′d(Lε) = ε
[
ud(Lε)− a+ ud(Lε)v

′
d(Lε)

2
]

= ε
[
u∗(a)− a+ u∗(a)v+(u∗(a))2 +O(|εlog ε|)

]
,

using Theorem 5.1. Hence we have that

J† = −Md
†,εε+O(ε2|log ε|), (5.44)

where

Md
†,ε :=

[
u∗(a)− a+ u∗(a)v+(u∗(a))2

] ∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ > 0. (5.45)

Performing a similar computation for J�, we arrive at

J� = − lim
ξ→∞

u′d(Zε + ξ)

∫ ∞
−∞

ec
∗(a)ξ(1− bv†(ξ))v†(ξ)2v′†(ξ)dξ +O(ε2) = O(ε2), (5.46)

due to the fact that u′d(Zε + ξ)→ 0 as ξ →∞.

Substituting the expressions for Ij ,Jj , j = †, �, into the remaining conditions (5.33)–(5.34), we find the following

linear system of equations for (β†, β�), solutions of which correspond to eigenfunctions of (5.8):

M(λ̃, ε)

(
β†
β�

)
= 0, (5.47)

where

M(λ̃, ε) :=

 −λ̃Md
†,λ̃ −M

d
†,εε+O

(
(ε|log ε|+ |λ̃|)2

)
O(e−q/ε)

O(e−q/ε) −λ̃Md
�,λ̃ +O

(
(ε|log ε|+ |λ̃|)2

)  . (5.48)

Since the solutions Ψ†,−,Ψsl,Ψ�,+ from Proposition 5.4 and the matrices Bj are analytic in λ̃, all entries in the

matrixM(λ̃, ε) (5.48), and furthermore its determinant D(λ̃, ε), are analytic in λ̃. Note that the quantities Md
†,ε

and Md
j,λ̃
, j = †, � are nonzero and independent of λ̃, ε. Hence, provided δ, ε > 0 are sufficiently small, we have

|D(λ̃, ε)− λ̃Md
�,λ̃(λ̃Md

†,λ̃ + εMd
†,ε)| < |λ̃Md

�,λ̃(λ̃Md
†,λ̃ + εMd

†,ε)|.

for λ̃ ∈ ∂R1(δ) = {λ̃ ∈ C : |λ̃| = δ}, and by Rouché’s Theorem D(λ̃, ε) has precisely two roots λ̃0, λ̃1 in R1(δ)

which are O(|εlog ε|2)-close to the roots

λ̃ = 0, λ̃ = −
Md
†,ε

Md
†,λ̃
ε

39



of λ̃Md
�,λ̃(λ̃Md

†,λ̃ + εMd
†,ε). We deduce that (5.8) has two real eigenvalues in the region R1(δ) given by

λ̃0(`) = O(|εlog ε|2), λ̃c(`) = −
Md
†,ε

Md
†,λ̃
ε+O(|εlog ε|2),

and by implicitly differentiating the characteristic equation of (5.48), we furthermore obtain that the derivatives

of λ̃0(`) with respect to ` satisfy the same estimates. We note that the derivative Φ′d of the pulse solution is

an eigenfunction with eigenvalue 0 when ` = 0 due to translation invariance, hence λ0(0) = 0. Furthermore,

since (5.48) depends on ` only via the quantity `2, we obtain that λ̃′0(0) = 0.

5.6 The region (λ̃(`), `) ∈ R2(δ,M)× [−LM , LM ]

We now consider the final remaining region, λ̃(`) ∈ R2(δ,M) for |`| bounded. The fundamental idea is the same

as for the region R1(δ); using exponential dichotomies along the fast jumps and the slow manifolds, we attempt

to construct potential eigenfunctions. However, in this region it is possible to construct exponential dichotomies

along each of the intervals I`, I†, Ir, I�, and by comparing their projections at the endpoints of these intervals we

obtain estimates which preclude the existence of a nontrivial exponentially localized eigenfunction. We note that

the exponential dichotomies along Ir and I` are guaranteed by Proposition 5.2. The existence of exponential

dichotomies along I† and I� is due to the fact that the associated reduced problems along each of the fast jumps

admit no eigenvalues for λ̃(`) ∈ R2(δ,M).

To see this, proceeding in a similar fashion as in §5.5, we consider the following reduced problems along I† and

I� obtained for ε = 0 and λ̃ ∈ R2(δ,M).

ψξ = Aj,η(ξ; λ̃)ψ, Aj,η(ξ; λ̃) :=

 η 0 0

0 η 1

−(1− bvj(ξ))vj(ξ)2 m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

 , (5.49)

Here j = †, �, where again vj(ξ) denotes the v-component of φj(ξ), and u† = u∗(a), u� = a. As in §5.5, the lower

triangular structure allows us to restrict to a two-dimensional invariant subspace with dynamics

ψ′ = Cj,η(ξ; λ̃)ψ, Cj,η(ξ; λ̃) :=

(
η 1

m+ λ̃− (2− 3bvj(ξ))ujvj(ξ) η − c∗(a)

)
, j = †, �. (5.50)

We note that the front profiles v†(ξ) and v�(ξ) are solutions to the scalar equations

vt = vξξ + c∗(a)vξ −mv + (1− bv)ujv
2, j = †, �,

and critically, the linear system (5.50) is precisely the (weighted) eigenvalue problem one obtains by considering

their stability with eigenvalue parameter λ̃. Since the derivatives v′j(ξ), j = †, � define exponentially localized

eigenfunctions with no zeros when λ̃ = 0, Sturm-Liouville theory precludes the existence of eigenvalues in

R2(δ,M), provided δ is sufficiently small. Thus (5.50) admits exponential dichotomies, which can be extended

to the full system (5.49) using variation of constants formulae. Finally, these exponential dichotomies can be

extended to the stability problem (5.8) on the intervals I† and I� using roughness results.

Once exponential dichotomies are established along each of the intervals I`, I†, Ir, I�, it remains to compare their

projections at the endpoints of each interval. Using the estimates in Theorem 5.1 combined with repeated use

of a technical lemma [30, Lemma 6.10], it is possible to show that each pair of projections is sufficiently close at

each endpoint, and further that any exponentially localized solution to (5.8) must be trivial. This is summarized

in the following proposition.
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Proposition 5.6. Fix M > 0. There exists δ > 0 such that for each sufficiently small ε > 0 and each

λ̃ ∈ R2(δ,M), the eigenvalue problem (5.8) admits no nontrivial exponentially localized solutions.

The proof of Proposition 5.6 follows the argument as outlined above, and is similar to the proof of [6, Proposition

6.20]. For completeness, we include this in Appendix B.

5.7 Proof of Theorem 4.3

Proof of Theorem 4.3. This is a direct consequence of the analysis in §4.1, §5.2, §5.3, in combination with

Theorem 5.5 and Proposition 5.6. The fact that the translational eigenvalue λ̃0(0) = 0 is simple follows from a

similar argument as in [6, Proposition 6.14].

6 Defects and curved vegetation pattern solutions

In this section we consider (1.2) with a small diffusion term added to the water component.ut = D∆u+
1

ε
ux + a− u−G(u, v)v,

vt = ∆v −mv +R(v)G(u, v)v,
(6.1)

where D � 1. The reason for this is mainly technical, in order to draw on results concerning planar interface

propagation in parabolic equations. However, to accurately describe water movement on flat terrains a diffusion

term is necessary [54] – see also the upcoming discussion in §8.

The results of Theorems 2.8–2.11 and Theorems 4.2–4.4 concern the existence and stability of straight stripe,

gap, and front solutions; that is, the traveling patterns are constant in the direction transverse to the slope and

are essentially one-dimensional patterns. We reiterate that these patterns are, however, stable to perturbations

in two spatial dimensions.

We now consider the system (6.1) for which, by a perturbation argument, the results of Theorems 2.8–2.11,

and furthermore the results of Theorems 4.2–4.4, are expected to hold for sufficiently small D > 0. Within

this system, we are able to call on general results on the existence and stability of corner defects in planar

wave propagation [28, 27]. In essence, considering a straight vegetation stripe, gap, or front solution satisfying

certain hypotheses (see below), for nearby wave speeds there exist stripe solutions at slightly offset angles. Two

oppositely angled such stripes can meet at a corner defect, forming a “curved” stripe solution, which can be

oriented convex upslope (exterior corner) or downslope (interior corner). Further, some of these solutions can be

shown to be stable. In particular, we will argue using the results of [28, 27] that nearby vegetation stripe, gap,

or front solutions of (6.1), there exist stable interior corner defects, and in the case of certain front solutions,

there exist stable exterior corner defects.

Consider a traveling wave solution (u, v)(x, y, t) = (us, vs)(ξ) of (6.1) with speed c = cs, and ξ = x − ct. An

almost planar interface σ-close to (us, vs)(ξ) with speed c is a solution of the form

(u, v)(x, y, t) = (us, vs)(ξ + h(y)) + (ũ, ṽ)(ξ, y), (6.2)

where h ∈ C2(R) and

sup
y∈R
|h′(y)| < σ, sup

y∈R
‖(ũ, ṽ)(·, y)‖H1(R,R2) < σ, |c− cs| < σ (6.3)

This solution is a planar interface if h′′ = 0 and a corner defect if h′′ 6≡ 0, and h′(y)→ η± as y →∞. A corner

defect can be classified depending on the asymptotic orientations η± as an (i) interior corner (η+ < η−), (ii)

exterior corner (η− < η+), (iii) step (η+ = η− 6= 0), or (iv) hole (η+ = η− = 0).

41



Depending on the original traveling wave solution (us, vs)(ξ), it may be possible to determine which type(s) of

defects can arise. As stated above, a corner defect is essentially composed of slightly angled stripe solutions

meeting along an interface. An angled stripe solution can be written as a traveling wave

(u, v)(x, y, t) = (u, v)(ξ), ξ = x cosϕ+ y sinϕ− ct (6.4)

where the case ϕ = 0 corresponds to a solution which is constant in the direction transverse to the slope as

before. Substituting this ansatz into (6.1) results in the traveling wave ODE−cuξ = Duξξ +
cosϕ

ε
uξ + a− u−G(u, v)v,

−cvξ = vξξ −mv +R(v)G(u, v)v.
(6.5)

By setting ε̃ = ε/ cosϕ, we see that (6.5) is the same traveling wave equation one obtains in the case of ϕ = 0,

except with ε replaced by ε̃. For small values of ϕ, we have that

ε̃ = ε(1 +O(ϕ2)) (6.6)

and (6.5) can therefore be solved to find an angled traveling wave solution when

c = c(ϕ) = cs +O(εϕ2). (6.7)

The quantity c(ϕ) is called the nonlinear dispersion relation and relates the speed of propagation and angle of

the traveling wave solution. A related quantity

d(ϕ) :=
c(ϕ)

cos(ϕ)
(6.8)

called the directional dispersion, or flux, relates the angle to the speed of propagation in the direction of the

original traveling wave (us, vs), i.e. the x-direction. The flux near ϕ = 0 is said to be convex if d′′ > 0, concave

if d′′ < 0, and flat if d′′ ≡ 0 for small |ϕ|. In [27], the authors related the convexity of the flux to the type

of corner defect which is selected: in particular when d is convex, there exist interior corner defects for nearby

speeds c > cs, while for d concave there exist exterior corner defects for speeds c < cs.

In the case of (6.5), the directional dispersion is computed as

d(ϕ) := cs

(
1 +

ϕ2

2

)
+O

(
εϕ2, ϕ4

)
, (6.9)

from which we find that

d′′(ϕ) := cs +O
(
ε, ϕ2

)
, (6.10)

that is, to leading order the convexity is determined by the speed of propagation of the original traveling wave

(us, vs). In particular, for sufficiently small ε, the directional dispersion is convex for cs > 0 and concave for

cs < 0. Hence in the setting of Theorems 2.8, 2.9, or 2.10, one expects to see nearby interior corner solutions,

but not exterior corner solutions. That is, the resulting curved vegetation stripe, gap, or front is oriented convex

downslope. However, in the setting of Theorem 2.11, the convexity depends on the value of a/m as the speed

cs can be negative if a is large enough. In particular, one expects interior corner solutions if
a

m
<

9b

2
+

2

b
, but

exterior corners (oriented convex upslope) if
a

m
>

9b

2
+

2

b
.

7 Numerics

In this section we present numerical results related to Theorems 2.8–2.11 and Theorems 4.2–4.4 regarding the

existence and stability of front, stripe, and gap pattern solutions of (1.2) . In particular, we discuss the results

of numerical continuation of stripe and gap traveling wave solutions, and direct numerical simulation of planar

stripe, gap, and front solutions, as well as corner defect solutions as discussed in §6.
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7.1 Continuation of traveling stripes and gaps

Theorems 2.8–2.9 predict the existence of traveling stripe and gap solutions to (1.2) which solve the traveling

wave ODE (1.7). These solutions were constructed as perturbations of singular homoclinic orbits, organized by

the singular bifurcations diagrams in Figures 8a and 8b, corresponding to the cases of b < 2/3 and b > 2/3,

respectively. Figure 16 depicts the results of numerical continuation of speed c versus a for traveling stripes and

gaps, conducted in AUTO for the parameter values ε = 3 ·10−4, m = 0.5, and values of b = 0.6, 0.7 on either side

of the critical value b = 2/3. The continuation curves corresponding to vegetation stripe solutions are depicted

in green, while those corresponding to gap solutions are in purple, with the relevant singular bifurcation curves

depicted as dashed lines.

We note that the upper branches of the bifurcation curves for both stripes and gaps continue towards c = 0 and

eventually turn back onto lower branches which persist for a range of a values and small speeds c � 1. These

waves arise as perturbations of a family of fast planar homoclinic orbits, as discussed in Remark 2.4, and we

expect they are unstable (even to 1D perturbations) as traveling wave solutions of (1.2). Interestingly, the lower

branch of stripe solutions continues for increasing a, while the lower branch of gap solutions eventually turns

back near the canard value
a

m
= 4b+ 1/b due to interaction of the equilibrium p+(u2) with the fold point F .

Remark 7.1. We also remark that in the case of b < 2/3, depicted in the left panel of Figure 16, that the

upper branch of gap solutions also approaches the canard point. Here this branch transitions into a “double-gap”

solution, resembling two copies of the primary homoclinic orbit. This transition is similar to canard transi-

tions observed in systems such as the FitzHugh–Nagumo equation [10, 11, 26], albeit with a somewhat different

mechanism due to the presence of the additional equilibrium p0(a).

We also depict the results of continuation of both stripe and gap solutions for fixed values of rainfall a = 1.2

(stripes) and a = 2 (gaps), with m = 0.45, b = 0.5, and ε = 0.01. As discussed in §2.4.4, it is expected that

nearby the single traveling stripe or gap solutions are periodic wave train solutions corresponding to repeating

vegetation patterns which exist for a range of wave speeds, and that these patterns can similarly be constructed

by perturbing from singular periodic orbits in the traveling wave equation (1.7). We verify this prediction by

numerically continuing the stripe (and gap) solutions as periodic orbits for decreasing period, the results of which

are depicted in Figure 17. We observe that in general the wave speed c decreases as the period T decreases, as

do the total biomass B :=

∫ T

0

v dx and the maximum value of v over one period, denoted by vmax. Lastly the

results of continuation of periodic orbits in (a, k)-space for fixed wave speeds c = {0.15, 0.2, 0.25, 0.3, 0.35} are

depicted in Figure 18; here k denotes the wavenumber of the corresponding pattern.

These numerical results align with previous work on (similar) ecosystem models; similar trends are found in,

for instance, studies on the Klausmeier vegetation model [49], on extended Klausmeier models [51, 2, 3], on

the Klausmeier-Gray-Scott model [48] and the Rietkerk model [14]. Moreover, measurements on the speed of

migrating vegetation patterns, indeed, show vegetation patterns with higher wavelength move faster [15, 3].

Finally, recent in-situ measurement on the above ground biomass in the Horn of Africa corroborate displayed

trends in biomass [3].

7.2 Direct simulations

In this section we present direct numerical simulations of the various traveling wave solutions predicted by

Theorems 2.8–2.11. To that end, we have spatially discretized the PDE (1.2) with a uniformly spaced grid

in both x and y directions, which was integrated using a Runge–Kutta solver. In all simulations, the initial

conditions were constructed using the approximate expressions derived in the previous sections of this article.

First, we have tested the existence and 2D stability of straight (i.e. non-curved) patterns. The results for

b = 0.5 < 2/3 are given in Figure 19 and for b = 0.75 > 2/3 in Figure 20. In both cases, all solutions from
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Figure 16 – Shown are numerically computed bifurcation diagrams of vegetation stripes (green curves) and gaps

(purple curves) for the parameter values m = 0.5, ε = 0.0003, and b = 0.6 (left panel), b = 0.74 (right panel). The

solutions were obtained via parameter continuation in AUTO for the traveling wave equation (1.7). Also plotted in

dashed black are the curves c = c∗(a) and c = ĉ(a). The vertical dashed curve denotes the location of ā in each

panel.
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Figure 17 – Results of numerical continuation of periodic stripe (a-c) and gap (d-f) pattern solutions for decreasing

wavelength for the parameter values m = 0.45, b = 0.5, ε = 0.01 and a = 1.2 (stripes), a = 2 (gaps). Shown are plots

of speed c of the pattern vs. period T (left panels), biomass B :=

∫ T

0

v dx vs period T (middle panels), and vmax

versus the period T , where vmax denotes the maximum of v over one period (right panels).
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Figure 18 – Results of numerical continuation of periodic stripe/gap patterns for spatial wavenumber k versus a

for fixed b = 0.5,m = 0.45, ε = 0.01 and wave speeds c = {0.15, 0.2, 0.25, 0.3, 0.35}.

Theorems 2.8–2.11 could be obtained easily and were (2D) stable in our simulations (and in fact all seem to have

a quite large domain of attraction).

Moreover, we numerically inspected corner solutions as described in §6. Again, numerical simulations corroborate

theoretical predictions – see Figure 21. In fact, we were able to find corner-type solutions for each front or pulse

in Theorems 2.8–2.11. When the speed of the straight pattern is positive, i.e. cs > 0, it is possible to find curved

patterns which are oriented convex downslope (interior defect) and when cs < 0 the curved pattern is oriented

convex upslope (exterior defect); recall that upslope corresponds to the direction of increasing x. This matches

the prediction given by the directional dispersion, as outlined in §6.

8 Discussion

In this paper we constructed planar traveling stripes, gaps and front-type solutions to the modified Klausmeier

model (1.2). We proved their existence rigorously using geometric singular perturbation methods for a wide range

of system parameters a, b,m in the large advection limit ε → 0. We showed that vegetation stripes exist for

smaller a/m values, while vegetation gap patterns and front solutions can be found for larger values of a/m. For

the largest a/m values, stripes and gaps no longer persist, and we find only front-type solutions that correspond

to invading vegetation. Contrary to the typical pulse patterns constructed in similar dryland models [48, 2], the

stripes and gaps found in (1.2) are not thin, but have sizable widths – aligning better with observations of real

dryland ecosystems [55, 41, 16, 22].

Furthermore, we showed that all such solutions are 2D spectrally stable, using exponential dichotomies and Lin’s

method, based on similar stability analysis of traveling pulse solutions to the FitzHugh–Nagumo equations in [6].

We note that, to our knowledge, there are currently no direct results which guarantee nonlinear stability based

on spectral stability of traveling wave solutions to (1.2). Multidimensional nonlinear stability of traveling wave

solutions in reaction-diffusion systems, however, has been studied previously [33]. By adding a small diffusion

term, as in (6.1), we obtain a system which fits into the framework of planar interface propagation studied

in [27, 28]. We expect our results still hold for (6.1) using a perturbation argument, provided D � ε � 1.

Further, results relating spectral and nonlinear stability have been found to hold in mixed parabolic-hyperbolic

equations such as (1.2) for perturbations in one spatial dimension [45], and we expect that similar results may

hold in higher dimensions.

45



0.2

0.4

0.6

0.8

1

1.2

1.41000

200

400

600

800

t

x
0 100 200

(a) Stripe

0.2

0.4

0.6

0.8

1

1.2

1.4
1000

200

400

600

800

t

x
0 100 200

(b) Gap

20

40

60

80

100

0.4

0.8

1.2

1.6

x
0 100 200

t

(c) Vegetation front

40

80

120

160

200

0.2

0.4

0.6

0.8

1

t

x
0 100 200

(d) Desert front

1000

0

0.2

0.4

0.6

0.8

1

1.2

200

400

600

800

t

x
0 100 200

(e) Desert front

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

0.2

0.4

0.6

0.8

1

1.2

(f) Stripe

0.2

0.4

0.6

0.8

1

1.2

1.4

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

(g) Gap

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

(h) Vegetation front

0.2

0.4

0.6

0.8

1

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

(i) Desert front

0
10
20
30
40
50
60
70
80
90
100

y

0 50 100 150 200
x

0.2

0.4

0.6

0.8

1

1.2

(j) Desert front

Figure 19 – Results of direct numerical simulation of the PDE (1.2) for b = 0.5, m = 0.45, ε = 0.01 and a = 1.2

(a,f), a = 2.0 (b–d,g–i) or a = 3.0 (e,j). Figures a–e show the evolution of a cross section of v, i.e. for constant y

and figures f–j show the v(x, y) pattern at a specific time. Simulations are run on a finite grid of size Lx = 200,

Ly = 100, accompanied with Neumann boundary conditions for the y-direction and either periodic (a–b,f–g) or

Neumann (c–e,h–j) boundary conditions in the x-direction.
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Figure 20 – Results of direct numerical simulation of the PDE (1.2) for b = 0.75, m = 0.45, ε = 0.01 and a = 1.75

(a,f), a = 2.4 (b,g), a = 2.5 (c–d,h–i) or a = 3.0 (e,j). Figures a–e show the evolution of a cross section of v, i.e.

for constant y and figures f–j show the v(x, y) pattern at a specific time. Simulations are run on a finite grid of

size Lx = 200, Ly = 100, accompanied with Neumann boundary conditions for the y-direction and either periodic

(a–b,f–g) or Neumann (c–e,h–j) boundary conditions in the x-direction.
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Figure 21 – v(x, y) configuration of corner solutions in direct numerical simulations of the PDE (1.2) for m = 0.45,

ε = 0.01, b = 0.5 (a–e) or b = 0.75 (f–j) and various a-values. Simulations are done on a finite grid of various sizes,

accompanied with either periodic boundary conditions (a–b,f–g) or Neumann boundary conditions (c–e,h–j) in the

x-direction and the boundary conditions vy(x, Ly) − αvx(x, Ly) = 0 and vy(x, 0) + αvx(x, 0) = 0 in the y-direction

to accommodate corner solutions, with α = −1 (a–d,f,h–i), α = −0.5 (g) α = +1 (e,j)

As far as we are aware, ours is the first construction of 2D linearly stable traveling stripes in a reaction-diffusion-

advection model of vegetation pattern formation. Typically in this class of models, one finds that stripe solutions

are stable in 1D, but destabilize for some range of (small) wavenumbers in 2D [50, 48, 18, 38]. We attribute

this phenomenon to the stabilizing effect of the large advection term, as well as the destabilizing effect of water

diffusion. By ignoring the diffusion of water and allowing the advection to dominate, the lateral competition for

water resources is diminished, and 2D stability can essentially be reduced to 1D stability. This is reflected in

our stability analysis in which the critical part of the 2D spectrum is bounded to the left of the 1D spectrum:

In order to compute the 2D spectrum, a Fourier decomposition in the transverse variable y results in a family

of 1D eigenvalue problems parameterized by the transverse wavenumber `. These eigenvalue problems can then

be solved using the methods of [6], and we find that eigenvalues occurring for ` 6= 0 can be bounded to the

left of those occurring for ` = 0, corresponding to the 1D spectrum. In fact we find that the correspondence is

approximately λ→ λ− `2.

An important question is how and why the addition of water diffusion and reduction in the magnitude of the

advection term results in instabilities in the resulting patterns. This matches intuition, as water diffusion allows

for lateral competition for water resources, which – if sufficiently large – could manifest in lateral instabilities.

From the mathematical point of view, the onset of these instabilities is not well understood, though we note that

one indeed finds lateral instabilities, both numerically and analytically, in similar models where both advection

and diffusion are present [50, 48, 18, 38]. A natural direction for future research lies in understanding this

transition, and in particular the precise relation between the water diffusion and advection which determines

the boundary for stability. This is likely to be challenging, given that the singular geometries in the advection-

dominant case (as in this paper) versus the diffusion-dominant case are wholly distinct. The traveling wave

solutions constructed in this work are all based off of singular fast front-type jumps between one-dimensional

slow manifolds, much like one finds in the classic FitzHugh–Nagumo equation. However, typically in the diffusion-

dominant regime traveling stripe solutions are constructed as perturbations of fast homoclinic orbits which depart

and return to the same two-dimensional slow manifold in a four-dimensional singularly perturbed traveling wave

equation [48, 19]. Hence, even the existence of stripe solutions in an intermediate regime is far from clear, as
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one must understand how the transition between these two geometries occurs.

Also novel to our results are the implications for the appearance of curved solutions, even in the absence of

terrain curvature. These arise as corner defect solutions [27, 28], which resemble two angled planar traveling

wave solutions which meet along an interface. We find that the speed of the straight planar traveling wave

predicts whether the associated corner solutions are oriented convex upslope or downslope. In particular, since

all of the traveling stripe and gap solutions we constructed travel in the uphill direction, the corresponding

curved stripes and gaps are oriented convex downslope. The planar front solutions, however, can be oriented

either convex downslope or upslope depending on parameters. An interesting direction for future research

lies in determining the effect of alternative topographies, in particular topographies which can be viewed as

perturbations of constantly sloped terrain, which we expect can be studied using similar methods. A natural

question is whether such topographies can destabilize stripe patterns or affect the curvature of these patterns.

There are several numerical and observational results in this direction [22], but little is known analytically. A

first analytical step towards this can be found in [1], in which the impact of non-trivial topographies on 1D stripe

patterns is studied.

Finally, we remark on the implications of our results for Klausmeier’s original equation [35], which corresponds

to infinite carrying capacity, or setting b = 0 in (1.2). As discussed in §2.1 (see Remark 2.12), the limit b→ 0 is

highly singular, and our results no longer hold in this regime. Existence of traveling stripes in this case has been

obtained in [7] using geometric singular perturbation theory and blow-up methods to account for passage near a

nonhyperbolic slow manifold. Pulse solutions in that setting consist of portions of two slow manifolds, along with

a single fast jump. Stability, however, is not known; this is due to the fact that several rescalings and coordinate

transformations are required to recover a slow-fast structure in the corresponding traveling wave equation. The

result is that the associated reduced eigenvalue problem across the fast jump can no longer be interpreted in

terms of the simpler scalar problem for the corresponding front as in §5.6, which precludes the application of

Sturm-Liouville theory. However, we expect stability to continue to hold in this regime. In particular, the

existence of a single fast jump should result in one matching condition, and hence a single critical eigenvalue

λ = 0 due to translation invariance. This intuition supported by the fact that the second critical eigenvalue λ̃c

of Theorem 5.5 satisfies λ̃c → −∞, when naively taking the limit b→ 0 for fixed ε. Rigorous verification of the

stability of traveling stripes in the Klausmeier equation is the subject of ongoing work.
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A Stability of steady states

To understand the stability of steady states, (1.4) and(1.5), against homogeneous perturbations, we linearize (1.2)

around the steady states by setting (U, V )(x, t) = (U∗, V ∗) + eλt(Ū , V̄ ), where (U∗, V ∗) is the steady state

solution. For the desert-state (U0, V0) = (a, 0) this gives the linearized system

λ

(
Ū

V̄

)
=

(
−1 0

0 −m

)(
Ū

V̄

)
.

Thus the corresponding eigenvalues are λ = −1 < 0 and λ = −m < 0. Both eigenvalues are negative and thus

the desert-state (U0, V0) = (a, 0) is stable against homogeneous perturbations for all parameter values.
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Linearization around the other steady states (U1,2, V1,2) yields the eigenvalue problem

λ

(
Ū

V̄

)
= M

(
Ū

V̄

)
; M :=

(
−1− V 2

1,2 −2U1,2V1,2

(1− bV1,2)V 2
1,2 −m+ (2− 3bV1,2)U1,2V1,2

)
. (A.1)

The determinant of the matrix on the right-hand side can be computed as

detM =
−1 + 2bV1,2 + V 2

1,2

1− bV1,2
m.

From this, it can be found that the determinant is negative when V1,2 < −b +
√

1 + b2 and positive when

V1,2 > −b +
√

1 + b2. Using (1.5), one can readily obtain that V1 < −b +
√

1 + b2 and V2 > −b +
√

1 + b2.

Hence the uniform steady state (U1, V1) necessarily has a positive eigenvalue and therefore this steady state is

unstable. To determine the stability for (U2, V2) we need to determine the trace of the matrix M . Straightforward

computation using the expressions (1.5) yields:

Tr M = −1− V 2
2 +m

1− 2bV1,2

1− bV2
,

which we note is always negative if V2 >
1

2b
, corresponding to the condition

a

m
> 4b +

1

b
, and hence the state

(U2, V2) is stable to homogeneous perturbations in this regime.

B Absence of point spectrum in R2(δ,M)

In this section, we complete the proof of Proposition 5.6, and show that the region R2(δ,M) contains no eigen-

values λ̃ of (5.8).

Proof of Proposition 5.6. Following the argument outlined in §5.6, we note that eηξφ′j(ξ) is an exponentially

localized solution to (5.50) at λ̃ = 0, which admits no zeros. Therefore, by Sturm-Liouville theory [34, Theorem

2.3.3], (5.50) admits no bounded solutions for λ̃ ∈ R2(δ,M). Thus, for λ̃ ∈ R2(δ,M) (5.50) admits an exponential

dichotomy on R with constants C, µ > 0 independent of λ̃ ∈ R2(δ,M). Exploiting the lower triangular structure

of system (5.49) the exponential dichotomy of (5.50) can be extended to the system (5.49) using variation of

constants formulae. We denote the corresponding projections by Qu,s
j (ξ; λ̃) for j = †, �.

We now consider the eigenvalue problem (5.8) as a perturbation of (5.13). By Theorem 5.1, we have that

|Aη(ξ; λ̃, `, ε)−A†,η(ξ; λ̃)| = O(ε|log ε|), ξ ∈ [−Lε, Lε],
|Aη(Zε + ξ; λ̃, `, ε)−A�,η(ξ, λ̃)| = O(ε|log ε|), ξ ∈ [−Lε,∞).

(B.1)

Denote by P u,s
j,±(λ̃) the spectral projection onto the (un)stable eigenspace of the asymptotic matrices A±∞j,η (λ̃) =

lim
ξ→±∞

Aj,η(ξ; λ̃) of (5.13). We note that Aj,η(ξ; λ̃) converges at an exponential rate to the asymptotic matrix

A∞j,η(λ̃) as ξ →∞. Hence, the projections Qu,s
j (±ξ, λ̃) satisfy

‖Qu,s
j (±ξ, λ̃)− P u,s

j,±(λ̃)‖ ≤ Ce−µ̃ξ, j = †, �, (B.2)

for ξ ≥ 0 for some µ̃ > 0 (see for instance [40, Lemma 3.4]). Using (B.1) and roughness [12, Theorem 2], we

obtain exponential dichotomies for (5.8) on I† and I� with constants C, µ2 > 0 independent of λ̃ ∈ R2(δ,M) and

projections Qu,s
j (ξ; λ̃, ε), which satisfy

‖Qu,s
† (ξ; λ̃, ε)−Qu,s

† (ξ, λ̃)‖ ≤ Cε|log ε|,
‖Qu,s
� (Zε + ξ; λ̃, ε)−Qu,s

� (ξ, λ̃)‖ ≤ Cε|log ε|,
(B.3)
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for |ξ| ≤ Lε.
By Proposition 5.2 system (5.8) admits exponential dichotomies on I` = (−∞,−Lε] and Ir = [Lε, Zε −Lε] with

projections Qu,s
r,` (ξ; λ̃, ε), which satisfy∥∥∥[Qs

` − P](−Lε; λ̃, ε)
∥∥∥ ,∥∥∥[Qs

r − P](Lε; λ̃, ε)
∥∥∥ ,∥∥∥[Qs

r − P](Zε − Lε; λ̃, ε)
∥∥∥ ≤ Cε|log ε|, (B.4)

where P(ξ; λ̃, ε) denotes the spectral projection onto the stable eigenspace of Aη(ξ; λ̃, `, ε).

We now compare the exponential dichotomies for (5.8) constructed on each of the intervals I`, I†, Ir, I� at the

endpoints of the intervals. Recall that Aj,η(ξ; λ̃) converges at an exponential rate to the asymptotic matrix

A±∞j,η (λ̃) as ξ → ±∞ for j = †, �. Recalling (B.1), we have that

|Aη(±Lε; λ̃, `, ε)−A±∞†,η (λ̃)|, |Aη(Zε − Lε; λ̃, `, ε)−A−∞�,η (λ̃)| ≤ Cε|log ε|.

By continuity the same bound holds for the spectral projections associated with these matrices. Combining this

with (B.2)–(B.4) we obtain∥∥∥[Qu,s
` −Q

u,s
† ](−Lε; λ̃, ε)

∥∥∥ ,∥∥∥[Qu,s
r −Qu,s

† ](Lε; λ̃, ε)
∥∥∥ ,∥∥∥[Qu,s

r −Qu,s
� ](Zε − Lε; λ̃, ε)

∥∥∥ ≤ Cε|log ε|. (B.5)

Let ψ(ξ) be an exponentially localized solution to (5.8) at some λ̃ ∈ R2(δ,M). This impliesQs
`(−Lε; λ̃, ε)ψ(−Lε) =

0. By for instance [30, Lemma 6.10] or [6, Lemma 6.19], we have that

|Qs
r(Lε; λ̃, ε)ψ(Lε)| ≤ Cε|log ε||Qu

r (Lε; λ̃, ε)ψ(Lε)|, (B.6)

using (B.5). Again using [6, Lemma 6.19] and (B.5) to obtain a similar inequality at Zε − Lε, we obtain

|Qs
�(Zε − Lε; λ̃, ε)ψ(Zε − Lε)|| ≤ Cε|log ε||Qu

�(Zε − Lε; λ̃, ε)ψ(Zε − Lε)| = 0,

since we assumed ψ(ξ) is exponentially localized. Hence, any exponentially localized solution ψ(ξ) to (5.8) is the

trivial solution.
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