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Abstract

The Klausmeier equation is a widely studied reaction-diffusion-advection model of vegetation pattern

formation on gently sloped terrain in semiarid ecosystems. We consider the case of constantly sloped terrain

and study the formation of planar vegetation stripe patterns which align in the direction transverse to

the slope and travel uphill. These patterns arise as solutions to an underlying traveling wave equation,

which admits a separation of scales due to the fact that water flows downhill faster than the rate at which

vegetation diffuses. We rigorously construct solutions corresponding to single vegetation stripes as well

as long wavelength spatially periodic wave trains using geometric singular perturbation theory. Blow-up

desingularization methods are needed to understand slow passage of solutions near a degenerate transcritical

bifurcation. The underlying geometry of the traveling wave equation predicts relations between pattern

wavelength, speed, and terrain slope.

1 Introduction

Vegetation patterns are pervasive in water limited regions [17, 22, 31, 33, 34, 44, 45], and it has been observed

that on sloped terrain vegetation aligns in resilient striped patterns [1, 2, 8, 30, 42] due to an oriented flow of

water downslope. The formation of such patterns are frequently modeled by reaction-diffusion equations, where

an advective term accounts for downhill flow of water. One of the simplest and most commonly used models for

studying vegetation patterns on sloped terrain is the Klausmeier model [22], a two-component reaction-diffusion-

advection partial differential equation describing the evolution of water and plant biomass.

When suitably nondimensionalized, the model takes the form

Ut = A− U − UV 2 +
1

ε
Ux

Vt = ∆V −mV + UV 2,
(1.1)

where A,m > 0 and ∆ = ∂xx + ∂yy. The components U, V represent water and plant biomass, respectively. The

input parameter A represents rainfall, and the parameter m denotes the death rate of vegetation. The linear

term −U represents evaporation and the nonlinear term UV 2 represents water uptake by plants. This nonlinear

term also appears in the second equation, where it represents plant growth, that is the water consumption by

vegetation is converted into plant biomass at a constant rate. The two-dimensional terrain has constant slope,

oriented so that “uphill” corresponds to direction of increasing x. The parameter 0 < ε � 1 is taken small,

which ensures that the downhill advection term is large. This is not due to the steepness of the slope (such slopes

are typically gentle), but rather reflects the separation of scales between the downhill flow of water versus the

diffusion of plant biomass. The parameter values suggested by Klausmeier in [22] are A = 0.94− 2.81,m = 0.45

for grass and A = 0.077− 0.23,m = 0.045 for trees, with ε = 0.005.
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The equation (1.1) admits a spatially homogeneous steady state

(U, V )(x, y, t) = (U∗, V∗) = (A, 0), (1.2)

which corresponds to the bare desert state. In the case A > 2m, there also exist two other uniform steady states

(U±, V±) =

(
A±
√
A2 − 4m2

2
,
A∓
√
A2 − 4m2

2m

)
. (1.3)

Given the dominating appearance and resilience of striped patterns on hillsides with sufficiently steep slopes [1,

2, 8, 30, 42], we are interested in the (mathematical) formation of traveling vegetation stripe solutions. Such

solutions are given as profiles (U, V )(x, y, t) = (U, V )(x − St) which are constant in the direction transverse to

the slope (the y-direction), and traveling towards increasing x, corresponding to positive wave speed S > 0. As

is usual in the analysis of reaction-diffusion(-advection) equations, we first focus on the construction of localized

patterns or pulses, i.e. patches of vegetation localized in the direction of slope and bordered on each side by

the bare desert state (U∗, V∗). Figure 1 shows the U and V profiles of a localized stripe solution obtained by

direct numerical simulation in (1.1) for the parameter values A = 1.2,m = 0.45, ε = 0.005. Also shown is a

space-time plot of the location of the vegetation patch; note that the direction of motion is towards increasing

x, corresponding to the uphill direction.

The behavior of stripe solutions to (1.1) has been studied in previous works, notably a collection of arti-

cles [36, 37, 38, 39, 40], in which the author investigates pattern solutions of (1.1) in various parameter regimes.

However, results in the direction of far-from-onset or large amplitude patterns for the equation (1.1) are pri-

marily numerical or rely on formal leading order asymptotic analysis, and there is a notable lack of rigorous

mathematical existence analysis. From the analytical point of view, much is known regarding pulse solutions

in Gray–Scott type models [10, 11, 13, 20, 23, 24, 32], and in the so-called generalized Klausmeier–Gray–Scott

model [35, 41, 43] in the context of vegetation pattern formation. The latter was originally proposed in [43] as

a natural generalization of (1.1) in which the water component U also diffuses, typically at a faster rate than

that of the vegetation component. By stretching the classical methods originally introduced in [10, 11] to their

limits, stripe solutions were constructed for the Klausmeier–Gray–Scott model in [35] for parameter values up

to a certain maximal ratio between the advective and diffusive (water) transport effects. However, it was also

shown in [35] that these stripe solutions must be unstable (with respect to transverse instabilities). Nevertheless,

the simulations of [41] indicate that stripes may be stable beyond the region for which the methods of [35]

apply, i.e. in cases where the advective effects are so strong that the ratio between the advective and diffusive

effects passes beyond the (theoretical) upper bound of [35]. Note that the stabilizing effect of sloped terrain on

vegetation stripes is in line with observations of real vegetation patterns [8, 9]. From this point of view, the

equation (1.1) arises as a natural “advection-dominant” limit, in which the diffusion of water is ignored entirely

and the advection is assumed large, and serves as a first step in understanding the potentially stabilizing effect

of downhill advection of water.

We therefore focus on the equation (1.1) and aim to construct stripe solutions analytically. Motivated by

Klausmeier’s choice of parameters, we focus on the regime where the system parameters satisfy 0 < ε � 1

and 0 < A,m = O(1). In this regime, we construct traveling stripe solutions rigorously, using the methods

of geometric singular perturbation theory [14] and blow-up desingularization [27, 28, 29]. In particular, we are

able to construct (homoclinic) traveling pulse solutions, representing single vegetation stripes. Based on these

insights, we next consider the ecologically more relevant spatially periodic vegetation patterns, see Figure 2, and

establish the existence of a family of such traveling wavetrains. All of these solutions travel in the uphill direction.

While a stability analysis is outside the scope of this article, we do confirm that these solutions lie outside the

geometric framework of those which fall into in the 2D-unstable regime in Klausmeier–Gray–Scott-type models;

in particular, the unstable Klausmeier–Gray–Scott pulses of [35] center around a fast homoclinic orbit that drives

the transverse instability of the stripe, while the pulses constructed here are based on a fast heteroclinic jump.
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Figure 1: Shown are the U and V profiles (left and middle panels, respectively) of a traveling pulse solution

of (1.1) obtained by direct numerical simulation with A = 1.2,m = 0.45, and ε = 0.005. The right panel depicts

a spacetime plot of the V -profile; the pulse travels to the right, corresponding to the uphill direction.

Concerning the existence of pulses, we have the following.

Theorem 1.1. There exists a unique θ0 > 0 such that the following holds. Fix A,m > 0. Then for all sufficiently

small ε > 0, the Klausmeier equation (1.1) admits a traveling pulse solution (U, V )(x, y, t) = (U, V )(x−St) with

wave speed S =

(
A2θ20
ε

)1/3

+O(1).

The background of the crucial constant θ0 will be discussed in the upcoming description of the singular nature of

these orbits. Based on this result we establish the existence of (one-parameter families of) periodically repeating

vegetation stripe pattern solutions.

Theorem 1.2. Fix A,m > 0 and ∆ > 0 sufficiently small. For all sufficiently small ε > 0, the Klausmeier

equation (1.1) admits a family of traveling wave trains

(U, V )(x, y, t) = (U, V )(x− S(k, ε)t; k, ε), k ∈ (∆, A) (1.4)

with wave speeds S(k, ε) =

(
k2θ20
ε

)1/3

+O(1), with θ0 as in Theorem 1.1, and amplitudes

Umax(k, ε) := sup
ξ∈[0,T (k,ε)]

|U(ξ; k, ε)| = k + h(k, ε), (1.5)

where |h(k, ε)| → 0 as ε→ 0, and the periods T (k, ε)→∞ as ε→ 0 for each fixed k ∈ (∆, A). Furthermore, for

each sufficiently small fixed ε, the periods T (k, ε) satisfy T (k, ε) → ∞ as k → A, and the periodic orbits limit

onto the pulse solution from Theorem 1.1.

From Theorems 1.1–1.2, we immediately obtain relations between properties of the emergent pattern solutions.

First we note that the leading order expressions for the wave speeds in both theorems imply that the vegetation

patches move uphill, which is line with the (idealized) ecological mechanism which suggests that vegetation

travels in the direction of the source of water. While this agrees with many observations, static vegetation

stripe patterns have also been observed on slopes [4, 8]. Also, Theorems 1.1–1.2 predict that stripes travel

faster for larger values of the slope, which is in line with prior results [36]. Although this is confirmed by the

recent observations in [4], empirical data again paints a mixed picture [42], with some observations of negative

correlation between speed and slope [16]. We further note that Theorem 1.2 predicts that longer wavelengths

correspond to larger amplitudes (see Fig. 2), which is confirmed by observations [4, 8]. Moreover, it should be

remarked that the results of Theorems 1.1–1.2 concern ‘perfect’ spatially periodic patterns on terrains with a

‘perfect’ constant slope. It is shown in [3] (in the context of the generalized Klausmeier–Gray–Scott model) that

pulses may indeed move downhill, either due to a change in slope or to the presence of other – non-equidistant –
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Figure 2: Depicted are the U and V profiles (upper and lower panels, respectively) of three traveling wave train

solutions to (1.1) obtained via direct numerical simulations for values of A = 1.2,m = 0.45, and ε = 0.005. The

spatial domain length is fixed at L = 1000 with periodic boundary conditions. Note that longer wavelength

correlates with larger amplitude.

pulses. Nevertheless, there is a remarkable variability in relations between properties of empirical observations of

vegetation patterns, and a highly simplified model such as (1.1) may not be capable of capturing all ecologically

relevant behavior.

Our results on the existence of traveling wave solutions of (1.1) are established through the corresponding

traveling wave equation

0 =

(
1

ε
+ S

)
Uξ +A− U − UV 2

0 = Vξξ + SVξ −mV + UV 2,

(1.6)

obtained by substituting the ansatz (U, V )(x, y, t) = (U, V )(x − St) into (1.1), where we have denoted the

traveling wave variable by ξ = x− St. The existence analysis therefore reduces to understanding the dynamics

of the 3-dimensional ordinary differential equation (1.6), where we exploit the small parameter ε as a singular

perturbation parameter. The existence of singular pulse (Theorem 1.1) and spatially periodic (Theorem 1.2)

pattern solutions correspond directly to similar results obtained in [35, 41] in the context of the generalized

Klausmeier–Gray–Scott model, where the effect of water diffusion is included. In that case, the traveling wave

existence problem is 4-dimensional and the approach of [35, 41] runs along the lines of the literature on Gray–

Scott type models. However, we emphasize that this approach does not extend to the present original Klausmeier

equation (1.1) – see especially [35]. In each case the vegetation stripe patterns can be constructed as solutions

of an associated traveling wave ODE, though the underlying geometry of this ODE changes when the diffusion

of water is added. In particular, the construction of the pulse and/or periodic solutions in the Gray–Scott

variety of models is based on the family of integrable homoclinic orbits of the planar fast reduced V -subsystem

Vξξ−mV + ŪV 2 = 0 (cf. (1.6) with S = 0 and U ≡ Ū) that governs the excursion of the full homoclinic/periodic

orbit away from and back to a 2-dimensional slow manifold. The present case differs essentially from this setting:

the natural homoclinic orbit of the fast reduced V -subsystem does not play a role here (see also Remark 1.3).
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The traveling pulse and wavetrain solutions of Theorems 1.1 and 1.2 correspond to singular orbits that can be

seen as the (singular) compositions of 3 parts: a superslow part that follows a slow manifold that is not normally

hyperbolic, a slow part along a standard normally hyperbolic manifold and a fast jump along a planar heteroclinic

connection. Similarly to the construction of traveling pulses in FitzHugh–Nagumo-type equations [21], the fast

jump determines the speed, and thus the crucial constant θ0 that appears in both Theorems. However, unlike

these more classical models, the fast jump is described by a somewhat non-standard planar system,

Z ′′ +

(
θ − 1

θ
Z2

)
Z ′ + (1− Z)Z2 = 0. (1.7)

This system has 2 critical points: (Z,Z ′) = (0, 0) is degenerate and corresponds to the nonhyperbolic slow man-

ifold, while the saddle (Z,Z ′) = (1, 0) represents the normally hyperbolic manifold. Apart from the eigenvalue

λ = 0, (0, 0) also has a stable eigenvalue λ = −θ with an associated well-defined 1-dimensional strong stable

manifold W ss((0, 0)): θ0 is defined as the unique value of θ for which W ss((0, 0)) coincides (partly) with the

1-dimensional unstable manifold Wu((1, 0)) of the saddle (1, 0) – see section 2.2. The core of this paper is ded-

icated to the validation of this construction for ε > 0 (and sufficiently small). Very different from the classical

4-dimensional Gray–Scott type existence problems, a central role is played by the geometric blow-up techniques

as developed in [27, 28, 29]. Especially since the orbits we consider here must remain close to a nonhyperbolic

slow manifold for ‘long times’, the analytic construction is quite subtle.

The remainder of this paper is organized as follows. In §2, we study (1.6) as a slow/fast system in the context of

geometric singular perturbation theory, and we construct singular homoclinic and periodic orbits. The persistence

of these solutions for small ε > 0 and the proofs of Theorems 1.1 and 1.2 will be given in §3. We conclude with

results of numerical simulations and a brief discussion in §4.

Remark 1.3. It is possible to construct homoclinic and periodic solutions of (1.6) that do follow a fast reduced

limit homoclinic solution of Vξξ −mV + ŪV 2 = 0 in the fast field. However, the U -components of these patterns

necessarily must remain asymptotically close to U∗ = A, the U -component of the trivial desert state (1.2). As a

consequence, these patterns are both ecologically unrealistic and unstable as solutions of (1.1).

2 Slow-fast analysis

We rewrite the traveling wave equation (1.6) as a first order equation

Uξ =
ε

1 + εS

(
U −A+ UV 2

)
Vξ = Q

Qξ = mV − UV 2 − SQ.

(2.1)

The disparity between the amplitudes of the U and V -profiles in the results of numerical simulations (see Figures 1

and 2) motivates a rescaling of the variables. We perform the following rescaling

S =
s

ε1/3
, U = u, V =

v

sε2/3
, Q =

q

ε
, ξ = ε1/3s2τ, δ = sε2/3, (2.2)

which results in the rescaled traveling wave equation

u̇ =
1

1 + δ

(
uv2 + δ2(u−A)

)
v̇ = s3q

q̇ = δmv − uv2 − s3q,

(2.3)

where ˙ =
d

dτ
. Stripe patterns manifest as periodic orbits, or homoclinic orbits to the equilibrium (u, v, q) =

(A, 0, 0) representing the spatially homogeneous desert state solution (U∗, V∗) = (A, 0) of (1.1). The rescaled
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equation (2.3) has lost the slow-fast structure of the original equation (2.1). However, there is also a slow-fast

separation in (2.3), which can be seen by defining the new variable

w = (1 + δ)u+ v + q,

whereby (2.3) becomes

ẇ = δmv +
δ2

1 + δ
(w − v − q − a)

v̇ = s3q

q̇ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(2.4)

where we have set a = (1 + δ)A. We refer to the traveling wave equation (2.4) as the ‘fast’ system, and in the

new variables, we search for orbits homoclinic to the equilibrium (w, v, q) = (a, 0, 0).

The strategy for constructing the solutions outlined in Theorems 1.1 and 1.2 is to exploit the slow-fast separation

in the traveling wave equation (2.4) which arises due to the presence of the small parameter 0 < δ � 1. The

goal of this section is to construct singular orbits for δ = 0 which will persist for small δ > 0 as solutions of

the full traveling wave equation (2.4). These singular solutions will be composed of concatenated portions of

critical manifolds, which manifest as manifolds of equilibria of the system (2.4) when δ = 0, with fast jumps

along heteroclinic orbits in the associated layer problem. The critical manifolds and their associated reduced

flows are described in §2.1, followed by a description of the layer problem in §2.2. Finally in §2.3, we construct

singular δ = 0 homoclinic and periodic orbits which will serve as the basis for the stripe solutions of Theorems 1.1

and 1.2. The persistence of these solutions for small δ > 0 will be proved in §3.

Remark 2.1. We assumed that parameters A and m of (1.1) are of O(1) with respect to the small parameter

ε. Like in [35], in which traveling waves in the generalized Klausmeier–Gray–Scott model are studied, one could

perform a more general scaling analysis. The outcome of such an analysis is a system very much like (2.4), the

only essential difference is that the δ2 factor in the w-equation of (2.4) will be replaced by a factor δχ for some

(free) parameter χ > 0. For χ ≤ 1 this yields several other types of solutions. Such (ecologically relevant) orbits

are also considered in work in progress in the context of a modified version of (1.1) [2]; we refrain from going

into this issue here.

2.1 The critical manifolds M`/r
0

By setting δ = 0 in the fast system (2.4) we obtain the planar layer problem

v̇ = s3q

q̇ = −(w − v − q)v2 − s3q,
(2.5)

parameterized by w. There are two equilibria p1(w) and p2(w) given by (v, q) = (0, 0) and (v, q) = (w, 0),

respectively, which coincide for w = 0. The equilibrium p2(w) is a hyperbolic saddle for each w > 0, while p1(w) is

nonhyperbolic with one negative and one zero eigenvalue. Therefore, the set of equilibriaMr
0 = {p2(w) : w ∈ R}

forms a critical manifold which is normally hyperbolic for w > 0, while the set M`
0 = {p1(w) : w ∈ R} forms

a manifold of nonhyperbolic equilibria. These two manifolds intersect at the origin in a manner which can be

described as a degenerate transcritical bifurcation.

For wm, wM ∈ R with wm < wM , we will use the notation

M`
0(wm, wM ) = {p1(w) : w ∈ [wm, wM ]}

Mr
0(wm, wM ) = {p2(w) : w ∈ [wm, wM ]}

(2.6)
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Figure 3: Shown are dynamics on the critical manifolds M`/r
0 within the slow (left) and super slow (right)

reduced systems.

to refer to subsets of the critical manifolds M`/r
0 .

We now determine the reduced flow on each of the critical manifolds M`/r
0 . For Mr

0, we rescale σ = δτ in (2.4)

and obtain the slow system

wσ = mv +
δ

1 + δ
(w − v − q − a)

δvσ = s3q

δqσ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(2.7)

and upon setting δ = 0 we obtain the reduced problem

wσ = mv

0 = s3q

0 = −(w − v − q)v2 − s3q.
(2.8)

Here the flow is restricted to the union Mr
0 ∪M`

0, and within Mr
0, the dynamics are governed by the single

equation

wσ = mw, (2.9)

which admits an unstable equilibrium at w = 0. Within the reduced system (2.8), M`
0 consists of equilibria; see

Figure 3, left panel.

To determine the flow on M`
0, we note that M`

0 is an invariant set for all δ. Returning to the system (2.4), and

considering the flow on M`
0 on the ‘super slow’ timescale ζ = δ2τ , we obtain the reduced equation

wζ = w − a, (2.10)

which admits a single repelling equilibrium at w = a; see Figure 3, right panel.
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2.2 Layer problem: singular fronts

In this section, we study fast connections between the manifolds M`/r
0 . We recall that for each w, the layer

equation (2.5) admits two equilibria p1(w), p2(w), which coincide for w = 0. The critical manifoldMr
0 = {p2(w) :

w ∈ R} is normally hyperbolic for w > 0, while M`
0 = {p1(w) : w ∈ R} forms a manifold of nonhyperbolic

equilibria. The manifolds formed by the union of the stable/unstable manifolds of the equilibria p2(w) for w > 0

form two dimensional (un)stable manifolds Ws(Mr
0),Wu(Mr

0) of the normally hyperbolic critical manifoldMr
0.

Within the layer problem (2.5), the equilibrium p1(w) has a unique strong stable manifold Wss(p1(w)), and we

are interested in heteroclinic orbits between p2(w) and p1(w) which approach p1(w) along Wss(p1(w)). We note

that the equilibrium (a, 0, 0) of the full system (2.4), which corresponds to the spatially homogeneous desert

state solution, coincides with p1(a). We have the following (see Figure 4).

Proposition 2.2. Consider (2.5) for w > 0. There exists a unique s = s∗(w) > 0 such that there is a heteroclinic

orbit from p2(w) to p1(w), which we denote by φf(w), which approaches p1(w) along the strong stable manifold

Wss(p1(w)).

Proof. We begin by proving that there is some value of s = s∗(w) for which the orbit φf(w) exists. We consider

the planar system (2.5) for fixed w > 0

v̇ = s3q

q̇ = −(w − v − q)v2 − s3q.
(2.11)

We track the behavior of Wss(p1(w)) under the backwards flow of (2.11) as s varies. The linearization of (2.11)

about p1(w) has eigenvalues 0,−s3 with corresponding eigenvectors (1, 0) and (1,−1) respectively. In particular,

this means that the manifold Wss(p1(w)) approaches p1(w) asymptotically along the line q = −v. We are

concerned with the branch of Wss(p1(w)) which approaches p1(w) via the region q < 0 < v.

We note that along the curve v + q = 0, we have v̇ + q̇ < 0 when v > 0. Further, along the line v = w,

we have v̇ < 0 when v > 0. Finally, along the curve q = 0 we have v̇ = 0 and q̇ < 0 for 0 < v < w. In

particular, this means that in backwards time,Wss(p1(w)) enters the triangular region T bounded by the curves

q = −v, v = w, and q = 0 and has one of three possible fates: Wss(p1(w)) can exit this region via the boundaries

B1 = {q = 0, v < w} or B2 = {v = w, q < 0} or must converge to the equilibrium p2(w) = (w, 0).

We further note that the line v+ q = w is invariant under the flow of (2.11). In particular, if Wss(p1(w)) enters

the region q > 0 via the boundary B1 in backwards time, thenWss(p1(w)) is confined to the region 0 < q < w−v
for all (backward) time. Similarly, if Wss(p1(w)) enters the region v > w via the boundary B2 in backwards

time, thenWss(p1(w)) is confined to the region 0 < q < w−v for all (backward) time. That is, onceWss(p1(w))

leaves T via either of these boundaries in backwards time, Wss(p1(w)) never returns to T .

We proceed via a continuity argument for each w > 0. We show that for small values of the speed s, Wss(p1(w))

leaves T via B1 in backwards time, while for large values of s, Wss(p1(w)) leaves T via B2, which implies the

existence of a speed s = s∗(w) for which Wss(p1(w)) must connect to the equilibrium p2(w).
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Within T , we note that

dq

dv
= − (w − v − q)v2

s3q
− 1 (2.12)

and since w − v − q > −q in T , we have

dq

dv
>
v2

s3
− 1 (2.13)

from which we deduce that Wss(p1(w)) lies above the curve q =
v3

3s3
− v within T . By taking s3 < w2/3, we

ensure that Wss(p1(w)) must exit T via B1.

On the other hand, whenever q < −2wv2/s3 and s3 > 2w2, within T we have that

(w − q)v2
−s3q < 1 (2.14)

and thus

dq

dv
<

v3

s3q
(2.15)

We deduce thatWss(p1(w)) lies below the curve q = −v2/
√

2s3 within T whenever q < −2wv2/s3. In particular,

this means that in backwards time Wss(p1(w)) must exit T via the boundary B2 whenever s3 > 8w2.

Therefore, there exists a heteroclinic connection between the equilibria p2(w) and p1(w) which approaches p1(w)

along Wss(p1(w)) for some value s = s∗(w) which satisfies w2/3 < s∗(w)3 < 8w2.

Finally, we consider the uniqueness of s∗(w). We consider (2.11) and compute the distance between Wu(p2(w))

and Wss(p1(w)) to first order in s− s∗(w). We consider the adjoint equation of the linearization of (2.11) about

the front φf given by

ψ̇ =

 0 −(3vf(τ)2 − 2wvf(τ) + 2vf(τ)qf(τ))

−s∗(w)3 s∗(w)3 − vf(τ)2

ψ. (2.16)

The space of solutions which grow as τ →∞ at most algebraically is one-dimensional and spanned by

ψf(τ) := es
∗(w)3τ−

∫ τ
0
vf (ζ)

2dζ

(
−q′f(τ)

v′f(τ)

)
(2.17)

Let F0 denote the right hand side of (2.11). Then the Melnikov integral

Ms =

∫ ∞
−∞

DsF0(φf(τ)) · ψf(τ)dτ

= 3s∗(w)2
∫ ∞
−∞

es
∗(w)3τ−

∫ τ
0
vf (ζ)

2dζ(w − vf(τ)− qf(τ))vf(τ)2qf(τ)dτ

< 0.

measures the splitting of Wu(p2(w)) and Wss(p1(w)) along φf to first order in s − s∗(w). In particular, this

guarantees the local uniqueness of the heteroclinic connection φf(w). As the sign of the Melnikov coefficient is

fixed independent of s∗(w), this also guarantees the uniqueness of the heteroclinic orbit over all values of s.

Remark 2.3. We note that there can be additional heteroclinic connections between the equilibria p1(w), p2(w)

which approach p1(w) along a weak center direction for other values of s. However, we will see in §3 that in the

full system for δ > 0, any such orbits are blocked from approaching the manifold M`
0 and are not relevant in the

construction of traveling pulses and wavetrains.
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From the Melnikov analysis in the proof of Proposition 2.2, we immediately obtain the following.

Corollary 2.4. For each w > 0, the intersection of the manifolds Wu(Mr
0) and Wss(p1(w)) along the singular

front φf(w) is transverse in s, and the splitting function

D0(s;w) = Ms(w)(s− s∗(w)) +O(|s− s∗(w)|2) (2.18)

measures the distance between Wu(Mr
0) and Wss(p1(w)) for s ≈ s∗(w).

We now introduce Z, Q, η and θ by the rescalings

v = wZ, q = wQ, τ =
η

w2θ
, s = w2/3θ2/3, (2.19)

which results in

dZ

dη
= θQ

dQ

dη
=

1

θ

[
−(1− Z −Q)Z2 − θ2Q

]
,

(2.20)

which coincides with planar system (1.7). Moreover, by construction, s∗(w) as introduced in Proposition 2.2

corresponds to θ0 as defined in Theorems 1.1 and 1.2 through s∗(w) = w2/3θ
2/3
0 so that indeed (by Proposition

2.2) θ0 is the value of θ for which a connection between W ss((0, 0)) and Wu((1, 0)) exists in (1.7) or equivalently

(2.20).

Remark 2.5. By the above analysis, we have that
1

3

√
3 < θ0 < 2

√
2. Numerically, we can approximate the value

of θ0, and we determine that critical speed s = s∗(w) for which the front φf exists is given by s∗(w) = w2/3θ
2/3
0

where θ0 ≈ 0.8615.

2.3 Singular traveling wave solutions

From the analysis of the reduced/layer problems in §2.1–2.2, we are able to define singular homoclinic orbits and

periodic orbits for the system (2.4).

We first construct a singular homoclinic orbit, or traveling pulse solution as follows. There is a singular trajectory

which firsts departs the equilibrium p1(a) along the critical manifold M`
0 in the super slow timescale, and upon

reaching w = 0, then transitions toMr
0 in the slow timescale. By concatenating this trajectory with the singular

front φf(a), we obtain a singular homoclinic orbit

H0 =M`
0(0, a) ∪Mr

0(0, a) ∪ φf(a) (2.21)

to the equilibrium p1(a); see Figure 5.

For periodic orbits, the construction is similar. For each value of k ∈ (∆, a), there exists a singular periodic orbit

P0(k) =M`
0(0, k) ∪Mr

0(0, k) ∪ φf(k) (2.22)

obtained by first following the portion of the critical M`
0 in the region w ∈ [0, k], then following the critical

manifold Mr
0 in the slow timescale from w = 0 to the plane w = k, and finally returning to M`

0 along the

singular front φf(k) which exists for s = s∗(k).

3 Persistence of solutions for 0 < δ � 1

In this section, we construct solutions for sufficiently small δ > 0 based on the singular solutions described

in §2.3, and complete the proofs of the main existence Theorems 1.1 and 1.2. Much of the analysis involved is

10
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Figure 5: Shown is the geometry of the singular pulse solution H0.

related to studying the flow in neighborhoods of the critical manifoldsM`/r
0 for small δ > 0. In §3.1, we analyze

the flow near M`
0 and in particular study the behavior of the unstable manifold Wu(p1(a)) of the equilibrium

p1(a). The flow near M`
0 is analyzed in §3.2, followed by the proofs of Theorems 1.1 and 1.2, which are given

in §3.3 and §3.4, respectively.

3.1 The flow near M`
0 for 0 < δ � 1

The flow near M`
0 requires care as this manifold is not normally hyperbolic, so standard methods of geometric

singular perturbation theory do not apply. The equilibria p1(w) which compriseM`
0 are nonhyperbolic with one

center direction and one strong stable direction. We therefore begin by constructing a two-dimensional normally

attracting center manifold Wc
0 which contains M`

0.

We consider a compact segment of M`
0 which contains the equilibria p1(w) for −ρ ≤ w ≤ a + ρ, that is, a

connected segment of M`
0 which includes both the origin and the equilibrium p1(a) of the full system (2.4). We

consider the linearization of (2.5) about p1(w), which has eigenvalues λ01 = 0 and λ−1 = −s3 and associated

eigenvectors

e01 =

(
1

0

)
, e−1 =

(
1

−1

)
(3.1)

Therefore, for δ = 0, these equilibria all have one center direction and one stable direction which depend

smoothly on w. Therefore, by the center manifold theorem, in a neighborhood of each equilibrium p1(w), there

exists a center manifold which depends Ck-smoothly on w, which can be represented as a graph over the center

eigenspace. The union of all these center manifolds for −ρ ≤ w ≤ a+ ρ forms a Ck-smooth normally attracting

invariant manifold Wc
0 which contains M`

0.

This manifold therefore persists as a two-dimensional locally invariant Ck-smooth normally attracting manifold

Wc
δ for 0 < δ � 1. We now determine the flow on Wc

δ . We begin by straightening the center/stable eigenspaces

11



by defining the variable z = v + q, whence (2.4) becomes

ẇ = δm(z − q) +
δ2

1 + δ
(w − z − a)

ż = δm(z − q)− 1

1 + δ
(w − z)(z − q)2

q̇ = δm(z − q)− 1

1 + δ
(w − z)(z − q)2 − s3q,

(3.2)

The center manifold Wc
δ is given as a graph q = f(w, z, δ). Since Wc

δ contains the invariant set {z = q = 0}, we

have that f(w, z, δ) = O(δz, z2). Defining q̃ = q − f(w, z, δ), we obtain

ẇ = δm(z − q̃ − f(w, z, δ)) +
δ2

1 + δ
(w − z − a)

ż = δm(z − q̃ − f(w, z, δ))− 1

1 + δ
(w − z) (z − q̃ − f(w, z, δ))

2

˙̃q =
(
−s3 + h(w, z, q̃, δ)

)
q̃,

(3.3)

where h(w, z, q̃, δ) = O(z, q̃, δ), whence the flow on Wc
δ is determined by q̃ = 0. By performing a final coordinate

change to straighten out the strong stable fibers, we obtain

ẇ = δm(z − f(w, z, δ)) +
δ2

1 + δ
(w − z − a)

ż = δm(z − f(w, z, δ))− 1

1 + δ
(w − z) (z − f(w, z, δ))

2

˙̃q =
(
−s3 + h̃(w, z, q̃, δ)

)
q̃,

(3.4)

by a slight abuse of notation again denoted in terms of (w, z, q̃) and where again h̃(w, z, q̃, δ) = O(z, q̃, δ). Hence

we have decomposed the flow into the two-dimensional dynamics of basepoints onWc
δ and the flow along the one-

dimensional strong stable fibers. We now focus on the flow of basepoints on the center manifold Wc
δ , determined

by

ẇ = δmz(1 +O(δ, z)) +
δ2

1 + δ
(w − z − a)

ż = δmz (1 +O(δ, z))− 1

1 + δ
(w − z)z2 (1 +O(δ, z))

(3.5)

We break the analysis into four regions R1−R4, which require different scalings. The first region R1 determines

the flow near M`
0 for z = O(δ). The regions R2, R3 concern the transition from z = O(δ) to (w, z) = O(δ1/2),

and the final region R4 determines how the dynamics for (w, z) = O(δ1/2) match up with the normally hyperbolic

manifold Mr
δ in the region (w, z) = O(1) .

3.1.1 The region R1

We begin with the region z = O(δ), which will allow us to determine the local stable/unstable manifolds of the

equilibrium p1(a) for δ > 0. We rescale z = δz1, whence we obtain

ẇ = δ2mz1(1 +O(δ)) +
δ2

1 + δ
(w − δz1 − a)

ż1 = δmz1 (1 +O(δ))− δ

1 + δ
(w − δz1)z21 (1 +O(δ))

(3.6)

On the slow timescale, we obtain

w′ = δmz1(1 +O(δ)) +
δ

1 + δ
(w − δz1 − a)

z′1 = mz1 (1 +O(δ))− 1

1 + δ
(w − δz1)z21 (1 +O(δ))

(3.7)
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which gives a new slow-fast system with respect to the ‘superslow’ time t1 = δσ = δ2τ . Setting δ = 0 in (3.7)

gives the layer problem

w′ = 0

z′1 = mz1 − wz21
(3.8)

which has two hyperbolic equilibria q1(w), q2(w) given by z = 0 and z =
m

w
, respectively, for each w > 0.

The equilibrium q1(w) is repelling while q2(w) is attracting. Therefore, away from w = 0, there exist normally

hyperbolic critical manifolds C10 and C20 formed by the sets of equilibria {q1(w) : w ∈ R} and {q2(w) : w ≥ ρ},
respectively.

With respect to the superslow time t1, we obtain the reduced systems on each of the critical manifolds C10 and

C20 . On C10 , the reduced flow is given by

dw

dt1
= w − a (3.9)

while on C20 , the reduced flow is

dw

dt1
=
m2

w
+ w − a. (3.10)

We see that for a < 2m, there are no equilibria on C20 , with a saddle-node bifurcation occurring when a = 2m,

resulting in two equilibria given by

w± =
a±
√
a2 − 4m2

2
(3.11)

when a > 2m. The equilibrium at w = w− is attracting while that at w = w+ is repelling.

The manifolds C10 and C20 perturb to one-dimensional locally invariant manifolds C1δ and C2δ , on which the slow

flow is an O(δ) perturbation of the respective reduced flows (3.9) and (3.9). See Figure 6 for a schematic in each

of the cases a > 2m and a < 2m.

Furthermore the unstable manifoldWu(C10) of C10 and the stable manifoldWs(C20) of C20 persist as two-dimensional

locally invariant manifolds Wu(C1δ ) and Ws(C2δ ). The equilibrium p1(a) of the full system (2.4) lies on C1δ on

which it is locally repelling withinWc
δ . In particular we now determine that for 0 < δ � 1, the equilibrium p1(a)

becomes hyperbolic with two-dimensional unstable manifold Wu(p1(a)) = Wu(C1δ ) and one-dimensional stable

manifold given by the strong stable fiber Wss(p1(a)) of Wc
δ with basepoint at p1(a).

Additionally, for the case of a > 2m, the equilibria w = w± of the reduced system (3.10) persist as equilibria p±
of the full system for 0 < δ � 1 and we immediately obtain the following.

Proposition 3.1. Fix a,m > 0 satisfying a > 2m. Then for all sufficiently small δ > 0, there exists a unique

front solution φ+ between the equilibria p1(a) and p+, and unique front solution φ− between the equilibria p1(a)

and p− which approaches p− along its strong stable manifold.

Proof. The result follows from geometric singular perturbation theory applied to the planar system (3.7).

Remark 3.2. The equilibria p± correspond to the spatially homogeneous vegetated steady states (U±, V±) of (1.1)

defined in (1.3). Each of the front solutions φ± therefore describe the invasion of the barren desert state into a

uniformly vegetated state.

We now focus on tracking the unstable manifold Wu(p1(a)) through the region w ≈ 0. In particular, for |w|
bounded, all points which lie in a small neighborhood of C1δ lie on Wu(p1(a)). For z1 > 0, we see from (3.6) that

z′1 > 0; hence we may integrate forward and see that Wu(p1(a)) extends to z1 = 1/µ for µ > 0 independent of

δ, provided δ is sufficiently small.

To summarize, we may therefore define the section Σout
1 = {(w, z1, δ) : |w| ≤ δ1/2/µ, z1 = 1/µ, 0 ≤ δ ≤ κ2µ2} for

κ sufficiently small, which thus consists entirely of points which lie on Wu(p1(a)).
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Figure 6: Shown are the dynamics of (3.7) in the region R1 for 0 < δ � 1 in the cases a < 2m (left panel) and

a > 2m (right panel). In the latter case, additional equilibria p± persist on the slow manifold C2δ and there exist

fronts φ± which connect p1(a) to each of p±, with φ− approaching p− along a strong stable manifold. In each

case, we have that Σout
1 ⊂ Wu(p1(a)).
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3.1.2 The regions R2 and R3

The region R3 concerns the passage near w, z = O(δ1/2). We therefore perform the rescaling w = δ3w3, z =

δ3z3, δ = δ23 , which results in the system

ẇ3 = δ23mz3(1 +O(δ23 , δ3z3)) +
δ33

1 + δ23
(δ3w3 − δ3z3 − a)

ż3 = δ23mz3
(
1 +O(δ23 , δ3z3)

)
− δ23

1 + δ23
(w3 − z3)z23

(
1 +O(δ23 , δ3z3)

) (3.12)

which on the slow timescale σ = δτ = δ23τ results in

w′3 = mz3 +O(δ3)

z′3 = mz3 + z33 − w3z
2
3 +O(δ23z3, δ3z

2
3).

(3.13)

The region R2 concerns the transition from R1, where z = O(δ), to R3 where z = O(δ1/2). We thus perform the

secondary projective rescaling

δ3 = z3δ2 (3.14)

which is valid in the region z3 > 0, which results in the system

w′3 = mz3(1 +O(δ2))

z′3 = mz3 + z33 − w3z
2
3 +O(δ22z

3
3 , δ2z

3
3)

δ′2 = −mδ2(1 +O(δ2, z3))

(3.15)

In the region D2 = {(w3, z3, δ2) : |w3| ≤ 3, 0 ≤ z3 ≤ ρ, 0 ≤ δ2 ≤ µ}, solutions are confined to curves which satisfy

dw3

dz3
=

1 +O(δ2)

1 +O(z23 , w3z3, δ2z23)

= 1 +O(δ2, z3),

(3.16)

We define the entry/exit sections

Σin
2 = D2 ∩ {|w| ≤ 2, δ2 = µ}, Σout

2 = D2 ∩ {|w| ≤ 1, z3 = κ}. (3.17)

Due to (3.16), a solution which enters D via Σin
2 at a point (w3, z3, δ2) = (w3,0, z3,0, µ2) remains on a curve which

satisfies

w3 = w3,0 + z3(1 +O(µ, κ)), (3.18)

throughout its passage through D2, and hence must exit D2 via the set {z3 = κ}. This solution therefore exits

D2 at a point (w3, z3, δ2) = (w3,1, ρ, δ2,1) where w3,1 = w3,0 + O(κ); that is, the w3 coordinate of any solution

entering D2 via Σin
2 changes by no more than O(κ) before exiting via the set {z3 = κ}. In particular, this means

that the section Σin
2 = D2 ∩ {|w| ≤ 2, δ2 = µ} is mapped onto the section Σout

2 = D2 ∩ {|w| ≤ 1, z3 = κ}.
We now focus on the passage through R3. Recalling the relation δ3 = z3δ2, in the R3 coordinates, the section

Σout
2 is given by

Σout
2 = Σin

3 = {(w3, z3, δ3) : |w| ≤ 1, z3 = κ, 0 ≤ δ3 ≤ κµ}. (3.19)

We consider the flow in R3 for δ3 = 0, given by

w′3 = mz3

z′3 = mz3 + z33 − w3z
2
3 .

(3.20)
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Figure 7: Shown are the dynamics of (3.25) in the region R4.

and by defining the new variable x3 = z3 − w3, we obtain the system

x′3 = z23x3

z′3 = mz3 + z23x3.
(3.21)

which leaves the subspace x3 = 0 invariant with flow given by z′3 = mz3. The time spent between z3 = κ and

z3 = 1/µ for fixed µ, κ > 0 is finite. We fix γ > 0 sufficiently small, then for all ρ > 0 small enough, by a regular

perturbation we can ensure that under the flow of (3.13), the section Σin
3 is mapped onto the section

Σout
3 = {(w3, z3, δ3) : |z3 − w3| ≤ γ,w3 = 1/µ, 0 ≤ δ3 ≤ ρµ}. (3.22)

3.1.3 The region R4: blow-up rescaling near Mr
δ

We now study how solutions on the center manifold Wc
δ behave near the critical manifold Mr

0. We perform the

projective rescaling

z = wz4, δ = w2δ4, (3.23)

which is valid in the region w > 0. This results in the system

ẇ = mw3δ4(z4 +O(w))

ż4 =
1

1 + δ4w
w2z24(z4 − 1) +O(δ4w

2, w3)

δ̇4 = −2mw2δ24(z4 +O(w)),

(3.24)

which we desingularize by a rescaling of time dt4 = w2dτ and obtain

dw

dt4
= mwδ4(z4 +O(w))

dz4
dt4

= z24(z4 − 1) +O(δ4, w)

dδ4
dt4

= −2mδ24(z4 +O(w)),

(3.25)
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The line L4 = {δ4 = w = 0} is invariant with dynamics

dz4
dt4

= z24(z4 − 1) (3.26)

and thus contains two equilibria, at z4 = 0 and z4 = 1, which we refer to as q0, q1, respectively (see Figure 7).

The equilibrium q1 at z4 = 1 is hyperbolic repelling with respect to the reduced flow on L4 with eigenvalue

λ4 = 1. The linearization of the full equation (3.25) additionally admits a double zero eigenvalue. The plane

{δ4 = 0} is also invariant with dynamics

dw

dt4
= 0

dz4
dt4

= z24(z4 − 1) +O(w)

(3.27)

This system has a normally hyperbolic curve of equilibria M4,0 = {z4 = 1 +O(w)} which emanates from q1 and

exactly corresponds to the critical manifold Mr
0 in the original coordinates. In the invariant plane w = 0, the

dynamics are given by

dz4
dt4

= z24(z4 − 1) +O(δ4)

dδ4
dt4

= −2mδ24z4,

(3.28)

Here we still have the equilibrium q1 which has a zero eigenvalue due to the second equation, and hence there

exists a one-dimensional center manifold N4 at q1 along which δ4 decreases. Note that the branch of N4 in the

half space δ4 > 0 is unique.

For any sufficiently small β, ρ, µ > 0, we restrict attention to the set

D4 = {(w, z4, δ4) : 0 ≤ w ≤ ρ, |z4 − 1| ≤ β, 0 ≤ δ4 ≤ µ2}. (3.29)

The next result follows from standard center manifold theory.

Proposition 3.3. For all sufficiently small β, ρ, µ > 0, the following holds for the dynamics of (3.25) within

D4. There exists a repelling center manifold M4 at q1 which contains the line of equilibria M4,0 and the center

manifold N4. In D4, M4 is given as a graph z4 = h4(w, δ4) = −1 + O(w, δ4). Furthermore, there exists an

unstable invariant foliation Fs with base M4 and one-dimensional fibers.

We define the following sections

Σin
4 = D4 ∩ {δ4 = µ2}, Σout

4 = D4 ∩ {w = ρ} (3.30)

We note that in the R4 coordinates, the section Σout
3 is given by

Σout
3 = {(w, z4, δ4) : 0 ≤ w ≤ ρ, |z4 − 1| ≤ γµ, δ4 = µ2} ⊆ Σin

4 (3.31)

By setting β = γµ, we have that the flow of (3.25) maps Σin
4 onto Σout

4 , from which we deduce that Σout
4 consists

entirely of points on Wu(p1(a)).

Transforming to the original (w, z, δ) coordinates, we sum up the results of this section in the following.

Proposition 3.4. For each sufficiently small ρ > 0, there exists β > 0 such that the following holds. For all

sufficiently small δ > 0, within the center manifoldWc
δ , the set Σout := {(w, z) : w = ρ, |z−w| ≤ βρ} is contained

in Wu(p1(a)).
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3.2 The flow near Mr
0 for 0 < δ � 1

We now determine the reduced flow on the normally hyperbolic critical manifoldMr
0. We rescale time by σ = δτ

and obtain the slow system

w′ = mv +
δ

1 + δ
(w − v − q − a)

δv′ = s3q

δq′ = δmv − 1

1 + δ
(w − v − q)v2 − s3q,

(3.32)

where ′ =
d

dσ
, whence for δ = 0 we determine the reduced flow restricted to Mr

0 as

w′ = mw. (3.33)

As the manifoldMr
0 is normally hyperbolic for w > 0, using standard results of geometric singular perturbation

theory, for 0 < δ � 1, Mr
0 perturbs to a one-dimensional locally invariant manifold Mr

δ which is C1-O(δ)-close

to Mr
0, on which the flow is an O(δ) perturbation of the reduced flow (2.8). Furthermore, in a neighborhood of

Mr
0, the stable/unstable manifolds Ws(Mr

0),Wu(Mr
0) perturb to two-dimensional locally invariant manifolds

Ws(Mr
δ),Wu(Mr

δ) which are C1-O(δ)-close to Ws(Mr
0),Wu(Mr

0).

We now determine how the slow manifold Mr
δ approaches Wc

δ under the backwards flow of (2.4). As Mr
δ is

normally hyperbolic in the region w > 0, we can track Mr
δ until w = ρ. Further, from above we have that Mr

δ

is O(δ)-close to Mr
0, which is given by the set of equilibria {p2(w) : w ≥ ρ}. Therefore Mr

δ is O(δ)-close to

the curve {v = w, q = 0}, and we have that the two-dimensional stable manifold Ws(Mr
δ) of Mr

δ transversely

intersects the two dimensional center manifold Wc
δ at w = ρ at a point (w, v, q) = (ρ, ρ+O(δ),O(δ)). The

results of Proposition 3.4 thus guarantee that for δ sufficiently small, Ws(Mr
δ) in fact transversely intersects

Wu(p1(a)) in the set {w = ρ}.
Tracking Wu(p1(a)) forwards under the flow of (2.4), by the exchange lemma Wu(p1(a)) aligns C1-O(e−C/δ)-

close to Wu(Mr
δ) (for some constant C > 0) upon exiting a neighborhood of Mr

δ.

3.3 Construction of pulses

In this section, we complete the proof of Theorem 1.1 by matching Wu(p1(a)) and Wss(p1(a)).

Proof of Theorem 1.1. We compute the distance between Wu(p1(a)) and Wss(p1(a)) along the singular front

φf(a). By the results of §3.2, upon exiting a neighborhood of Mr
δ, Wu(p1(a)) aligns C1-O(e−C/δ)-close to the

manifold Wu(Mr
δ), which is itself a C1-O(δ) perturbation of Ws(Mr

0).

Using Corollary 2.4, we can therefore compute the distance between Wu(p1(a)) and Wss(p1(a)) to leading order

in δ > 0 and s ≈ s∗ as

D(s, δ) = Ms(s− s∗(a)) +O(δ, e−C/δ, |s− s∗(a)|2)

= Ms(s− s∗(a)) +O(δ, |s− s∗(a)|2),
(3.34)

which can be solved for D(s, δ) = 0 when s = s∗(a)+O(δ) by the implicit function theorem. This corresponds to

an intersection of Wu(p1(a)) and Wss(p1(a)), and thus a homoclinic orbit in the traveling wave equation (2.4)

which is O(δ1/2)-close to the singular orbit H0.

Using Proposition 2.2, noting a = (1 + δ)A, and undoing the rescalings (2.2) and (2.19), we obtain the leading

order expression

S =

(
A2θ20
ε

)1/3

+O(1) (3.35)

for the wave speed S of the pulse solution.
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3.4 Construction of periodic orbits

We now turn to the construction of periodic orbits and complete the proof of Theorem 1.2. The singular periodic

orbits P0(k) have similar geometry to the homoclinic orbit constructed in §3.3, composed of portions of the

critical manifolds M`/r
0 and a singular front φf(k), and we will therefore be able to call on results from the

pervious sections on properties of the flow near M`/r
0 . The periodic orbits will then be obtained as fixed points

of an appropriate Poincaré map.

Proof of Theorem 1.2. We define a Poincaré section near M`
0 in the (w, z, q̃) coordinates from §3.1. Recall that

within this coordinate system, the center manifold Wc
δ is given by the set {q̃ = 0}, and the flow is decomposed

into the two-dimensional dynamics of basepoints on Wc
δ and the flow along one-dimensional strong stable fibers

parametrized by q̃, given by the system

ẇ = δmz(1 +O(δ, z)) +
δ2

1 + δ
(w − z − a)

ż = δmz (1 +O(δ, z))− 1

1 + δ
(w − z)z2 (1 +O(δ, z))

˙̃q =
(
−s3 + h̃(w, z, q̃, δ)

)
q̃,

(3.36)

where h̃(w, z, q̃, δ) = O(z, q̃, δ). In these coordinates, the equilibrium p1(a) is given by (w, z, q̃) = (a, 0, 0), and

for δ = 0, the manifold M`
0 is given by the set {z = q̃ = 0}.

We consider the flow of (3.36) in the set {(w, z, q̃} : w ∈ [∆w, a + ∆w], |z| ≤ ∆z, |q̃| ≤ ∆q̃}, and we place a

two-dimensional section Σp = {(w, z,∆q̃} : w ∈ [∆w, a], |z| ≤ ∆z} which will serve as the Poincaré section for

the construction of periodic orbits. We denote the corresponding Poincaré map by Πp : Σp → Σp.

For each k ∈ [∆w, a+ ∆w], by Proposition 2.2, for δ = 0, there exists a front φf(k) which connects Mr
0 and M`

0

in the plane {w = k} when s = s∗(k). In the local (w, z, q̃) coordinates, the front φf(k) corresponds to the strong

stable fiber {(k, 0, q̃) : q ∈ [0,∆q̃]} of the basepoint (k, 0, 0); this basepoint corresponds to the equilibrium p1(k)

of the layer problem (2.5) in the plane {w = k}. Within Σp, we can thus represent the manifold Mr
δ as a graph

over w

Mr
δ ∩ Σp = {(w, z,∆q̃) : z = zr(w; s, δ)} (3.37)

where zr is a smooth function which satisfies zr(w; s∗(w), 0) = 0 for each w.

For each k ∈ [∆w, a), we consider a small interval of initial conditions I(k) = {(k, z,∆q̃} : |z| ≤ ∆z} for ∆z

chosen sufficiently small. We consider the forward evolution of I(k) under the flow of (3.36), which traces out a

two-dimensional manifold Ī(k). By the analysis in §3.1.1-3.1.2 of the flow in the regions R1, R2 for 0 < δ � 1, it

is apparent that a subset of Ī(k) of width O(δ) is quickly contracted the unstable manifoldWu(p1(a)) and aligns

C1-O(e−C/δ) close to Wu(p1(a)) upon entering the region R2. Continuing to track Ī(k) through the regions

R2-R4, the C1-O(e−C/δ) closeness of Ī(k) and Wu(p1(a)) guarantees that Ī(k) transversely intersects Ws(Mr
δ).

Thus by the exchange lemma Ī(k) aligns C1-O(e−C/δ)-close to Wu(Mr
δ) upon exiting a neighborhood of Mr

δ.

In particular, after this excursion, Ī(k) again meets the section Σp, now in a curve z = I∗(w; s, δ, k) which satisfies

|zr(w; s, δ)− I∗(w; s, δ, k)| = O(e−C/δ) for |w− k| ≤ ∆ for 0 < ∆� ∆w fixed sufficiently small independently of

δ. We denote by I∗(k) the set

I∗(k) = {(w, z,∆q̃) : z = I∗(w; s, δ, k), |w − k| ≤ ∆} (3.38)

We now consider the inverse image (Πp)−1(I∗(k)) ⊂ I(k). By reversing the exchange lemma and considering the

dynamics in the regions R1-R4 under the reverse flow of (3.36), it is clear that the inverse map (Πp)−1 applied to
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I∗(k) is an O(e−C/δ) contraction, and its derivatives are also exponentially small. In particular, parametrizing

solutions in Σp by their (w, z)-coordinates, we have that

(Πp)−1(w, I∗(w; s, δ, k)) = (k, zp(w; s, δ, k)) (3.39)

where the function zp(w; s, δ, k) and its derivatives are exponentially small. We now solve for a fixed point of

(Πp)−1, which occurs when w = k and

I∗(k; s, δ, k) = zp(k; s, δ, k). (3.40)

To solve this equation, we recall from Corollary 2.4 that the manifolds M`
0 and Mr

0 intersect along φf(k) when

s = s∗(k), and the distance between Wss(M`
0) and Wu(Mr

0) in the plane w = k can be represented for small

|s− s∗(k)| as

D0(s; k) = Ms(k)(s− s∗(k)) +O(|s− s∗(k)|2). (3.41)

We note that with Σp M`
0 is given by the set z = 0 also note that |zr(w; s, δ) − I∗(w; s, δ, k)| = O(e−C/δ),

where the graph of the function z = zr(w; s, δ) denotes the intersection of Wu(Mr
δ) with Σp. Using the distance

function (3.41) and the fact that Wu(Mr
δ) is a C1-O(δ) perturbation of Wu(Mr

0), we can write

zr(k; s, δ) = M̃s(k)(s− s∗(k)) +O(δ, |s− s∗(k)|2) (3.42)

for some M̃s(k) 6= 0. The matching equation hence becomes

0 = I∗(k; s, δ, k)− zp(k; s, δ, k)

= zr(k; s, δ) +O(e−C/δ)

= M̃s(k)(s− s∗(k)) +O(δ, |s− s∗(k)|2),

(3.43)

which can be solved uniquely by the implicit function theorem for s = s∗(k) + O(δ), corresponding to a fixed

point of the Poincaré map Πp and a periodic orbit close to P0(k).

Similar to the proof of Theorem 1.1, by using Proposition 2.2 and undoing the rescalings (2.2), (2.19), we obtain

a leading order expression for the wave speed

S =

(
k2θ20
ε

)1/3

+O(1). (3.44)

The expressions (1.5) for the amplitudes of the periodic orbits follows from the fact that these solutions are

obtained as perturbations from the singular limit orbits P0(k). Finally, we deduce the statements regarding the

periods T (k, ε) from the fact that the singular orbit P0(a) corresponds to the singular homoclinic orbit H0 and

further that the amplitude k of the singular orbit P0(k) determines the time spent along the slow manifoldsM`,r
0

which are of O(1/δ2) and O(1/δ), respectively, where we recall that δ ∼ ε2/3.

4 Discussion

In this work, we studied the existence of vegetation stripe pattern solutions of the Klausmeier model (1.1). In

particular we found traveling pulses, corresponding to individual vegetation patches as well as periodic wave train

solutions, corresponding to repeating vegetation stripe patterns (see Figures 1 and 2 for vegetation stripe profiles

obtained via direct numerical simulations). Our results also predict relationships between the speed, amplitude,

and wavelength of patterns, and we are able to confirm these using numerical continuation, the results of which

are depicted in Figure 8. As predicted by Theorem 1.2, we see that for fixed A, the speed S increases with both
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Figure 8: Shown are results of numerical continuation for m = 0.45 and ε = 0.005 obtained in AUTO. Panel

(a) shows how the speed S varies with the rainfall A for single pulse homoclinic orbits; the blue curve depicts

the results of numerical continuation, while the dashed red curve depicts the leading order approximation S ≈
5.1915A2/3 from Theorem 1.1. For fixed A, bifurcating from the single pulse homoclinic orbit is a family of

periodic orbits corresponding to traveling wave train solutions of (1.1). For A = 1.2, we plot the speed S versus

the amplitudes Umax, Vmax (b-c), as well as S versus the wavelength T of the bifurcating periodic orbits (d).

Finally (e-f) depict the amplitudes Umax, Vmax versus T .

amplitude and wavelength, and likewise there is a positive relationship between amplitude and wavelength. The

relation between speed and wavelength is in line with empirical observations [4, 8]; we further note that recent

empirical observations [4] find a positive relation between biomass and wavelength, and the pattern amplitude

Vmax serves as one measure of biomass. Also pictured is the relation between the speed S and rainfall A for single

pulse homoclinic orbits. We see that this relation forms a C-shaped curve, the upper branch of which closely

tracks the leading order approximation given in Theorem 1.1 (shown in dashed red), before turning back along a

lower branch of ‘slow’ pulses with smaller wave speeds. While Theorem 1.1 concerns only the upper branch, it is

also possible to obtain a detailed understanding of the lower branch of slow pulses using similar techniques, and

this is the subject of ongoing work (see also Remark 1.3). We remark that such a C-shaped bifurcation diagram

associated with branches of slow and fast pulses has also been observed and studied in detail in other systems

such as the FitzHugh–Nagumo model of nerve impulse propagation [5, 6, 7, 18, 26].

Our existence analysis for pulses and wave train solutions is valid in the regime of A,m = O(1) and 0 < ε� 1,

where (under an appropriate rescaling (2.2)) we are able to capitalize on the slow/fast separation of the traveling

wave ODE and employ the methods of geometric singular perturbation theory and blow-up desingularization.

In this regime, we find that δ = ε2/3 is the small parameter which captures the timescale separation. A feature

which is immediately apparent from the singular perturbation analysis is the inherent degeneracy in the geometry

of the traveling wave equation. In particular, in order to rigorously determine the existence of traveling waves,

it is necessary to understand the flow near a nonhyperbolic slow manifold as well as slow passage through a
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degenerate transcritical bifurcation; a somewhat related phenomenon was analyzed in [19]. This degeneracy

is responsible for the difficulty in constructing solutions analytically and also tied to the multitude of scaling

regimes needed in order to unfold the bifurcation structure of the traveling wave equation [40].

The present work opens up two main directions of further research. First, there is the question of how our

insights in the structure of 3-dimensional existence ODE (1.6) – as governed by (2.4) – is embedded in that

of the 4-dimensional Gray–Scott type ODE associated to the extended Klausmeier system in which water is

allowed to diffuse, i.e. (1.1) with an additional diffusion term dW∆U [35, 41]. Although this specific form is a

simplification of the process of water spreading over and/or through soil [15, 43], adding a diffusive effect to the

model is crucial for terrains that are gently sloped (or flat). Since water diffuses faster than plants, dW must

be (significantly) larger than 1. In other words, strictly speaking the Klausmeier model (1.1) neglects an effect

of at least O(1). On the other hand, the impact of this effect on the dynamics of traveling patterns seems to

be limited on terrains with sufficiently steep slopes. As a first step towards understanding this, one thus has to

unravel the way a decreasing diffusivity parameter dW transforms the geometry of the flow of the 4-dimensional

ODE as studied in [35, 41] to that of the present 3-dimensional ‘core’. This is nontrivial problem, especially

since the ‘classical’ 4-dimensional Gray–Scott type approach of [10, 11] has been stretched to its limits in [35]

and could not be extended beyond a certain critical relation between the diffusion and steepness parameters in

the slow U -equation.

Finally, we comment on the stability of the patterns in the underlying PDE (1.1). The direct numerical sim-

ulations (see Figures 1 and 2) suggest that the patterns are stable in one spatial dimension. In the setting of

the extended generalized Klausmeier–Gray–Scott models, the stability of homoclinic pulses has been established

in one space dimension (for certain parameter combinations) [35, 41]. However, in two space dimensions, i.e.

as stripe patterns, the constructed homoclinic structures are unstable [35, 41]. This is typically the case for

homoclinic stripes in singularly perturbed two-component reaction-diffusion systems considered in the literature;

the lateral destabilization is associated to the unstable eigenvalue of the homoclinic solution of the scalar fast

reduced equation (the V -equation of (1.1) with U ≡ Ū constant) [12, 25]. Since the pulse structures constructed

here are based on a fast heteroclinic jump, there is a reason to expect the associated stripes to be stable. In

fact, in [41] stable stripes have been observed in the generalized Klausmeier–Gray–Scott model with dW 6= 0 on

sufficiently steep hillsides (beyond the reach of the analysis in [35]).

A complete linear (and nonlinear) stability analysis of the homoclinic and periodic pulses constructed here is

outside the scope of this article. In fact, the degenerate bifurcational structure of the Klausmeier model motivates

the analysis of a modified Klausmeier model, with additional parameters introduced in order to regularize the

equations and unfold these bifurcations more naturally. We refer to [2] for related work in this direction.
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