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Abstract

Equation-free modeling aims at extracting low-dimensional macroscopic dynamics from complex high-

dimensional systems that govern the evolution of microscopic states. This algorithm relies on lifting and

restriction operators that map macroscopic states to microscopic states and vice versa. Combined with

simulations of the microscopic state, this algorithm can be used to apply Newton solvers to the implicitly

defined low-dimensional macroscopic system or solve it more efficiently using direct numerical simulations.

The key challenge is the construction of the lifting and restrictions operators that usually require a priori

insight into the underlying application. In this paper, we design an application-independent algorithm

that uses diffusion maps to construct these operators from simulation data. Code is available at https:

//doi.org/10.5281/zenodo.5793299.

1 Introduction

In many complex dynamical systems, low-dimensional macroscopic behavior emerges from interactions at

the high-dimensional microscopic level. For instance, traffic jams are global macroscopic structures that

emerge from the interactions of many individual cars that move along a road: traffic jams can be captured

meaningfully by a single macroscopic quantity, namely the standard deviation of the distances between

consecutive cars from the mean (see below for further details). Mathematically, these macroscopic structures

live on low-dimensional invariant manifolds, and our goal is to exploit their existence, and the accompanying

reduction in effective dimension, when we conduct bifurcation analyses or carry out direct simulations. In

certain cases, we may be able to characterize these invariant manifolds explicitly, either because they are

given as graphs of explicit functions or because the microscopic variables decouple from the macroscopic

system. In most cases, however, these invariant manifolds are not known. We are interested in the latter

case, particularly where the microscopic variables are interchangeable when considering macroscopic effects

and structures.

Equation-free modeling, so named because the macroscopic system is not governed by an explicit ordinary

differential equation, estimates macroscopic behavior through a multi-scale approach that exploits the con-

nection between the macro and microlevels [13, 14, 15]. All equation-free methods depend on the following

algorithm that attempts to describe the macroscopic system implicitly [15]:
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Figure 1: Shown are the time evolution of the headway profile (left) and the standard deviation from the

mean headway (right) for a solution of (1.1) with v0 = 1 (all other parameters are as in Table 1). In the left

panel, the initial state (black) is compared with the final traveling-wave solution (red to blue): note that the

traffic jam corresponds to the region where the headways are small, so that the car density is high. The right

panel shows the time evolution of the deviation σ of the headways from the mean headway: the increase and

eventual convergence of σ to a larger value indicates the emergence of a stable traffic jam.

(1) lift: build the microstate from the macrostate using the lifting operator L;
(2) evolve: simulate the microstate for short bursts using the evolution Φt; and

(3) restrict: calculate the macrostate from the evolved microstate using the restriction operator R.

One of the biggest challenges in equation-free modeling is the selection of lifting and restriction operators

since the choice of macroscopic observables may not always be obvious [22]. One way to pick relevant

macroscopic variables is to use a dimension-reduction technique such as diffusion maps. Diffusion maps

embed high dimensional data sets into low-dimensional Euclidean spaces. Unlike standard linear methods

such as principal component analysis, diffusion maps are able to find useful low-dimensional parametrizations

of the original data sets even when the data lie on or near a nonlinear manifold [6, 7, 18]. In this paper, we

show that low-dimensional embeddings given through diffusion maps can be used to identify macroscopic

variables in equation-free modeling and define lifting and restriction operators. We note that this approach

will not necessarily provide a physical interpretation of the resulting parametrization, though it will often

result in macroscopic variables that are physically relevant: We refer to §4.3 below, [10, Inset in Figure 5],

and [25, § IV.A and Figure 5] for examples, and to [16] for an algorithm that interprets macroscopic variables

in terms of a prescribed list of relevant physical quantities.

To illustrate our algorithm and demonstrate its effectiveness, we apply it to the same traffic model [1] to

which traditional equation-free modeling had been applied in earlier work [21]. In this model, N cars drive

around a ring road of length L. We assume that all drivers follow the same deterministic behavior governed

by

τ
d2xn
dt2

+
dxn
dt

= V (xn+1 − xn), xn ∈ R/LZ, n = 1, 2, ...N, (1.1)

where xn is the position of the nth car, τ reflects the inertia of cars (or, alternatively, reaction times of

drivers), and V is the optimal velocity function defined by

V (d) = v0(tanh(d− h) + tanh(h)),

where v0(1 + tanh(h)) is the maximal velocity and h determines the desired safety distance between cars.

In this model, each driver adjusts their acceleration to attain an optimal velocity based on the distance
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Figure 2: Overview of the time stepping scheme in the context of the traffic model [21]. The macroscopic state

σ1 is lifted to the microscopic profile L(σ1). The microsystem is then evolved for time t to the next microstate

Φt(L(σ1)). Finally, this profile is restricted to find the evolution of the macroscopic state σ2 = R(Φt(L(σ1))).

∆xn = xn+1 − xn to the car in front, which is also referred to as the headway. Two common traffic patterns

can emerge as stable solutions in this model, namely free-flow solutions, where cars are evenly spaced and

move with the same speed, and traveling-wave solutions, which correspond to traffic jams [21]. To illustrate

traffic jam solutions, it is convenient to monitor the headways of cars: as indicated in Figure 1, localized

traveling-wave profiles correspond to traffic jams.

In [21], equation-free methods were used to trace out the bifurcation diagram for the existence and stability of

traffic jam solutions as the parameter v0 varies. For this analysis, the standard deviation σ of the headways,

defined by

σ =

√√√√ 1

N − 1

N∑
n=1

(∆xn − ⟨∆xn⟩)2,

was used as the macroscopic variable, where ⟨∆xn⟩ = L
N is the average headway. Low standard deviations

correspond to free-flow solutions, while large values of the standard deviations correspond to traffic jams

(see Figure 1). With σ as the macroscopic variable, the lifting and restriction operators are easy to define

in terms of σ: as illustrated in Figure 2, lifting is accomplished by changing the locations of cars to match

a given value of σ, and restricting is achieved by calculating σ for a given profile. Note that many different

car arrangements will lead to the same value of σ, and the lifting operator is therefore not uniquely defined.

Choosing σ as the macroscopic variable requires knowledge of the underlying structure of the traffic system,

and our goal is to provide algorithms that identify macroscopic variables automatically from the data set.

We will see that the proposed approach via diffusion maps will, when applied to the same traffic model,

generate a parametrization that recovers the standard deviation as one of the macroscopic variables; in

addition, it identifies the location of the traveling wave as a second dimension in the parametrization.

Using this new embedding as our macroscopic variables, we apply equation-free methods to reproduce the

bifurcation diagram in [21], but we do so with restriction and lifting operators that emerge automatically

from our diffusion map analysis without using prior knowledge of the system. In particular, we use the

Nyström extension for our restriction operator, which gives estimates for new components of an eigenvector

of a matrix constructed from data [20, 21, 25]. We define a new lifting operator that creates microstates

from linear combinations of existing data points. We apply these techniques to trace out the bifurcation

diagram of traveling waves in the traffic system.

The remainder of this paper is organized as follows. In §2, we present an overview of equation-free method-

ologies. Then, in §3, we introduce the concept of diffusion maps and define diffusion map based operators
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Figure 3: Sketch showing the equation-free modeling approach applied to a slow-fast system. An initial

macrostate σ is lifted to a point that may possibly not lie on the slow manifold. Evolving this state for a

short time will bring the profile close to the manifold. The evolved microstate can then be restricted back to

the macro level or further evolved in time along the slow manifold.

to be used in equation-free modeling. We then apply these techniques to conduct bifurcation analysis in a

traffic flow model in §4. Finally, in §5, we summarize our conclusions and give an outlook of open problems.

2 Overview of equation-free modeling

The equation-free approach is appropriate when working with a dynamical system of large dimension N ≫ 1

that reflects a known microscopic evolution law with N variables and an attracting, low-dimensional, trans-

versely stable manifold of dimension D. The N -dimensional system is referred to as the microsystem, and the

D-dimensional manifold is the macrosystem. We assume that the system exhibits a sufficiently prominent

time-scale separation: more precisely, we assume that the dynamics on the D-dimensional attracting mani-

fold is slow compared to the fast transverse attraction towards this D-dimensional slow manifold [3, 11, 17].

Once a system is known to be slow-fast, the goal is to choose macro-level variables that parametrize the

slow manifold as best as possible. The process of equation-free modeling uses two operators: lifting and

restriction.

The lifting operator L : RD → RN maps a given macrostate to a corresponding microstate. Ideally, the

lifting operator maps onto the slow manifold, but this is not easy to accomplish directly since the slow

manifold may not be known. However, exploiting both time-scale separation and the assumption that the

slow manifold is attracting, we only need to evolve the lifted microstate for a short time duration, using the

time evolution Φt : RN → RN , to guarantee that the profile is close to the slow manifold, and can then use

the resulting microstate as the image of the macrostate under lifting; see Figure 3 for an illustration. The

additional short time evolution is often referred to as the healing step. We note that the choice of the lifting

operator may affect the required time duration of the healing step, and we refer to [24, End of § II.A, and

references therein] for a discussion of this issue.

The restriction operator R : RN → RD takes a microstate and maps it to a low-dimensional macrostate.

Once the macrolevel parametrization is known, the restriction operator is usually much easier to define.

In the traffic model, for instance, the restriction operator is defined to be the standard deviation of the

4



headways of a microstate [21]. For consistency, we require that R ◦ L = IRD , where IRD is the identity map

for the macrolevel variables.

The equation-free framework has many benefits as an approach to study macrolevel behavior. Once the

operators are defined, traditional numerical analyses of the macrosystem can be conducted without con-

stantly simulating the microsystem [15]. Since equilibria can exist in the macrostate without existing in

the microstate, equation-free methods can even carry out macro-level bifurcation analyses that would be

impossible with only the microsystem [15], and we will demonstrate this in §4.

3 Lifting and restriction operators via diffusion maps

We first review diffusion maps [7, 22] and then use this approach to construct lifting and restriction operators

from a given data set. The goal of diffusion maps is to embed a large data set in a high-dimensional space

RN into a low-dimensional space RD with N ≫ D so that the local geometry of the data is preserved.

3.1 Diffusion maps

Given a high-dimensional data set X = {Xm ∈ RN | m = 1, . . . ,M} of m observations, we first calculate

the pairwise distances between the data points Xm. Although any metric can be used, we use the Euclidean

norm to define dij = ∥Xi −Xj∥. Next, we define an affinity matrix D ∈ RM×M such that a smaller distance

corresponds to a high affinity and a larger distance corresponds to a small affinity. We use a Gaussian kernel

to construct D from the pairwise distances via

Dij = exp

(
−d2ij
ϵ2

)
= exp

(
−∥Xi −Xj∥2

ϵ2

)

where the parameter ϵ should be chosen so that it reflects the spatial distance on which we want to resolve

geometric features of the data set. Choosing ϵ too small treats all data points as singletons; picking an ϵ

that is too large ignores the differences between data points: either way, we lose all geometric information.

In our application in §4, we select

ϵ = 5median(dij)i>j

to be five times the median of the pairwise distances dij , which yielded good results. Other strategies

for selecting ϵ are discussed in [22]. We will discuss at the end of this section how we can measure the

effectiveness of a given choice of ϵ for reducing the dimension quantitatively.

Next, we convert the affinity matrix D into a Markov transition matrix M ∈ RM×M by normalizing each

row via

Mij :=
Dij

M∑
m=1

Dim

.

For each fixed 0 < D < M and each choice of D eigenvalues λ1, . . . , λD with associated eigenvectors

ψ1, . . . , ψD ∈ RM of the matrix M, we follow [9, 19] and map the data set X into RD via

Xm 7−→ (ψ1,m, . . . , ψD,m) ∈ RD, m = 1, . . . ,M, (3.1)

where ψℓ,m denotes the mth element of the eigenvector ψℓ ∈ RM for ℓ = 1, . . . , D.

The final step is to select the finite set of eigenvectors to represent the data set. A common choice is to choose

the eigenvectors that belong to the D largest eigenvalues of M, where D is chosen, for instance, to indicate
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a gap in the eigenvalues. This approach ignores the fact that not all eigenvectors add significantly new

geometric information. Hence, we instead follow the algorithm proposed in [8] to determine the dimension

D and the eigenvectors that provide an optimal embedding. The idea is to pick eigenvectors recursively

and use local linear fits with the previously selected set of eigenvectors to see whether the new eigenvector

adds sufficient information to be included. Assume that we selected the first j − 1 eigenvectors and set

Ψj−1,m := [ψ1,m, . . . , ψj−1,m]T ∈ Rj−1 for m = 1, . . . ,M . Let ψj be the eigenvector of M with the largest

eigenvalue that we have not considered yet. We then compute the local fit parameters

(αj,m, βj,m) := argmin
α∈R,β∈Rj−1

∑
i ̸=m

exp

(
−∥Ψj−1,m −Ψj−1,i∥2

ϵ2

)(
ψj,i −

(
α+ βTΨj−1,i

))2
where “local” refers to data points whose Gaussian distance is small, and the accompanying cross-validation

error for the linear fit given by

rj :=

√√√√∑M
m=1(ψj,m − (αj,m + βT

j,mΨj−1,m))2∑M
m=1 ψ

2
j,m

. (3.2)

Note that small values of rj indicate that ψj is locally well approximated by ψ1, . . . , ψj−1, so that including

ψj will not improve the embedding. We therefore include only eigenvectors with large rj values in our

diffusion-map embedding and stop its recursive definition once the values of rj stay close to zero. A good

choice of ϵ will result in a steep transition of the sequence rj from values close to one to values close to zero.

3.2 Lifting and restriction operators

In general, equation-free modeling requires the definition of lifting and restriction operators that depend on

the specific system we want to solve. Previous approaches rely on in-depth understanding of the relationship

between the microscopic and macroscopic states. Here, we provide an algorithm for the construction of

lifting and restriction operators that depends only on a given set of data points or observations and on a

given diffusion-map embedding.

Restriction. First, we describe how we construct the restriction operator based on a given data set and

the accompanying diffusion-map embedding. Assume X ∈ RN×M is an existing data set, and M ∈ RM×M

denotes the associated Markov transition matrix with eigenvalues λj and eigenvectors ψj for j = 1, . . . ,M .

Assume also that we picked an embedding dimension D and that we ordered the eigenvalues λj and eigen-

vectors ψj so that the restriction operator R evaluated on a point Xm ∈ RN in the data set is defined

by

R(Xm) := (ψ1,m, . . . , ψD,m) ∈ RD, m = 1, . . . ,M, (3.3)

where ψℓ,m denotes the mth component of ψℓ. We need to extend the definition of R so that R(Xnew) is

defined for each Xnew ∈ RN . One option is to add the new data point Xnew to the existing data set and

recalculate for the new (M + 1)-dimensional data set, but this is cumbersome and very expensive. Instead,

we follow [5] and use the Nyström extension to extend R to new data points. This technique takes advantage

of the fact that eigenvectors and eigenvalues are related by Mψℓ = λℓψℓ or, equivalently,

ψℓ,m =
1

λℓ

M∑
j=1

Mm,jψℓ,j , ℓ,m = 1, . . . ,M. (3.4)
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The embedding for a new data point Xnew cannot be calculated directly from (3.4), but we can modify this

equation as follows to approximate the embedding. As in §3.1, we define the Gaussian kernel

Dnew,m = exp

(
−∥Xnew −Xm∥2

ϵ2

)
and use this expression to define

ψℓ,new :=
1

λℓ

M∑
m=1

Dnew,m∑M
j=1 Dnew,j

ψℓ,m.

Following [20, 22, 25], we then set

R(Xnew) := (ψ1,new, . . . , ψD,new) , (3.5)

which extends the definition of the restriction operator R to include the new data point Xnew.

Lifting. Next, we focus on the lifting operator. Given a macrostate in ϕ ∈ RD, we need to define a lifted

microstate X = L(ϕ) ∈ RN so that R(X) = R(L(ϕ)) ∈ RD is close to ϕ. Our goal is to construct a

lifting operator using only the given data set in RN and the parametrization via diffusion maps, which we

accomplish by solving an optimization problem to interpolate between the original data points. Earlier work

in [9, 19, 25] approached this problem using simulated annealing, which is computationally more expensive.

Other complementary approaches to the construction of lifting operators are discussed in [4, §3.2].

To set up the algorithm, we choose an integer K with K ≥ D + 1. Given the data points Xm ∈ RN with

m = 1, . . . ,M , we define

ϕm := R(Xm) = (ψ1,m, . . . , ψD,m) ∈ RD, m = 1, . . . ,M.

Given a macrostate ϕtarget ∈ RD, we first find the K macrostates ϕmk
with k = 1, . . . ,K that are closest to

ϕtarget in RD. We then define the lifted state to be

L(ϕtarget) :=
K∑

k=1

akXmk
,

where the coefficient vector (a1, . . . , aK) ∈ RK is determined as the solution to the optimization problem

(a1, . . . , aK) := argmin
(b1,...,bK)∈[0,1]K

{∥∥∥∥∥ϕtarget −R

(
K∑

k=1

bkXmk

)∥∥∥∥∥ subject to

K∑
k=1

bk = 1

}
. (3.6)

Thus, we define the lifted microstate to be the element in the convex hull of the K microstates whose

restriction is closest to the specified targeted macrostate. Note that (3.6) will always have a solution since

R is continuous and the domain is compact. In general, (3.6) may have multiple solutions. In practice,

choosing larger values of K ensures that zero is achieved as a minimum and evolving solutions forward will

bring them close to the underlying attracting manifold: as discussed in the next section, we did not encounter

any difficulties with potential discontinuities of the lifting operators during arclength continuation.

4 Case study: Traffic model

In this section, we will use the traffic model introduced in §1 to, first, demonstrate the accuracy and efficiency

of the lifting and restriction operators we defined in §3.2 and, second, use these operators to compute

bifurcation diagrams using equation-free modeling.
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Figure 4: Shown is a visualization of the lifting operator. We solve for a linear combination of the K

microstates corresponding to the K nearest macrostates such that the linear combination restricts to ϕtarget.

4.1 Traffic model

We write the traffic model introduced in §1 as the first-order system

dxn
dt

= yn,

dyn
dt

=
1

τ
[V (xn+1 − xn)− yn] , n = 1, . . . , N

(4.1)

with xn ∈ R/LZ, where the velocity function V (d) is given by

V (d) = v0(tanh(d− h) + tanh(h)). (4.2)

We note that (4.1) is posed on the 2N -dimensional space (R/LZ×R)2N , and we denote the solution of (4.1)

with initial condition P = (xn, yn)n=1,...,N evaluated at time t by Φt(P ). We record that (4.1) respects the

action of the discrete symmetry group ZN given by

(R/LZ× R)2N −→ (R/LZ× R)2N , (xn, yn)n=1,...,N 7−→ (x(n+l)modN , y(n+l)modN )n=1,...,N (4.3)

for l ∈ ZN , which corresponds to relabeling the cars consecutively. Throughout, we will fix the parameters

as in Table 1, and focus on the emergence of free-flow and traffic-jam solutions as the parameter v0, which

appears in the velocity function, varies.

The free-flow solution of the microsystem (4.1) is defined by

xn(t) = (n− 1)
L

N
+ tV

(
L

N

)
mod L, yn(t) = V

(
L

N

)
, n = 1, . . . , N.

It captures traffic flows where all cars keep the same distance L/N from each other and travel with the

velocity dictated by the constant headway. Traffic jams are captured by the traveling-wave ansatz

(xn(t), yn(t)) = (x∗(n− ct), y∗(n− ct)), n = 1, . . . , N,

where (x∗(ξ), y∗(ξ)) are N -periodic functions that describe the profile of the traveling wave, and c is its speed.

Substituting this ansatz into (4.1) shows that the N -periodic profile (x∗(ξ), y∗(ξ)) and the wave speed c need

to satisfy the system

−cdx∗
dξ

(ξ) = y∗(ξ)

−cdy∗
dξ

(ξ) =
1

τ
(V (x∗(ξ + 1)− x∗(ξ))− y∗(ξ))

(4.4)

of delay differential equations. Note that the wave speed c is a variable that needs to be solved for as part

of (4.4).
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Table 1: Parameter descriptions and values

Parameter Description Value Used in

N number of cars 30 (4.1)

L length of the road 60 (4.1)

τ−1 inertia of the car 1.7 (4.1)

h desired safety distance between cars 2.4 (4.2)

v0 optimal velocity parameter Uniform([0.96, 1.1]) §4.3
A amplitude of initial conditions in the dataset Uniform([0, 4.5]) §4.3
tstop time evolved to create dataset Exp(mean=700, shift=200) §4.3
K number of points used for lifting 3 (n = 1) §4.4

8 (n = 2) §4.4
tskip healing evolution time 300 §4.5
δ time evolved for finite difference approximation 240 §4.5
s continuation step size 0.0025 (m = 5, 000) §4.5

0.01 (m = 1, 000) §4.5
ν integer multiple of period sought 7 §4.5

4.2 Computing bifurcation diagrams using the microsystem

First, we use pseudo-arclength continuation to compute and continue traveling waves, and their wave speeds,

as N -periodic solutions to (4.4) as the parameter v0 is varied. We will use the headways u(ξ) := x(ξ+1)−x(ξ)
instead of the positions x(ξ) as variables. We will argue that N -periodic traveling waves correspond to regular

roots of the function

F tw : C2(R/NZ)× R2 −→ C0(R/NZ)× R2 (4.5)

(u, c, d) 7−→


ξ 7→ c2τ d2u

dξ2 (ξ)− cdudξ (ξ)− V (u(ξ + 1)) + V (u(ξ)) + d

L−
∑N−1

n=0 u(n)∫ N

0

〈
du
dξ (ξ), u∗(ξ)− u(ξ)

〉
dξ


for each fixed value of the constant v0 that appears in the function V (u) defined in (4.2). The first component

F tw
1 is the delay-differential equation (4.4) written as a function of the headways; the additional term d

accounts for the fact that the first component (with d = 0) has mass zero, so that
∫ N

0
F tw

1 (u, c, d)(ξ)dξ = 0

for all (u, c, d). The second component of F tw ensures that the headways add up to the length L of the ring

road. Finally, the last component is a phase condition that selects a unique profile amongst the family of

spatial translates of a given solution u∗(ξ); during continuation, u∗(ξ) is normally taken to be the solution

obtained at a previous continuation step. The following result gives conditions that guarantee that the set

of roots of F tw consists of regular zeros.

Theorem 4.1. Fix v0. If (i) F tw(u∗, c∗, 0) = 0, (ii) the null space of DuF tw
1 (u∗, c∗, 0) is two-dimensional

and spanned by du∗
dξ , v ∈ C2(R/NZ) with

∑N−1
j=0 v(n) ̸= 0, and (iii) DcF tw

1 (u∗, c∗, 0) is not in the range of

DuF tw
1 (u∗, c∗, 0), then D(u,c,d)F tw(u∗, c∗, 0) has a bounded inverse.

Proof. We give only a brief outline of the proof. The key observations are that DuF tw
1 is Fredholm of index

zero and that elements in its range have mass zero. Since du∗
dξ is contained in the null space of DuF tw

1 , it is not

difficult to show that the null space is at least two-dimensional, and we assumed that its dimension is indeed

two and that the null space is spanned by du∗
dξ and v. Using this information and the remaining assumptions,

it is now straightforward to prove that the null space of the full linearization D(u,c,d)F tw
1 (u∗, c∗, 0) is trivial,
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Figure 5: Shown is the zero set of the function F tw obtained by pseudo-arclength continuation. The associated

traveling-wave profiles are shown for selected points (marked with black diamonds) on the bifurcation branch.

Note that the scale on the vertical axes of the insets varies to better illustrate the shape of the profiles. The

algorithm detects a fold point at (v0, σ) ≈ (0.97, 0.25), where stability changes: blue dots mark stable states,

and green dots mark unstable states.

which proves the theorem since this operator is also Fredholm with index zero by the bordering lemma (see

[2, Lemma 2.3]).

Theorem 4.1 indicates that we can use arclength continuation with a secant predictor and Newton’s method

as corrector to compute branches of traveling waves by solving F tw(u, c, d; v0) = 0, where F tw depends on

v0 through the optimal velocity function V (u) = V (u; v0). We implemented this algorithm in Fourier space

to take advantage of spectral convergence.

The result of the numerical continuation is visualized in Figure 5 using the standard deviation σ of the

headways u∗(n) := x∗(n + 1) − x∗(n). Figure 6 shows the Floquet spectra of the linearization of the

microscale system about sample traveling waves for N = 30 and N = 60. In both cases, λ = 0 is an

eigenvalue of multiplicity two. We observe that the gap between the nonzero Floquet exponents and the

eigenvalues at the origin is much smaller for N = 60 than for N = 30. In fact, the gap will shrink to zero as

N goes to infinity due to the presence of a conservation law in the continuum limit and, in particular, the

slow-fast time-scale separation will become less prominent as N increases. For this reason, we focus on the

case N = 30 in the remainder of this paper.

4.3 Constructing embeddings using diffusion maps

Our goal is to use diffusion maps to construct an embedding of the essential dynamics of the microsystem

(4.1) into a low-dimensional space and identify macroscopic variables that parametrize the reduced dynamics.

Construction of the data set. We construct the data setX to which we apply the diffusion-map approach

as follows. We generate m = 5000 initial conditions of the form

xn(0) =
L(n− 1)

N
+A sin

(
2πn

N

)
, yn(0) = V

(
L

N

)
, n = 1, . . . , N,
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Figure 6: Shown are the Floquet spectra of the linearization of the traffic system (1.1) about a traveling-wave

solution for the fold points for N = 30 and N = 60 (v0 = 0.97, 0.88 and h = 2.4, 1.2, respectively). Note that

the nonzero Floquet exponents are much closer to zero for N = 60 than for N = 30, which indicates that the

slow-fast time-scale separation becomes less pronounced as N increases.

Figure 7: Shown are the data points generated for the diffusion map.

and draw values for the coefficient A ∈ [0, 4.5] and the parameter v0 ∈ [0.96, 1.1] randomly using the uniform

distribution on these intervals. Each corresponding trajectory of (4.1) is evolved using an ODE solver until

a stopping time tstop is reached that is drawn from a shifted exponential curve with mean 700 and shift 200.

The collection of the M end states of the headways in RN defines the data set X. We emphasize that we

do not include information about the velocities in our data set. By varying the parameters and the time

captured, our data set X is comprised of varying wave shapes as well as some free-flow profiles. Figure 7

shows that this sampling results in good coverage of the space encapsulating the bifurcation diagram.

Reduction to one dimension: factoring out the discrete symmetry. First, we explicitly factor out

the discrete symmetry (4.3) present in the model (4.1). We accomplish this by shifting the indices in each

profile in our data set using the symmetry (4.3) so that the maximum headway max(xn+1 − xn)n=1,...,N

inside the profile is achieved at n = 10. If all solutions converge to, or at least resemble, traveling waves,

factoring out the discrete symmetry effectively factors out the one-dimensional phase of all traveling waves

and should therefore reduce the effective dimension of the embedding by one. Applying the diffusion-map

approach outlined in §3.1 to the set Xalign of aligned elements in RN and computing the linear fit coefficients
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Figure 8: Shown are the local linear fit coefficients rk defined in (3.2) as functions of the index k for the

diffusion maps for D = 1 (left panel) and D = 2 (right panel).

Figure 9: Plotted are the values of the restriction operator R(Xm) = ψ1,m against the standard deviation

σ evaluated at the data points Xm for m = 1, . . . ,M . Since there is a one-to-one relationship between the

diffusion map embedding and standard deviation of each data point, the two represent the same feature.

defined in (3.2), we indeed find that we can take D = 1 as the embedding dimension so that the resulting

restriction operator (3.3) maps the aligned data set Xalign into R; see Figure 8 (left panel).

Figure 9 shows that the diffusion-map variable embedding data set into R is linearly related to the stan-

dard deviation of the headways. In particular, our diffusion-map approach automatically generates the

parametrization introduced previously in [21] based on a priori knowledge of the dynamics. In general, we

might expect that the diffusion-map variables are mapped one-to-one to a coordinate system defined by

physically relevant variables, and we refer to [10, Inset in Figure 5], [12, Figures 6-7], [23, Figure 15], and

[25, § IV.A and Figure 5] for other examples where similar relationships were observed.

Reduction to two dimensions. Next, we apply the diffusion-map approach from §3.1 directly to the

original data set X without any alignment or other adjustments. In this case, we can take D = 2 as the

embedding dimension, and the resulting restriction operator (3.3) therefore maps the data set X into R2; see

Figure 8 (right panel). Figure 10 shows that the planar embedding parametrizes the data set through polar

coordinates where the radial direction corresponds to the standard deviation of headways and the angular

direction captures the location of the peak of solutions along the circular ring road.

Reducing the number of data points to M = 1000. To see if we can produce the same results with

fewer data points, we also reduce the original diffusion map from M = 5000 to M = 1000. We use the 5000

point diffusion map to inform the down-sampling of the data. For the one-dimensional case, we sort the

embedding to be numerically ascending, uniformly sample the M = 1000 data points corresponding to those
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Figure 10: Shown is the image of the data set X under the diffusion-map embedding into R2 where the colors

indicate the standard deviation (left panel) of the pre-images Xm ∈ X and the wave peak position (right

panel).

embeddings, and then recompute the diffusion map on those points. Since the two-dimensional diffusion

map resembles a disc, we covert the embedding to polar coordinates, uniformly sample 2000 points radially,

and then further uniformly sample m = 1000 points with respect to the angular component. Finally, we

recompute the diffusion map using the data points corresponding to the sampled embeddings. Figure 7 shows

that this down-sampling approach preserves the distribution of σ values in the dataset. We also observe the

same relationship with σ and the location of the maximum headways in the embeddings.

4.4 Lifting and restriction operators

We now test the accuracy of the lifting and restriction operators that we defined in §3.2 based on the

diffusion-map embedding constructed in §4.3.

First, we test the accuracy of the restriction operator defined via the Nyström extension. For each fixed

element Xm ∈ RN of our data set X (or Xalign), we first calculate the image R(Xm) of Xm under the restric-

tion operator (3.3). Separately, we compute the restriction operator RX\{Xm} by applying the algorithm

outlined in §3.2 to the data set X \ {Xm}, obtained from X by removing the element Xm, and apply this

restriction operator to the removed element Xm to obtain RX\{Xm}(Xm) via the Nyström extension (3.5).

The norm of difference R(Xm)−RX\{Xm}(Xm) measures the accuracy of our approach, and Figure 11 shows

that the magnitude of the difference of these two images for both one- and two-dimensional embeddings is

less than 10−5. For D = 1, the average relative error is about 0.26%, while it is about 1.38% for D = 2.

Plotting the errors as function of the reduced macrosystem, we see that the error is smallest in the center

of domain; see Figure 11. Since the Nyström extension essentially takes a linear combination of the existing

points, this observation is not unexpected.

Next, the theoretical approach to equation-free modeling assumes that R ◦ L = IRD is the identity in the

macrovariables in RD. To test this property, we calculate the sup-norm of the map

IRD −R ◦ L : R(Y ) ⊂ RD −→ RD, ϕ 7−→ ϕ−R(L(ϕ))

for Y = X,Xalign and plot the results in Figure 12 separately for the aligned and the original data sets. In

the lifting operator, we set the number of interpolating points to K = 3 for D = 1 and K = 8 for D = 2. We
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Figure 11: To test the accuracy of the restriction operator defined via the Nyström extension, we visualize the

differences R(Xm)−RX\{Xm}(Xm) (see main text for their definitions). Left panel: For D = 1, we plot the

one-dimensional coordinates of R(Xm) and RX\{Xm}(Xm) against each other as m varies and indicate the

logarithm of the relative error of their difference using colors. Right panel: For D = 2, we plot the images

R(Xm) as m varies and visualize the logarithm of the relative error of their difference using colors.

observe very little difference in accuracy based on the value of K but chose these values as they show the

greatest accuracy. For D = 1, the average relative error is less than 0.27%. For D = 2, this error increases

to 1.63%. We observe the least accuracy near the embeddings corresponding to low values of σ, likely due

to the fact that these traffic jam solutions are unstable and thus have more variation in sampled profiles.

4.5 Computing bifurcation diagrams using the macrosystem

In the preceding sections, we presented a data-driven approach to constructing lifting and restriction oper-

ators based on embeddings derived from diffusion maps and validated this approximation. In this section,

we use an equation-free modeling approach based on these operators to compute the bifurcation diagram of

traveling-wave solutions of (4.1) in the reduced n-dimensional embedding space separately for D = 1 and

D = 2.

One-dimensional reduction: continuing fixed points. First, we focus on the lifting and restriction

operators constructed from the aligned data set Xalign, where we explicitly factored out the discrete sym-

metry. As shown above, the restriction operator maps into R, and the parametrization of the macrosystem

corresponds to the standard deviation of the headways. Since the phase is effectively factored out, we focus

on computing and continuing equilibria of the macrosystem defined implicitly using an equation-free model.

We denote by Φt(P ; v0) the solution of the microsystem (4.1) with parameter value v0 that belongs to

the initial condition P = (xn, yn)n=1,...,N ∈ RN . The equation-free macrosystem is then defined by the

finite-difference quotient

dϕ

dt
= F (ϕ, v0) :=

R
(
Φtskip+δ(L(ϕ); v0)

)
−R

(
Φtskip(L(ϕ); v0)

)
δ

,

where ϕ ∈ R denotes the macrovariable, and the time steps tskip, δ > 0 are chose to obtain time-scale

separation in the dynamics. We then compute and continue roots of the function F (ϕ, v0) using pseudo-

arclength continuation with a secant predictor of step size s and a Newton corrector in the space (ϕ, v0) ∈ R2.
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Figure 12: Shown are the norms of the difference IRD −R ◦ L evaluated on the image R(Xalign) for D = 1

(left panel) and on R(X) for D = 2 (right panel).

Figure 13: Shown is the bifurcation diagram in σ coordinates computed for the microsystem directly, the

one-dimensional, two-dimensional, full, and reduced diffusion maps.

Figure 14: Shown is a comparison of the bifurcation diagram computed using the equation-free approach for

the reduced system with D = 1 associated with the aligned data set and the diagram computed using pseudo-

arclength continuation for the microsystem. Left: M = 5, 000 points, Right: M = 1, 000 points
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Figure 15: Shown is a comparison of the bifurcation diagram of periodic orbits computed using the equation-

free approach for the reduced system with D = 2 associated with the data set X and the diagram computed

using pseudo-arclength continuation for the microsystem. The left and right panel show projections into

(v0, r) and (T, r), respectively.

The results are shown in σ coordinates in Figure 13 and the diffusion map coordinates Figure 14 for both the

full diffusion map and the reduced diffusion map. Both bifurcation diagrams resemble the diagram computed

previously in [21] and the diagram in Figure 5 computed using continuation in the microsystem. We notice

that the reduced diffusion map is more robust to continuation parameter choices, and we hypothesize that

this difference results from the artificial alignment of the profiles in the one-dimensional diffusion map. In

the M = 5, 000 diffusion map, aligning the data introduces noise around each value of σ since there will

be many profiles originating from different positions to potentially lift. Downsampling the diffusion map to

M = 1, 000 reduces some of that noise, thus resulting in a more robust method.

Two-dimensional reduction: continuing periodic orbits. Next, we focus on the lifting and restriction

operators constructed from the original data set X, which results in a two-dimensional macrosystem given

by
dϕ

dt
= F (ϕ, v0) :=

R
(
Φtskip+δ(L(ϕ); v0)

)
−R

(
Φtskip(L(ϕ); v0)

)
δ

, (4.6)

where ϕ ∈ R2 again denotes the, now two-dimensional, macrovariable. Traveling waves of the microsystem

(4.1) correspond to periodic orbits of the planar system (4.6). We denote by Φ̃t(ϕ; v0) the solution operator of

the macrosystem (4.6) and define the one-dimensional Poincare section RϕPS for a nonzero vector ϕPS ∈ R2

in the macrosystem. Periodic orbits with period T of (4.6) can then be found as solutions of the system

F(r, T, v0) = 0 given by

F : R3 −→ R2, (r, T, v0) 7−→ Φ̃tskip(rϕPS; v0)− Φ̃tskip+νT (rϕPS; v0).

We solve this system for (r, T, v0) using again pseudo-arclength continuation with a secant predictor and a

Newton corrector. Since the periods are roughly T ≈ 34.5, we choose to evolve for ν = 7 periods to match

δ = 240 ≈ νT used in the one-dimensional system.

The results are illustrated in σ coordinates in Figure 13 and in diffusion map coordinates in Figure 15.

The full diffusion map diagram is computed accurately in (r, T, v0)-space and deviates from the diagram

obtained from the microsystem only slightly near the fold point. The reduced diffusion map diagram shown

in Figure 16 is less accurate, particularly on the stable branch. In this case, downsampling the data likely

left gaps in the (r, T, v0) space of interest, leading to less accurate results.
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Figure 16: Shown is a comparison of the bifurcation diagram of periodic orbits computed using the equation-

free approach for the reduced system with D = 2 associated with the reduced data set X and the diagram

computed using pseudo-arclength continuation for the microsystem. The left and right panel show projections

into (v0, r) and (T, r), respectively.

5 Conclusions

We considered large-dimensional dynamical systems, referred to as the microsystem, with a slow-fast time-

scale separation. Equation-free modeling attempts to reduce the dynamics of the microsystem to an implicitly

defined, lower-dimensional macrosystem that captures the dynamics on the slow manifold of the microsystem

corresponding to the slow time scale. The macrosystem can then be used, for instance, to carry out direct

numerical simulations with larger step sizes compared to simulations of the microsystem or to compute and

continue stationary solutions or periodic orbits of the macrosystem that may correspond to more complex

patterns in the microscopic variables. In previous applications, the macroscopic variables were identified

based on insights into the microsystem: for instance, in the context of traffic-flow models, it makes sense to

use the standard deviation from the free-flow solution to capture traffic-jam solutions.

For this paper, our goal was to develop an application-independent approach to equation-free modelling

that does not rely on being able to make an explicit ansatz for the macroscopic variables. We focused on a

data-driven approach and used diffusion maps to embed the data set into a lower-dimensional space, identify

macroscopic variables that parametrize the low-dimensional space, and construct lifting an restriction oper-

ators that connect the micro- and macroscopic systems. Our case study demonstrated that these operators

can be used to continue traffic-flow patterns as steady states or as periodic orbits in the macroscopic system.

It would be interesting to see whether this approach can be used to compute and continue more complex

patterns that cannot be characterized directly in the microsystem: examples are patches of turbulent fluid

surrounded by laminar flow, for instance, or other spatially chaotic structures whose overall shape that may

be parametrized by appropriate macroscopic variables.

In our application, we found that the most important aspect was appropriately sampling data to build the

diffusion map so that all regions of interest in phase space are well-covered. Another avenue for future

research is to find a better method for identifying the underlying data set, for instance by finding better

sampling techniques for the initial data and the stopping times.
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