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Abstract

We analyze synchronization of relaxation oscillations in multiple-timescale reaction-diffusion systems.
Interpreting synchronization as convergence to frequency-synchronized wave-train solutions, we resolve
for the first time the case of phase waves. These waves are nearly phase-synchronized relaxation oscilla-
tions, featuring quasistationary plateaus of length ¢ ~! separated by fast transition layers, where ¢ < 1 is
the timescale separation parameter. Tracking the decay of modulations via a Bloch-wave eigenfunction
analysis, we find a remarkably weak interaction strength of order £3/3. This weak layer interaction and
many of the technical difficulties arise from repeated scattering of eigenfunctions through fold points at
the ends of the quasistationary plateaus. We capture this by combining a novel geometric desingular-
ization approach with Lin’s method, exponential trichotomies, and the Riccati transform. While our
spectral stability analysis yields diffusive synchronization of all phase waves in the FitzZHugh—Nagumo
system, it also identifies potential finite-wavelength instabilities, which we realize in a system variant.
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1 Introduction

The collective behavior of oscillators has been at the center of many questions in nonlinear dynamics,
with applications including synchronization in mechanical systems [50], in neuropathology [52, 59], in the
social sciences [40], in electrical grids [39], or in chemical experiments [33]. Synchronization here means
first of all that the temporal behavior of any oscillator in the collection is periodic with one common
period for all oscillators, that is, the collective behavior is frequency synchronized. In an even stronger
form of synchronization, all individual oscillators go through a particular fixed phase of the oscillation
at the same time, that is, they are phase synchronized. Predicting synchronization, and failure thereof,
can then explain observations, guide treatments, and more theoretically elucidate our understanding of
collective behavior between order and chaos. Our results are concerned with frequency synchronization and
possible desynchronization in relaxation oscillators. We shall start in §1.1 with background on questions of
synchronization relevant to our results. We then set up the FitzHugh-Nagumo system with its wave-train
solutions in §1.2 and state our main stability result and its implications in §1.3 and §1.4.

1.1 Phenomenology of synchronization

Models of synchrony. The simplest descriptions of oscillators rely on modeling the phase ® of the
oscillation as through a differential equation ®; = g(®) on the circle ® € S' = R/Z, leading to phase models
such as the celebrated Kuramoto model [1, 70], where the transition from synchronization to unlocked states



is now well-understood in kinetic limits [24]. More realistic models include inertia [25] or amplitudes [78].
The Landau oscillator, a universal normal form near Hopf bifurcations, incorporates amplitudes in the
simplest form. In spatially extended oscillatory systems, it leads to the complex Ginzburg—Landau equation
as a modulation equation [4, 74]. We are concerned here with what are often more representative and
relevant models of oscillators that describe relaxation oscillations in multiple timescale systems. Specifically,
we are interested in the FitzHugh—Nagumo system, or the closely related van-der-Pol equations. In contrast
to phase or Landau oscillators, these models offer more realistic phase-resetting curves, that is, the response
of oscillations to external stimuli depends quite sensitively on the phase of the oscillation. The multiple
timescale structure — with fast relaxation on O(1) time scales between slow adaptation on O(1/e) time
scales, where ¢ > 0 is a small parameter — also appears intrinsically in applications including ecosystem
dynamics [67], neuroscience [79], heart arrhythmias [91], chemical reactions [45], and even fluid flows and
turbulence [12]. From this broad phenomenological perspective, our work here addresses two questions:

(i) What are time scales of synchronization?

(ii) When and how does synchronization fail?

We explore these questions in the context of a continuous distribution of oscillators, modeled through
reaction-diffusion systems on the line, with a specific focus on the FitzZHugh—Nagumo system in the oscilla-
tory regime; see §1.2, below. The spatially continuous setting avoids additional complicating effects due to
spatial discreteness. Moreover, the planar dynamics of the ODE, describing spatially independent solutions
of the FitzHugh—Nagumo system, isolate key features of multiple timescale relaxation, thus making this
equation and its variants a model of choice in many of the applications mentioned above. Indeed, much
is known about the spatio-temporal dynamics of the FitzHugh—Nagumo equation, including existence,
stability, and bifurcation results for traveling fronts [34, 73|, pulses [17, 20, 21, 46, 55, 62], and periodic
wave trains [42, 53, 54, 71, 89]. Our focus here is on these wave trains which are periodic in both space
and time and propagate as traveling waves in this spatially continuous setting. The collective dynamics
of wave trains are frequency synchronized — that is, all points in space oscillate with the same frequency
— while the phase of the oscillation has a constant spatial gradient; see Figure 1. Synchronization then
corresponds to the convergence to one of those frequency-synchronized wave trains, from initial conditions
that are close to the wave train — that is, already almost synchronized — or more globally. We shall focus
on the former, local question, which translates (i) and (ii) into questions of stability of oscillations: can
wave trains be unstable (ii), and what is the rate of convergence to wave trains when they are stable (i)?
Our work is motivated by somewhat dramatic differences in frequency synchronization that are illustrated
in Figure 2, which shows how synchronization time scales differ within the same equation by only changing
the wavelength, and by the possible failure of synchronization in related models, illustrated in Figure 8.

Effective diffusivity and stability. For single oscillators, or small groups of synchronized oscillators,
stability and rates of convergence are determined by the real part of Floquet exponents A of the linearized
equation: positive real parts yield instability and desynchronization, negative real parts R(\) = —n give
exponential rates n of synchronization. Perturbing a synchronized state will generally lead to a phase shift
of the collective oscillation due to the trivial Floquet exponent A = 0 associated with time translations.
In large or even moderately sized systems, Floquet exponents closest to the imaginary axis arise from
modulating this phase response across oscillators. In other words, the phase of oscillators may be perturbed
in a non-uniform fashion across the system and temporal dynamics only slowly heal the resulting phase
mismatch. The dynamics of phase modulations of oscillators in large, spatially extended systems can be
described using long-wavelength modulation theory [38]. In this regime, the phase dynamics are well-
approximated by a viscous eikonal equation. Modulating the phase of a wave-train solution u(x,t) =
Uwt (lx — wt) with wavenumber [ € R\ {0} and frequency w € R via

Ut (0 — Wt + B2, 1)) ~ uwt(lx — wt) + P(x,t) - uly, (bx — wt),
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Figure 1: Spacetime plot of profiles u(z, t) corresponding to spatially homogeneous oscillations (left) and traveling wave trains
(right) obtained numerically in (1.1) for a = 0.2,y = 1, = 0.001.

one finds in a long-wavelength limit
<I>t + dZ(I)i = deﬂ”q)xm,

where dog > 0 is an effective diffusivity and the coefficient do € R encodes nonlinear dispersion. Wave-train
solutions are now of the form ®(xz,t) = £, — wyt, with w, = dof?. Small-amplitude perturbations of wave
trains can be shown to behave according to solutions of the linearized equation, a convection-diffusion
equation

o + 2d2€*q)m = deffq)mz-

That is, for ¢ — oo solutions are well-approximated by solutions to the heat equation, advected with the
group velocity 2dof,. The time scales of synchronization correspond to the rate of decay in the diffusion
equation, which in large systems is

1R (, )L ~ (det) 2@ (,0) 11, ¢ 0.

We therefore refer to Teg = 1/dog as the time scale of synchronization, thus encoding how we shall answer
question (i) in what follows. The effective diffusive behavior is illustrated in direct simulations in Figure 3,
showing in particular the appearance of diffusive profiles ®(z,t) - ul, (lxx — wt).

The second question, from our point of view, asks for spectral instabilities of the synchronized state. In
a simple dichotomy, this potential instability is either caused by (A) a sign change in the effective diffusivity
deg, that is, ill-posedness of the phase approximation, or (B) by a finite-wavelength mode that is invisible
in the phase approximation.

Roughly speaking, we answer the questions (i) and (ii) above for phase-wave trains in terms of the slow
timescale parameter ¢ as follows:

(i) in FitzHugh-Nagumo and variants, deg ~ €%/% and Tsyne ~ £=2/3 see Theorem 1.2;

(ii) in FitzHugh-Nagumo, no instabilities, see Theorem 1.2; in variants of the FitzHugh-Nagumo system,
degt > 0, but oscillatory Turing instabilities can occur at modulation wavenumber k ~ ¢!/¢, see §1.4.

In terms of the dichotomy mentioned above, the instability in (ii) is always of type (B), i.e. not due to
a change of sign of d.g. Therefore, it is not visible in a phase-reduction that fixes the small parameter
¢ in the relaxation oscillation, but rather caused by an instability of the neutral mode at a finite (for
fixed €) wavenumber. We found the rigidity in (ii) in regard to the consistent stable effective diffusivity,
deg > 0, remarkable. It is strikingly different from the well-understood example of the complex Ginzburg—
Landau equation, where the prevalent instability mechanism is a change in sign of deg, known there as
a sideband or Benjamin—Feir instability. The sideband instability plays an outsized role in the transition
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Figure 2: Illustration of the fast decay of perturbations of trigger waves (left) compared to the weak relaxation of random
perturbations of phase waves (right); see Appendix E for details on implementation.

from coherent spatio-temporal dynamics with ultimate phase-synchrony, to spatio-temporal chaos in its
various forms [4, 29]. For frequency-synchronized states with a phase gradient, that is, for wave-train
solutions, there is however in certain parameter regimes a finite-wavelength instability in the complex
Ginzburg-Landau equation preceding the sideband instability [93], somewhat reminiscent of the potential
instability we observe here.

Synchronization via transition layer interaction. Relaxation oscillations in FitzHugh-Nagumo- or
van-der-Pol-type oscillators consist of two rapid switches between states of slowly varying amplitudes.
In the spatially homogeneous oscillation, the rapid switches are initiated by the slow evolution hitting a
fold point of a slow manifold. This slow passage through the fold contributes a characteristic O(e~1/3)-
correction to the leading-order O(e~!)-part in the period of oscillations, which stems from the maximal
time spent drifting along the slow branch; see Figure 4. Modulating homogeneous oscillations spatially, the
time instances of the rapid switches vary in space: for wave trains, the switches occur along characteristics
w(f)t = Lz, with w(0) the frequency of the spatially homogeneous oscillation; see Figure 1. Dispersion,
that is, the dependence of w on the spatial wavenumber ¢ encoded in the coefficient do in the modulation
equation above, can be thought of as reflecting the interaction of these rapid switches. When ¢ increases,
i.e. for spatially more narrowly spaced transition layers, the drift along the slow manifold is cut short by an
early transition triggered by the interaction of layers, rather than induced by the phase of the oscillation
reaching its final state. The associated periodic wave trains for larger ¢ are thus called trigger waves,
while the waves for small ¢ are called phase waves; see Figure 5 for a depiction of these waves in the
FitzHugh-Nagumo system.

Trigger waves are related to waves in the excitable regime [15]. Here, in the absence of spatially
homogeneous oscillations, oscillatory behavior is organized by excitation pulses, each consisting of a rapid
jump at the front and a second relaxation at the back, and their interaction. Interaction of layers in
this excitable regime, or more generally the regime of trigger waves, is fairly well-understood through a
perturbative analysis; see [83] for large separation at fixed £ and [42, 71] for O(e~!)-separation and layers
away from the fold points of the slow manifold. In both cases, the position of transition layers is naturally
associated with a zero eigenvalue in the linearization and therefore a “soft mode”, leading to effective
reduced descriptions.

In contrast, the transition layers in phase waves do not possess such a natural zero eigenvalue, a fact that
was noticed when analyzing the stability of pulses in a modified FitzHugh—Nagumo system [13]. Therefore,
while the stability analysis features a characteristic neutral mode associated with translations, it does not
possess individual modes associated with translations of the two distinct transition layers, and there does
not appear an obvious way to cast the dynamics as reduced weak-interaction dynamics. Our main result,
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Figure 3: Localized perturbation of trigger waves (left column) and phase waves (right column) in the first component by
1072 exp (—2?/100). Top: space-time plot of u-component (only partial domain on left) shows quick relaxation in the trigger-
wave case, with perturbation only visible up to t = 200, and a persistent defect in the phase wave case visible up to t = 15000
(note the different spatial and temporal plot ranges). Middle: Snapshots of perturbation profiles, subtracting a closest perfect
periodic wave train from the solution. Perturbations are modulated and large near interfaces. They slowly travel to the left
with the group velocity and decay in amplitude as their width grows (again fast in the trigger- and slow in the phase-wave
case). Bottom: The decay is diffusive, which is illustrated here by plotting the square of the width of the region where the
perturbation exceeds 10™° versus time. Data and linear fit with slope 4deg shows, as € decreases, the increase deg ~ 1/¢ in
the trigger case, and the decrease deg ~ €2/ in the phase wave case; see Appendix E for details on implementation.



that characterizes in particular deg, can be thought of in this language of transition layer interaction as,
for the first time, quantitatively characterizing the interaction of fast transition layers resulting from the
passage through a fold.

Quantitatively, suppose that modulations of layers at distance O(¢~!) relax on a time scale e™*. We can
predict this time scale by substituting modulations on a spatial scale ! into the effective diffusive eikonal
approximation equation ®;+da®2 = dog®,, and thereby predict layer dynamics on time scales much longer
than the previously defined synchronization time scale, (deﬁ€2)*1 = 5*2Tsync. Equating e h = (deff£2)*1
then also gives a comparative interpretation of our results and analogous results on trigger waves in [42]:

o trigger waves: deg ~ €~' —> layer interaction strength £°, relaxation time scale e #, g = 1;

2/3

o phase waves: deg ~ €2/3 — layer interaction strength ¢°, relaxation time scale e =%, § = 8 /3.

We refer to Figure 3 for an illustration of the relaxation near both trigger and phase waves. We remark
that the relaxation time scale of trigger waves also appears as a weak interaction eigenvalue of order ¢ in
the stability of pulses [19, 57, 94].

In summary, our results exhibit an extraordinarily weak interaction of transition layers of phase waves,
contrasting a wealth of results on layers in excitable media. Direct simulations in Figure 2 illustrate how
the predictions manifest themselves in the extremely slow synchronization of phase waves when subjected
to random perturbation, as opposed to the rapid synchronization of trigger waves. On the other hand,
we believe that the mathematical techniques developed here will be useful in singularly perturbed spectral
stability problems exhibiting fold dynamics far beyond the specific setting that we focus on.

Defect-mediated frequency synchronization. In addition to these natural questions of stability and
synchronization, our work is strongly motivated by defect-mediated synchronization phenomena. A simple
intuitive example of such synchronization is the presence of “pacemakers”, such as localized regions that
oscillate at a different frequency which in turn propagates through the medium [68, 90]. As a result, a
coherent state spreads with finite speed, rather than only diffusively, with synchronization in a system
of size L achieved after time T' ~ L rather than T' ~ L?. The coherent state is not phase synchronized
but rather frequency synchronized: the phase exhibits a constant gradient while information propagates
away from the pacemaker. The constant-gradient state thus corresponds to a wave train, periodic in time
and space while rigidly propagating. In the absence of external pacemakers, self-organized pacemakers
such as spiral waves [85] and sources [36, 84] can have a similar effect, establishing domains of frequency
synchronization surrounding individual pacemakers in a glassy state.

A similar mechanism of frequency synchronization is related to the growth of the region where oscil-
lations are observed, induced either by an external quench [49] or, again in a self-organized fashion, by
the spreading of the oscillatory instability through an invasion front [95]. The latter was studied in the
example of the FitzHugh—Nagumo system in [8, 22]; see also Figure 7. Such invasion fronts generate wave
trains, i.e. frequency-synchronized states, in their wake in the sense that their group velocity is smaller
than the propagation speed of the front interface [84].

1.2 Wave trains in the FitzHugh—Nagumo system
We introduce the FitzHugh—Nagumo system in the oscillatory regime and present existence results on

phase and trigger waves.

The oscillatory regime. We consider the FitzHugh—Nagumo system

Ut = Ugpy + [(U) — W,
! co - f(u) zeR, t>0, (u,w) € R?, (1.1)
wy = e(u —yw — a),
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Figure 4: The left schematic diagram depicts the left, middle, and right branches M})’m’r of the critical manifold My, the
locations of the fold points (u,w) = (u1, f(u1)) and (u,w) = (@1, f(41)), and the nullcline v — yw — a = 0, under the
conditions 0 < a < 1/2 and 0 < 7 < 7«(a). These conditions ensure that (1.3) is in the oscillatory regime and exhibits
relaxation oscillations. In particular, they exclude configurations in which equilibria lie on the outer branches Mt’r of the
critical manifold, such as the excitable and bistable regimes depicted in the top right and bottom right insets, respectively.

with cubic nonlinearity f(u) = u(u —a)(1 —u), parameters 0 < e < 1, 0 < a < % and

-1
0<7<%@y:9@+aa—mﬂ+u—2@v&—a+1) . (1.2)

The planar system governing x-independent solutions,

Ut = f(u) - w, (13)
wy = e(u—yw —a),
behaves much like the classical van-der-Pol equation, with an unstable equilibrium (u,w) = (a,0) and
large-amplitude relaxation oscillations, which arise as periodic orbits in (1.3) when ¢ > 0 is sufficiently
small. The key feature in the geometric construction of the periodic orbits is the S-shaped critical slow
manifold Mg = {(u,w) € R? : w = f(u)}. The cubic w = f(u) attains a local minimum value at

u1:1<1+a—\/1—a+a2> (1.4)

3

and a local maximum value at

1
ﬂlzf<1+a—|—\/1—a—|—a2), (1.5)

3

splitting My into three normally hyperbolic branches M%]’m’r and two fold points (u1, f(u1)), (a1, f(u1)); see
Figure 4. The nullcline u —yw — a = 0 intersects the cubic w = f(u) in the point (a,0) in the (u,w)-plane,
and (1.2) ensures that there are no intersections with the right and left branches ./\/l%)’r which would lead
to stable equilibria; see again Figure 4. One can then construct relaxation oscillations by concatenating
portions of the left and right branches Mgr of the critical manifold with fast orbits that originate at each
fold point and jump to the opposing normally hyperbolic branch at points (ug, f(u1)) and (ug, f(@;)) with

1 1
uQ:7<1+a—|—2m), a227(1+a—2m), (1.6)

3 3

see Figure 4. We hence refer to the parameter regime 0 < a < %, 0 < v < 7«(a) where (1.3) exhibits this
oscillatory behavior as the oscillatory regime.



Periodic wave trains. In addition to the spatially homogeneous oscillations in (1.3), the PDE (1.1)
admits large-amplitude spatially periodic wave trains, parameterized for instance by their wave speed.
They arise as solutions of an associated traveling-wave equation as follows. Passing to a co-moving frame
(u,w)(&,t) = (u,w)(z — ct,t) with wave speed ¢, we rewrite (1.1) as

up = uge + f(u) —w + cug,

EER, >0, (u,w) € R?, (1.7)
wy = e(u —yw — a) + cwe,

where £ = x — ct. Stationary solutions (u,w)(x,t) = (u,w)(€) satisfy the traveling wave ODE

= uge + f(u) —w + cug,

1.8
=e(u—yw — a) + cwg, (18)
which, upon setting v = u¢, can be written as a singularly perturbed first-order system
Ug =0,
ve = —cv — f(u) +w, (1.9)
€
we = —E(u —yw — a).

Wave trains then correspond to periodic orbits in (1.9). For each 0 < a < 1, 0 < v < 7x(a), and each
sufficiently small € > 0, (1.9) admits a family of wave trains parameterized by the speed ¢ [22, 89]. This
family naturally splits into two sub-families, namely the trigger waves for ¢ < c.(a) and the phase waves

for ¢ > c.(a), where
1— 2
ce(a) =1/ % > 0.

Trigger and phase waves are distinguished by the location of their fast transitions relative to the fold points
at the local extrema of the cubic w = f(u). For trigger waves, the fast jumps occur away from the fold
points, whereas for phase waves they occur near the fold points; see Figure 5. In both cases, the period
(or spatial wavelength) is an increasing function of the wave speed c¢. Moreover, the amplitude of phase
waves remains nearly constant as ¢ increases, while the amplitude of trigger waves increases with c.

The existence of the family of trigger waves was established in [89], while the family of phase waves was
constructed more recently in [22]. Technically, constructing phase waves is significantly more subtle, due
to the loss of normal hyperbolicity near the extrema of the cubic w = f(u), requiring the use of geometric
desingularization techniques to complete the construction. The following theorem summarizes existence
results for both trigger and phase waves.

Theorem 1.1. [22, Theorem 1.1] Fiz 0 < a < %,0 < v < v«(a) and ¢ > 0. Then, for all sufficiently
small € > 0, the system (1.9) admits a periodic orbit T'c(c) with period Lc(c). The function L.(c) is
monotonically increasing in ¢, and satisfies lime_,oeL:(c) = Lo(c) for a monotonically increasing function
Lo(c). For fizred ¢ < ci(a) and € > 0 sufficiently small, T'-(c) is a trigger wave, while for fixred ¢ > c(a)
and € > 0 sufficiently small, T'z(c) is a phase wave.

Figure 5 depicts the results of numerical continuation of wave trains in the traveling-wave equation (1.8)
in the wave speed parameter ¢ and period L. for fixed a = 0.2,y = 1, = 0.001. We see that the period
L. increases monotonically in ¢, reflecting a negative group velocity ¢z —c = —Lj—z in the comoving frame
propagating with speed c. In other words, the apparent phase velocity w/¢ is always larger than the group
velocity describing the speed of propagation of disturbances, dw/d¢; see [22, Remark 1.6]. Figure 5 also
depicts a phase-wave train profile obtained for ¢ = 2 > ¢,(a) =~ 0.648 and a trigger wave profile obtained
for ¢ = 0.4 < ¢x(a). We note the apparent change in concavity of w(¢) near the transition between trigger
and phase waves (see Figure 5, bottom left panel). An examination of the relation between speed and
period [22, §4.4] suggests that a change in sign of w”(¢) occurs within the family of trigger waves at a speed
somewhat close to — but in fact O(1) in € away from — the trigger /phase wave transition.
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1.3 Main result and consequences: spectral stability of phase-wave trains

Our main result establishes spectral properties of the linearization at phase-wave trains which translate
into frequency synchronization near phase waves, time scales of synchronization, and the possibility of
desynchronization.

Stability and effective diffusivity near phase-wave trains — main result. A periodic orbit I'; of
Theorem 1.1 corresponds to a stationary, L.-periodic wave-train solution ¢.(§) = (u:(£),w:(§)) to (1.7).
Linearizing (1.7) about this solution, we obtain the L.-periodic differential operator

r (u) _ <u§§+f’(u€)u—w+cu§>

w e(u —yw) + cwe

acting on L?(R,C) x L?(R, C) with domain H?(R,C) x H*(R,C). The spectrum of L. is characterized by
Floquet-Bloch theory [48, 80]. We set e, (&) = e ¢ for p € R and define the family of Bloch operators

Lpe <Z> =, 'L. (ep <Z>> _ <(3§ +ip)* +c(cZ§ +ip) + f'(ue) o +_i;) _m> <Z> |

acting on L?(R/L.Z,C) x L*(R/L.Z,C) with domain H*(R/L.Z,C) x H (R/L.Z,C). Since L,. has
compact resolvent by the Rellich-Kondrachov theorem, its spectrum consists of isolated eigenvalues of
finite algebraic multiplicity only. Floquet-Bloch theory then asserts that the spectrum of L. is given by
the union

b)) (Es) = U E(ﬁp,s)'
ve[-1-70)

Consequently, A € C lies in the spectrum of £, if and only if there exists p € R such that the eigenvalue

problem
U u
e ()= (") o

admits a nontrivial solution (u,w)" € H?(R/L.Z,C) x H'(R/L.Z,C).

Our main result shows that the spectrum of L. is confined to the left-half plane, except for the simple
translational eigenvalue of Ly, at the origin, and is uniformly bounded away from the imaginary axis
outside a small neighborhood of the origin. Moreover, it establishes that the critical spectrum near the
origin is determined through an implicit transcendental equation — referred to as the main formula — which
relates A to the Floquet—Bloch frequency variable p. The leading-order coefficients of this equation are
fully explicit in terms of a, ¢, and 7. In a neighborhood of A = 0, the solution to the main formula is given
by a smooth curve A.(p), called the critical spectral curve or linear dispersion relation, which touches the
origin in a quadratic tangency at p = 0. Following [38, §4], we find that the first derivative iA\.(0) = ¢, — ¢
yields the group velocity in the co-moving frame with speed ¢, while the second derivative A\(0) = —dog
provides the effective diffusivity.

Theorem 1.2 (Main result). Let 0 < a < 3, 0 < v < 7s(a), and ¢ > c.(a). Fiz § > 0 arbitrarily small.
Then, there exist constants C, u > 0 such that, for all ¢ > 0 sufficiently small, the linearization L. of (1.7)
about the Le-periodic wave train ¢-(§) = (ue(§),w:(£)), established in Theorem 1.1, satisfies the following
properties:

(i) Spectral stability: We have 3(L:) C {A € C: R(A\) < 0} U{0}. Furthermore, there exists n(e) > 0
such that any X € (L) with || > pe'/0 satisfies R(N) < —n(e).
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Figure 6: Left: Critical spectral curve A:(p) of Theorem 1.2 for fixed a = 0.2,y = 1,e = 0.001,c = 2 associated with the
phase-wave train depicted in Figure 5. Plotted is $(A:(p)) versus R(Ac(p)). Center and right: Numerical continuation of the
coefficient A\ (0) = —d.s versus ¢ for a = 0.2,7 = 1,c = 2: The center plot depicts the numerically computed expression
for X”(0) for values of & € (107%,1073) (blue) alongside the leading-order analytical expression —ke?/® (dashed red), where
k = 2kc®/Lo. The right plot depicts a log-log plot of the difference between these two expressions (blue). Also shown is a line
of slope 2/3 (dashed red), as well as a curve of the form loge + log|loge| (dotted red), which suggests that the error between
the two expressions is of O(e|loge|). We refer to Appendix D for details on how these computations were performed.

(ii) Main formula: A point A € C with |S(\)| < p and |R(N)| < pe'/S lies in the spectrum %(L.) if and
only if it obeys the formula

o(2-in)Le (1 + My (ﬁ) il b glf’s(’\)> <1 + P (ﬁ) Ol g“f’gm) +E(N) (111)

es /) uz —vf(u1) —a es /) U2 —f(u1) —a

for some p € R, where the residual terms satisfy
1
EeM] 8 6, 18] < C (F + [Alog A1)

and where Ty, Tye: C — C are explicit entire functions, defined by (1.12) below. In this case, A is an
etgenvalue of the Bloch operator L, .. In particular, 0 is an algebraically simple eigenvalue of Lo.

(i4i) Critical spectral curve: Locally near (0,0), the set of (A\,p) € C x R solving (1.11) is given by a
smooth curve A;: I — C with A\;(0) = 0, where I. C R is a neighborhood of 0. The group velocity
cg =1AL(0) 4 ¢ and the effective diffusivity deg = —A.(0) > 0 obey the estimates

|cg| <9,

where the coefficient k > 0 is given explicitly by (3.81), and Ly = lim.,0eLe = L, + Ly is given
by (2.7) and (2.8), below.

The full setup and strategy for our analysis of the eigenvalue problem (1.10), leading to the proof
of Theorem 1.2, are presented in §2. Figure 6 illustrates the result by displaying the typical shape of
the critical spectral curve A.(p) for fixed small e > 0, together with the dependence of \/(0) on ¢; see
Appendix D for details on computations. We now outline several implications of Theorem 1.2.

Comparison: trigger waves. The results for trigger waves in [42] are stated somewhat differently but
are in many ways equivalent to Theorem 1.2. As mentioned previously, the analysis in the case of trigger
waves is significantly simpler since these waves avoid the fold points on the critical manifold. Calculations
in [42] are further simplified by setting v = 0, though we expect the argument presented there to hold for
nonzero ~y after appropriate modifications. Translated into the formulation (1.1) of the FitzHugh-Nagumo
system, in [42] it is shown for fixed 0 < a < 3, 0 < v < %(a), 6 > 0, and 0 < ¢ < c.(a) (rather than
¢ > ci(a) for phase waves) that, provided € > 0 is sufficiently small, the operator L. satisfies
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(i) Spectral stability: We have ¥(L.) C {A € C: R(\) < 0} U{0};

(ii) Critical spectrum: There exist an open interval I. C R containing 0 and a smooth curve A\;: I, — C
such that A.(p) is an eigenvalue of £, for all p € I.. In particular, \.(0) = 0 is an algebraically
simple eigenvalue of Ly .. Moreover, the group velocity ¢ = iA.(0) + ¢ and the effective diffusivity
deg = —AZ(0) > 0 obey the estimates

lcg —c| <0, |deﬂ‘—]€€_1‘ <ée

where the coefficient & > 0 depends only on a,~, and c.

In particular, effective diffusivites e~ are much larger compared to the ¢%/3-diffusivities for phase waves

in Theorem 1.2. In addition, group velocities in the steady frame agree with phase velocities at leading
order.

Comparison: spatially homogeneous relaxation oscillations. The limiting case ¢ — oo, which is
not covered by Theorem 1.2, corresponds to waves near spatially homogeneous oscillations; see Figure 1.
Frequency-synchronization properties similar to those described in Theorem 1.2 and examples of instability
similar to our example in §1.4 below, can be analyzed using an approach based on the techniques developed
here. We refer to [7] for details of the adapted analysis and associated phenomena, as well as to [11] for
related observations in the case of just two coupled oscillators.

Consequences: nonlinear stability of phase-wave trains. The diffusive spectral stability estab-
lished in Theorem 1.2 is sufficient to guarantee nonlinear stability of wave trains for reaction-diffusion
systems which are strictly parabolic [47, 60, 61, 86, 88]. Systems such as (1.7) with degenerate diffusion
introduce additional challenges as one must control high-frequency modes to obtain a spectral mapping
estimate, and nonlinear stability of wave trains in such systems is thus not immediately guaranteed by
existing results for general reaction-diffusion systems. Nevertheless, we show in the companion paper [8,
§2.6], that the spectral stability result, Theorem 1.2, is sufficient to obtain nonlinear stability of the phase-
wave trains of Theorem 1.1 against spatially localized perturbations, with asymptotically diffusive decay
on the time scale dQﬂ} /2. This result was later extended to fully nonlocalized perturbations in [3]. We note
however that the estimates in [3, 8] apply for fixed € > 0 only, that is, constants are not uniform in e.

Consequences: frequency synchronization through fronts. In the PDE (1.1), in the oscillatory
regime 0 < a < 1, 0 < v < 7.(a), perturbations of the unstable homogeneous rest state (u,w) = (a,0) can
lead to large-amplitude spatial patterns which spread into this unstable state; see Figure 7. The invading
spatial patterns are selected from the family of wave trains of Theorem 1.1, parameterized by the wave
speed ¢ > 0. The selected speed is determined by an invasion front in the leading edge of the spreading
process. The marginal stability conjecture [9, 32, 95], which has not yet been rigorously verified for any
pattern-forming front, states that the selected front should be marginally spectrally stable in an optimal
weighted space. The front is categorized as pushed or pulled depending on whether the marginally stable
spectrum lies in the point spectrum or essential spectrum. In [22], both pushed and pulled pattern-forming
invasion fronts were constructed in (1.1) as traveling waves which arise as connections between the unstable
rest state (u,w) = (a,0) and a periodic wave train of Theorem 1.1 in the wake. In the pulled case, the
corresponding wave train can be a trigger wave or a phase wave, depending on the choice of the parameter
a, while in the pushed case, all selected wave trains are phase waves. Diffusive spectral stability of the
associated wave train, as guaranteed by Theorem 1.2, is an essential ingredient in the nonlinear stability
argument for both pulled and pushed pattern-forming fronts, as detailed in [6, 8], and hence represents an
important step towards resolving the marginal stability conjecture for pattern-forming fronts in (1.1).
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Figure 7: (Left) Spacetime plot of the u-profile of a pushed pattern-forming invasion front in (1.1) which selects a phase-wave
train, obtained by direct numerical simulation for the parameter values a = 0.2,y = 1, = 0.001. (Right) Snapshot of the
u-profile at time ¢ = 2500.

Technical approach. In the context of singularly perturbed PDEs, a common approach to analyzing
spectra utilizes the Evans function [43], which can admit a decomposition, or factorization, into slow and
fast components based on the geometric singular perturbation structure of the underlying solution [2, 31].
This approach has been used to prove the (in)stability of traveling pulses and fronts in singularly perturbed
reaction-diffusion systems such as the FitzZHugh—Nagumo, Gray—Scott, and Gierer—Meinhardt systems,
among others [37, 63, 96]. In those cases, one is typically most concerned with the location of one or
more isolated eigenvalues in the point spectrum, which can be studied using, for instance, winding number
arguments. In the case of wave trains, Evans-function techniques were used to locate spectral curves
parameterized by the Floquet-Bloch frequency variable in [48] and then later in the singularly perturbed
setting in [30, 31, 42, 92] for the FitzHugh—Nagumo and Gierer—Meinhardt systems, as well as for more
general reaction-diffusion models. As mentioned previously, these latter works focus on trigger waves or
periodic pulse/spike patterns which avoid challenges associated with loss of hyperbolicity at fold points.

The case of phase waves involves unfolding the critical Floquet—Bloch spectral curves in the presence
of a loss of hyperbolicity, a combination that poses unique challenges. Our contribution here is, to our
knowledge, the first analysis which treats this case. To prove Theorem 1.2, we adopt an approach based on
Lin’s method [72], in which we directly construct piecewise continuous potential eigenfunctions. A matching
procedure using Melnikov theory then leads to a reduced algebraic equation relating the spectral parameter
A to the Floquet—Bloch frequency p. This strategy has proven effective in the spectral stability analysis of
wave trains in slow-fast reaction-diffusion systems [30], where exponential trichotomies are used to separate
slow from fast behavior and to transfer Fredholm properties from reduced eigenvalue problems to the full
system. In the present setting, however, new challenges arise due to the passage through nonhyperbolic
fold points, which rules out uniform exponential trichotomies. To overcome these difficulties, we employ
geometric desingularization, or blow-up, techniques [69]. Inspired by previous work concerning stability
of traveling-pulse solutions in the FitzHugh—-Nagumo system [19], we develop a novel application of these
techniques by blowing up the eigenvalue problem alongside the existence problem, which involves including
A in the blow-up transformation and analyzing the resulting eigenvalue problem in several scaling regimes.
By interweaving this construction with Lin’s method, while employing the Riccati transformation [31] to
separate slow from fast dynamics near the wave train along hyperbolic portions of the critical manifolds, we
are able to precisely characterize the critical spectrum in Theorem 1.2. In particular, in contrast to prior
analyses of traveling pulses [19, 56], we must keep track of the dynamics in the center space along the wave
train and solve a series of boundary value problems to derive the reduced algebraic equation (1.11) which
fully describes the nature of the critical spectrum near the origin. This construction, and its interplay with
the characteristic scalings associated with slow passage through fold bifurcations, leads to the somewhat
unexpected ¢'/6-scaling for the critical spectral region in Theorem 1.2(ii) and the £2/3-scaling for the
effective diffusivity in Theorem 1.2(iii).

We expect these tools to be broadly applicable in singularly perturbed eigenvalue problems, in particular
those arising in the stability analysis of traveling waves in systems exhibiting loss of hyperbolicity through
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folds and other nonhyperbolic singularities. Such singularities are common in the study of traveling waves
in reaction-diffusion systems, where folded singularities are associated with relaxation oscillations as well
as complex spatio-temporal oscillatory phenomena such as canards and mixed mode oscillations [10, 18,
51, 64, 98], and diffusion-induced instabilities [16]. Moreover, recent studies [58, 97] highlight the role
of folded singularities in organizing spatially periodic waves emerging at a singular Turing bifurcation.
To our knowledge, the spectral and nonlinear stability of these classes of solutions has not been explored
analytically, and we believe the approach developed here presents a framework to address these and related
problems.

1.4 Rigidity at large scales and instability at intermediate scales

Our spectral analysis identifies the regime A ~ £'/6 as a potential source for instabilities. Theorem 1.2(iii)

shows that the critical spectrum touching 0 is diffusive, which follows from the leading-order description
of the critical spectral curve A:(p) as a solution to the main formula (1.11). Based on the analysis of this
curve near p = 0 in §3.6, we expect that deg = —AZ(0) > 0 holds much more generally for reaction-diffusion
systems with relaxation oscillations. The negative sign \”(0) < 0, together with the e'/6-scaling in (1.11)
stemming from the slow passage through the fold points, indicates that no instability occurs for |A| < el/s,
On the other hand, the analysis of the main formula (1.11) for |A\| > £/¢, in combination with standard
Sturm-Liouville arguments, precludes unstable spectrum for |A| > £1/6. see Proposition 3.11, §5, and
Appendix A. However, we find that for \/e!/® of intermediate size, the left- and right-hand sides of (1.11)
can be balanced to produce potential instabilities.

To investigate this possibility, we note that the entire functions Yy, Tys: C — C in (1.11) are given by

22 > =2 (s+90)
. ] s 2 _ </ 2
Tie(®) = g AT ()2 /_Qoe ) (sAi(s)® — Ai'(s)") ds, -
Tue(z) = L /OO e9|ff263 (a+6%) (sAi(s)? — Ai(s)?) ds |
Qqu?’Ai/(—QQ)Q —Qo ’

where —Qy < 0 denotes the largest zero of the Airy function Ai(z) (see Appendix C), and

g (0=t DY = f () )V
C

0, = (a* —a+ D)Moy — yf (1) —a)'/? S 0.
Cc

> 0,

In the oscillatory parameter regime 0 < a < %, 0 <7 < 7v(a) in (1.1), we have Oy > 6i¢, which rules out
the existence of unstable spectrum in the intermediate regime || ~ /6 see the proof of Proposition 3.10.
These observations then motivate considering the following FitzHugh—Nagumo-type system with mod-

ified nonlinearities

Uy = 1 u, w), wu—a) (3 —u
ec + Flu,w) Pluw) = (2+L(_2a ) w5 —ru—a), (1.13)
5

wy = e(u —yw — a),

and parameters a = 0.25,7 = 0.01,& = 0.002, and r = 0.998; see Figure 8 for nullclines. Analogous to the
FitzHugh—-Nagumo system, (1.13) admits a family of wave-train solutions passing near nonhyperbolic fold
points, resembling relaxation oscillations. The nonlinearities are chosen in such a way that the correspond-
ing quantities Oy, O)¢ introduced above satisfy 6.+ < 6y, allowing for the possibility of an instability of the
wave-train solution to (1.13). Examining (1.11), we expect the regime |p| ~ |A| ~ /6 to be relevant for
instabilities. Figure 8 depicts a numerically computed wave-train solution of (1.13) as well as the associated
unstable critical spectral curve, which crosses into the right half plane for a range of intermediate values
of the Floquet—Bloch frequency parameter p.
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Figure 8: (Top left) Shown are u (solid) and w (dashed) profiles of a wave-train solution of (1.13) with wave speed ¢ = 3 and
parameters a = 0.25,y = 0.01,¢ = 0.002, and r = 0.998. (Top right) Plot of the wave train from the left panel in (u,w)-space
(solid green) along with the nullcline F(u,w) = 0 (dashed red). (Bottom left) Results of numerical continuation of the critical
spectral curve A.(p) associated with the traveling wave train depicted in the top-left panel (compare with Figure 6). Plotted
is S(Ae(p)) versus R(Ac(p)). (Bottom right) Space-time plot of the u-component of the solution to (1.13) initiated with the
(unstable) wave train at ¢ = 3 plus small noise.
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1.5 Outline of the paper

The remainder of this paper is devoted to the proof of Theorem 1.2. In §2, we introduce our setup for
analyzing the eigenvalue problem (1.10) and we present the proof of Theorem 1.2, which relies on combining
three technical propositions concerning the behavior of (1.10) for A in different regions of the complex plane.
The region of small A\, which is the most delicate, is treated in §3. This analysis hinges on the geometric
desingularization of the system obtained by coupling the existence and eigenvalue problems near the fold
points, which is carried out in §4. The regime of intermediate |\| is discussed in §5, while the regime of
large |\| is addressed in Appendix A. Appendices B and C introduce exponential di- and trichotomies and
the Airy function, respectively. Finally, Appendices D and E provide details of the implementation of the
numerical continuation and the direct numerical simulations presented in the introduction.
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2 Setup and strategy of proof

Our analysis of the eigenvalue problem (1.10) relies on the fast-slow structure of the traveling-wave equa-
tion (1.9), which was used in the proof of Theorem 1.1 in [22], where phase-wave trains were constructed
using geometric singular perturbation theory. We briefly outline this construction in §2.1, and we derive
pointwise estimates for the proximity of the wave train to its singular limit. In §2.2, we describe the setup
and strategy for the analysis of the spectral problem (1.10). Based on this strategy, we present in §2.3 a
break down of the proof of Theorem 1.2 into three propositions, which will be proved in the subsequent
sections.

2.1 Overview of existence analysis

The construction of phase-wave trains is based on a fast-slow analysis of the traveling-wave equation (1.9),
which we repeat here for convenience

Ug = v,

ve = —cv — f(u) + w, (2.1)
€

we = —E(u —yw — a).

We refer to (2.1) as the fast system. Rescaling y = £, we obtain the equivalent slow system

EUy =,
evy = —cv — f(u) +w, (2.2)
wy = —E(u —yw — a).
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To construct phase-wave trains, we separately analyze (2.1) and (2.2) in the limit € = 0; by concatenating
orbits from the limiting systems, we obtain a singular periodic orbit, which can be shown to perturb to an
actual periodic solution of the full system for all sufficiently small ¢ > 0.
2.1.1 Slow subsystem
Setting € = 0 in (2.2), we obtain
= ’U’
0=—cv— f(u)+w,
wy = ——(u—yw — a),
Y c( gl )

for which the flow is restricted to the set My = {(u,v,w) € R3 : v = 0,w = f(u)}, called the critical
manifold. Away from points where f’(u) = 0, the reduced flow on My is given by

cf (wWuy =vf(u) + a — u. (2.3)

We recall from §1 that w; and ug, given by (1.4) and (1.5), denote the local minimum and maximum of the
cubic w = f(u), respectively, at which f/(u) = 0. The critical manifold therefore decomposes into three
normally hyperbolic branches

M = {(u,v,w) €R3: v =0,w = f(u),u € (—o0,u1)}
MP = {(u,v,w) €ER®: v =0,w = f(u),u € (u1,u1)}
My = {(u,v,w) €ER?: v = 0,w = f(u),u € (i1,00)}

and two fold points (u1,0, f(u1)) and (a1, 0, f(u1)); see Figure 4. We refer to these as the lower and upper
fold points, respectively. In the parameter regime 0 < v < 7. (a), the flow of (2.3) points upward on the left
branch M}, and downward on the right branch ME. On the left branch M}, the dynamics in the w-variable
is given by

Wy = _% (fl_l(w> —yw—a), (2.4)

where u = f; ! (w) denotes the smallest root of the cubic equation f(u) = w. Similarly, the dynamics in
the w-variable on the right branch Mj is given by

L

wy:_g(fr (w)—'yw—a),

where u = f!(w) denotes the largest root of f(u) = w.

T

2.1.2 Layer problem
The layer problem is obtained by setting e = 0 in (2.1)

Ug =0,
ve = —cv — f(u) + w. (25)

Here w € R acts as a parameter. This system admits a family of equilibria, given by the critical manifold
M. We focus on the behavior of the system for w = f(uy), that is, the layer containing the lower left
fold point. The layer problem (2.5) admits two fixed points: (u1,0), corresponding to the nonhyperbolic
fold point, and a second saddle fixed point at (ug,0), where ug is given by (1.6); see also Figure 4. For
w = f(uy), (2.5) is a Fisher-KPP-type equation which, for values of ¢ > ¢,(a), admits a traveling front
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solution ¢¢(&) = (ug(€), ve(€)) arising as a heteroclinic connection between the hyperbolic saddle (uz,0) and
the nonhyperbolic fold (uy,0) where us(§) is monotonically decreasing [5, 22]. The linearization of (2.5) at
w = f(uy) about the fold point (u;,0) admits the eigenvalues 0 and —c with corresponding eigenvectors
(1,0)" and (—1,¢) T, respectively. For ¢ > ¢,(a), the front ¢¢ approaches (u1,0) with algebraic decay along
a center manifold associated with the zero eigenvalue, while in the critical case, ¢ = ¢4 (a), this fixed point
is approached along its strong stable manifold with exponential decay.

By symmetry, analogous results hold for w = f(u1). In particular, (2.5) again admits two fixed points:
(u1,0), corresponding to the nonhyperbolic fold point, and a saddle fixed point at (@2, 0), where uy is given
by (1.6). We note that

Ul —Ug =uUg — UL = V1—a+ a2 (26)

For w = f(u1), there exists a monotone traveling back solution ¢y(§) = (up(§),vp(£)) arising as a hete-
roclinic connection between the equilibria ue and @ where up(€) is monotonically increasing. Again, for
¢ > cy(a), ¢y, approaches (u1,0) with algebraic decay along a center manifold.

In the case ¢ > ci(a), the above front and back solution of (2.5) for w = f(uq), f(uy1), respectively,
satisfy the following pointwise estimates.

Proposition 2.1. Let 0 < a < % and take ¢ > c*(a). Then, there exist constants C,v,w > 0 such that

Jug(§) — ual, [or (&)1, |un(€) — wal , [p(§)] < Ce™, € <0,

C
e ()1 £>0.

W |<7

ug(§) —ur —

T1¢ up(§) — a1 + ——— |, [vp(§)

w
1+¢

In addition, us s monotonically decreasing and wuy, s monotonically increasing.

2.1.3 Construction of singular periodic orbit

It is readily seen that equation (2.4) can be solved by separation of variables, yielding a solution w(y) with
initial value wi(0) = f(uy), which satisfies wi(L;) = f(uz) for

o ___ © ()
- dw= [ —————du. ,
b /ﬂul) W) —qw—a /u1 u—flu)—a " (2.7)

Consequently, wi(y) = f; ' (wi(y)) solves (2.3) for y > 0 and satisfies w)(0) = w1 and w (L)) = . Hence,
the orbit (uj(y),0, f(w(y)) lies on the left branch of the critical manifold M and connects the fold point
(u1,0, f(u1)) to the point (us2,0, f(u2)). Similarly, there exists a solution u,(y) to (2.3) with boundary
values u,(0) = @y and uy(Ly) = ug, where we have

B fu2) —c - i L’(u)
b= /f(ﬂl) fr_1<’w) —yw — adw N /ﬁl U — fyf(u) — adu' (2-8)

The orbit (u,(y),0, f(ur(y)) connects the fold point (u1,0, f(u1)) to the point (us2,0, f(u2)) on the right
branch of M. We define a singular periodic orbit I'g(c) by concatenating these orbit segments on the left
and right branches of My with the front and back solutions (uf(§),ve(€), f(u1)) and (up(€),vp(€), f(u1));
see Figure 9.

2.1.4 Existence of nearby periodic orbit and pointwise estimates

In [22] it is shown that the singular periodic orbit T'g(c) perturbs to a nearby periodic solution I'c(¢) of (2.1)
for sufficiently small € > 0. The proof is based on a fixed-point argument, using estimates which follow from
results of geometric singular perturbation theory. In the forthcoming spectral stability analysis, we require
more detailed pointwise estimates on the solution, which in part rely on the nature of the passage of the
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Figure 9: Shown is the singular periodic orbit I'g(c) formed by concatenating segments of the branches ./\/110’r of the critical
manifold Mo with the fast front and back solutions ¢xp.

periodic orbit near the nonhyperbolic fold points. Hence we briefly review this aspect of the construction
here.

Away from the fold points, the manifolds M%)’r are normally hyperbolic saddle-type critical manifolds.
Therefore, by standard results of geometric singular perturbation theory [44], for any k& > 0, (compact
portions of) these critical manifolds, as well as their stable and unstable manifolds Ws’u(/\/lg’r), perturb to
locally invariant manifolds ME" and WSu(ME") for sufficiently small € > 0, which are O()-close in the
C* sense to their singular counterparts. In [22], the persistence of the singular periodic orbit I'g(c) relies
on the transverse intersections of the manifolds W"(M:) and W*(ML.) along the front ¢; and of W*(ML.)
and WS(ML) along the back ¢p. However, this transversality is not guaranteed by standard geometric
singular perturbation theory, as the intersections between these manifolds along the orbits ¢r, ¢, occur in
the layers w = f(u1), f(#1), in which the manifold M} loses hyperbolicity at the lower fold point, while
MG loses hyperbolicity at the upper fold point, and the perturbed stable manifolds WS(M?l) are not well
defined near ¢¢, ¢y,.

To complete the construction, it is necessary to control the perturbed flow near the fold points, which
requires the use of geometric desingularization techniques. These methods will also play an important role
in the forthcoming spectral stability analysis. We consider the flow near the lower fold point (u,v,w) =
(u1,0, f(u1)); the upper fold is similar. Following [22, §4], for any k > 0, there exist a neighborhood of the
origin ¥V C R3 and a C*-change of coordinates Nz : V — R? such that the map U = (uy,0, f(u1)) " +N(V)
transforms (2.1) to the system

Z¢e = gl(xv Y3 5))
ye = ega(z, y;€), (2.9)
2c = 2g3(x,y, 2;€)

in a neighborhood of the fold point, where

gi(z,y;6) = —2% +y + O(y, y?, 2% ¢),
gg(az,y;e) =1+ O(.fE,y,E),
C
g3(x7y72;8) = _07 + O(x7y7z78)'
If
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Figure 10: Shown are the dynamics (2.9) in the local xyz-coordinates near the lower fold point in the singular limit ¢ = 0.

Here the traveling-wave coordinate has been rescaled as { = 61s¢, where the positive constant 6 is given
by

(a® —a+1)Y5(uy — yf(ur) — a)'/?
C

> 0.

O = —

This coordinate transformation explicitly distinguishes between the flow on a two-dimensional center man-
ifold near the fold and the strongly attracting dynamics in the hyperbolic z-direction; see §4 for further
details on the coordinate transformation N.. We note that a similar coordinate transformation exists near
the upper fold point with corresponding rescaling

gy = C et DI =l @) =
C

In the above transformed system (2.9), the critical manifold M is determined by the conditions z = 0
and ¢1(z,y;0) = 0, taking the form of (approximately) an upward facing parabola centered at the origin
(z,y) = (0,0) in the subspace z = 0, with the left and right branches of the parabola representing M} and

o', respectively; see Figure 10. Within the subspace z = 0, we define the following continuation of the
critical manifold /\/l%) by

M%)’Jr = MyU{(z,y,2) :y =2=0,2 >0} (2.10)

that is, we append the positive z-axis to ./\/l}). Away from the fold, using standard geometric singular
perturbation theory as stated above, the manifold ./\/lb perturbs to a locally invariant slow manifold M.
which is C* — O(e)-close to M},. Using blow-up desingularization techniques, in [20, §4] it was shown
that the extended manifold M%)’Jr perturbs to a locally invariant manifold ME" which is O(£2/3)-close in
CY to ME’JF and O(e'/3)-close in C! to M%)’+. The family of strong stable fibers WS(ME’JF) of M%)’Jr also
perturbs to a two-dimensional locally invariant manifold W*( 15+) which is similarly O(£%/3)-close in C?
and O('/3)-close in C' to WS(MB’JF). Following [22], one can then utilise the transverse intersection of
WH(ML) and the extended manifold WS( la+) (and analogously for an extended manifold M2 near the
upper fold) to complete the existence argument; see Figure 11.
We have the following.

Proposition 2.2. Let 0 < a < 3. Fiz ¢ > c.(a) and 0 < v < v.(a). Then, there exist a constant C > 1
such that, provided 0 < € < 1, (1.9) admits a periodic orbit I'c(c) corresponding to a stationary solution
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WA ML) =

Figure 11: Shown are the dynamics of (2.9) near the lower fold point for 0 < ¢ < 1 as well as the manifolds W"(M3) and
WS(MIE‘+). The behavior near the upper fold point is similar. The existence of periodic orbits corresponding to traveling
wave-train solutions is obtained in [22] via a fixed point argument applied to the Poincaré map associated with a transverse
section ¢ near the fold.

(ue, we) (&) (1.7) of period L. = Lz + Ly with
|5Lr,€ - Lr|a |5Ll,a - Ll| < 05% (2.11)

Furthermore, there exists a continuous map dg: [0,00) — [0, 00) with 6o(0) = 0 such that for0 < e K v K 1,
the following pointwise estimates hold

() = w(©)] 1206 (O] Jun(©) — )] < et g [T
:log(s

ue(Lie + €) — up(€)] Jwe(€) = f(m)| < Coes, €€ ,

ug(Lis +€) = up(§)

AS
~—
R
[EE—

W(©)] < Cuet, se”wm+““q,

B v
elfne+ )~ un(e) ittt + O] < Gueh, g [t B )
uc(€) — ] [ul)] Jwal) — fu] < 00). €€ |22

OIR ™ o

ue(Lie + &) — ],

u/s (Ll,z-: + é‘)

swe(Lye + &) — f(ur)] < do(v), £ e

R X=X

[ue (&) —w(ef)|, Jue(Lie + &) — ur(€)| < do(v), S

where C, > 1 is an e-independent constant.

Proof. The existence result and the estimate (2.11) follow directly from [22, Theorem 1.1]. It remains to
obtain the pointwise estimates (2.12). To do this, we return to the existence construction [22, Proposi-
tion 4.3] for the phase-wave trains. The wave trains are constructed in the three-dimensional traveling-wave
equation (1.9) using geometric singular perturbation theory and a fixed-point argument to obtain a pe-
riodic orbit near the singular orbit described above. The analysis in [22, Proposition 4.3] shows that
the perturbed periodic orbit is (9(52/ 3)-close to the singular orbit. However, to verify the pointwise esti-
mates (2.12), slightly more care is needed.
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The periodic orbit is obtained as a fixed point of the return map to a section ¢ transverse to the
front (u(€),ve(§), f(u1)). Without loss of generality, we assume this intersection occurs at £ = 0, so that
(ug(0),v¢(0), f(u1)) € ¥¢. Within this section, the unstable manifold W*"(M}) transversely intersects the
stable manifold WS(MQ’JF) of the trajectory M2, which is the continuation of the slow manifold M through
the fold. This intersection occurs at a point (u,v,w) satisfying |(u,v,w) — (u(0),v¢(0), f(u1))| < Ce?/3,
The fixed point of this map, corresponding to the periodic orbit, is obtained exponentially close (in e~!) to
this intersection. Hence by a regular perturbation argument, we have that for any v > 0, |u.(§) — ug(§)| <
C,e2/3 for € € [—l l]. By taking v > 0 sufficiently small, we can ensure that the periodic orbit is within a

small neighborhogd of the lower left fold point (u, v, w) = (u1,0, f(u1)) at £ = 1/v. To extend the left side
of the interval to £ = @, we apply standard corner estimates (see, e.g. [19, Theorem 4.5]). A similar
argument holds across the back, which completes the proof of the first two estimates.

Fixing v > 0 sufficiently small, we can ensure that at { = %, the wave train is exponentially close to a
point on /\/116 outside a small neighborhood of the lower left fold point, that is, in the region where /\/l!c. is
normally hyperbolic. Therefore, the third estimate follows from standard geometric singular perturbation
theory, noting that the weaker £2/3 estimate (as opposed to ¢) is due to the fact that the jump point from
M. along the back at £ = L. + log(e)/v occurs at a location which is O(e2/3)-close to the singular orbit
by the first estimate. The fourth estimate concerning the passage near M is obtained similarly.

Fixing v > 0 sufficiently small in the first three estimates, by construction, the wave train is within a
small neighborhood of the lower left fold point (u,v) = (u1,0) on the interval £ € [%, g], and similarly for
the upper right fold point (u,v) = (@;,0), from which we obtain the fifth and sixth estimates. The final
remaining estimate concerns the proximity of the wave train to the reduced slow solutions u)(£§), u(€)
near the folds. To obtain this, we show that

ui(y) — wl, [ur(y) — wa] < do(v)

for y € (0,v] and then use the fifth estimate. We focus on wuj(y); the argument for u,(y) is similar. Recall
that u(y) is the solution of (2.3) satisfying u;(0) = w1, w(L1) = u2. Solving (2.3) by separation of variables,
we find that near y = 0,

o 2(a—w = f(u))y
u(y) = u \/ cf"(uy) +0(vy)

from which the result follows. O

2.2 Spectral problem setup

Let p € R. Setting (u,w) = e (@, W), the Floquet-Bloch eigenvalue problem (1.10) can be reformulated
as a first-order boundary value problem in ¥ = (4, @¢, w), which reads

0 1 0
Te = AGe, N, A&eN) = | A= fl(uc(§) —c 1 (2.13)
—£ 0 L(ev+n)
U(L.) = &Pl (0). (2.14)

To preserve the explicit fast-slow structure present in the existence problem (1.9), we perform a rescaling to
remove the e-independent A term from the equation for the third component. In the new coordinate W(§) =
e~ e (¢) the boundary value problem (2.13)-(2.14) transforms into the fast-slow eigenvalue problem

Ve = A(&e, N,  A(&e,\) = <Af(§§1, ) gli&)’ (2.15)
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supplemented with the Floquet boundary condition
U(L.) = elr=2)Leg(0), (2.16)

where we denote

‘%“”“):<A—ﬁ£ao>—wix>’ w=(1) mecto. A=l

c

We note that in this formulation, the spectral parameter A appears both in the matrix A(&;e, \) as well
as the boundary condition, while the Floquet parameter p appears only in the boundary condition.

Our approach for analyzing the eigenvalue problem (2.15)-(2.16) is multifaceted. In order to prove
Theorem 1.2, we must rule out the possibility of spectrum in the open right-half plane, aside from a simple
eigenvalue of Ly, at the origin due to translation invariance. To achieve this, inspired by [19], we define
three primary regions of the complex plane

Rip) = A eC: | < 1}
Ro(p,w,0) ={A € C: R(\) > —w,u < |A < o} (2.17)
Rse(0) = {A € C: R(\) 2 —3e7,[S(V)| > o},

where 0 < w € p K 1 <K g are e-independent constants, so that the union of these three sets covers
the closed right half plane; see Figure 12. Due to the presence of essential spectrum near the imaginary
axis, each region presents unique challenges and requires different techniques to either preclude spectrum
satisfying () > 0 or, in the case of Ry(u), to describe in detail the nature of the critical curve of spectrum
containing the translation eigenvalue A = 0, which must be shown to satisfy the diffusive spectral stability
condition of Theorem 1.2 (iii).

In §2.3 below, we present the proof of Theorem 1.2, which is based on three technical propositions
describing the behavior of the eigenvalue problem (2.15)-(2.16) in each of the three regions (2.17). First,
we preclude spectrum in the region R3.(p), which determines ¢ > 0. Then, we perform the spectral
analysis in the ball Ry(u). This then determines p. As highlighted above, the spectrum of the wave train
necessarily passes through A = 0 when p = 0, due to translation invariance of the wave. Hence the region
Ri(p) requires careful estimates as the critical spectral curve \.(p) satisfying A:(0) = 0 must be carefully
expanded at p = 0 to rule out the possibility of instability for small |A|; see Figure 6 for a numerically
computed example. Finally, given p, 0 > 0, we show that all spectrum in Ro(u,w, ¢) must lie in the open
left-half plane. The remainder of the paper is then concerned with the proof of these propositions.

2.3 Proof of Theorem 1.2

Following the strategy outlined in §2.2, we first preclude the existence of spectrum of the linearization
L. in the region R3.(p), where o > 0 is a sufficiently large e-independent constant. We exploit that L.
can be written as the sum of a principal diagonal diffusion-advection operator, which is independent of
¢ and generates a strongly continuous semigroup, and an e-dependent remainder operator, which obeys
an e-independent bound. Consequently, standard resolvent bounds yield the invertibility of £, — A for
R(N\) > 01, where g1 > 0 is a sufficiently large e-independent constant. The half-plane {\ € C: R(\) > 01}
covers a large part of the region R3.(p). In the remaining part of R3 (o), which is characterized by large
imaginary part and bounded real part, we proceed as in [8] and rescale the eigenvalue problem. We observe
that the rescaled linear operator £, — A can be inverted using a Neumann series expansion for |3(A)| > g2
and R(\) € [—%e'y, 01], where g2 > 0 is a sufficiently large e-independent constant. All in all, we arrive at
the following result, which is proved in Appendix A.

Proposition 2.3. Let 0 < a < 3. Fiz 0 < v < v.(a) and ¢ > c.(a). There exists a constant o > 0 such
that, provided 0 < ¢ < 1, the linearization L. of (1.7) about ¢-(§) possesses no spectrum in the region
R375(9)'
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Figure 12: Shown are the regions Ry (p), R2(p, @, 0), and Rs3 -(p) (2.17), of the complex plane in which analyze the eigenvalue
problem (2.13)-(2.14).

Next, for suitably small ;1 > 0, we consider the spectrum in the small ball Ry (u), which is described in
the following proposition.

Proposition 2.4. Let 0 < a < 3, 0 < v < y4(a), and ¢ > c.(a). Fix § > 0. There exists p1 > 0 such
that, provided 0 < ¢ < 1, the linearization L. of (1.7) about ¢-(§) possesses no spectrum of nonnegative
real part in Ry(u) \ {0}. Purthermore, a point X € Ry(u) with |[R(N)| < ue'/S lies in the spectrum (L)
if and only if it obeys the main formula (1.11) for some p € R. In this case, A = A\c(p) is an eigenvalue
of the Bloch operator L, .. Finally, locally near (0,0) the set of (A, p) € C x R solving (1.11) is given by a
smooth curve As: I. — C, where I. C R is an interval containing 0. It holds

A:(0) = R(AL(0)) =0, M(0) € R, IAL(0) —ic| <6, M(0) + €3

Lo

where k > 0 is given by (3.81) and Lo = Ly + Ly > 0 is defined by (2.7) and (2.8).

The proof of Proposition 2.4 will be given in §3. In the region R;(u) the spectrum necessarily contains a
curve which meets the origin in a quadratic tangency due to translation invariance (see Figure 6). The g2/3.
scaling present in the quadratic coefficient arises due to interaction with the nonhyperbolic fold points; this
scaling is also corroborated numerically; see Figure 6. To prove Proposition 2.4, our strategy is to derive
a formula for this critical spectral curve to preclude any spectrum in the region Rj(u) of nonnegative
real part, except for the translation eigenvalue at the origin. To achieve this, we solve the eigenvalue
problem (2.16) using exponential trichotomies and Lin’s method to construct potential eigenfunctions
along subintervals of [0, L;] and then match these solutions together. Blow-up desingularization methods
are needed to solve (2.16) in regions where the wave train passes near the nonhyperbolic fold points. This
procedure results in an implicit transcendental equation — the main formula (1.11), see also Proposition 3.8
— relating A\ to the Floquet parameter p, as well as the system parameters (c,a,v,¢). Several different
scaling regimes are needed to capture the behavior of the main formula in the ball R;(u), which we further
divide into four sub-regions containing the relevant spectral information. In particular, we emphasize that
while Proposition 2.4 guarantees that the phase-wave trains of Theorem 1.1 admit no unstable spectrum
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in the region R;(u), our analysis suggests that instability mechanisms may manifest in other systems with
slightly modified nonlinearities; see §1.4.

Finally, fixing g as in Proposition 2.3 and p as in Proposition 2.4 we have the following concerning
spectrum in the region Ra(u,w, o).

Proposition 2.5. Let 0 < a < % Fiz 0 < v < v(a) and ¢ > c.(a). Fiz ¢ as in Proposition 2.3 and u as
in Proposition 2.4. Then, provided 0 < ¢ < w < 1, the linearization L. of (1.7) about ¢-(§) possesses no
spectrum of nonnegative real part in the compact set Ra(p,w, 0).

The proof of Proposition 2.5 will be presented in §5. It relies on a further decomposition of the region
Ry(p, @, o) into two parts: one where |R(A)| < w and its complement. In the first part, the Riccati
transform is employed to achieve a separation between slow and fast dynamics in the eigenvalue problem,
while in the complementary region, this separation is obtained via exponential dichotomies. The slow-fast
decomposition reveals that eigenvalues with nonnegative real part cannot occur, since the fast reduced
eigenvalue problems along the front ¢ and the back ¢, are of Fisher—-KPP type and therefore admit no
eigenvalues within Ry (p, @, ).

We are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Statements (i)-(iii) follow immediately from Propositions 2.3, 2.4, and 2.5. The
statement in (ii) concerning the algebraic simplicity of the translation eigenvalue A = 0 follows from the

hyperbolicity of the periodic orbit in (1.9) corresponding to the wave train; see the discussion in [22,
§4.4]. O

3 The region R;(u)

To prove Proposition 2.4, we directly solve the eigenvalue problem (2.15) by constructing solutions on
four subintervals of the shifted interval Z = [fgy, &"aL’V] = [g, L.+ g] with the modified Floquet boundary
condition

U (eh,) = el )iy (0. (3.1)

We note that solutions to the shifted boundary-value problem (2.15)/(3.1) are in one-to-one correspondence
to those of the original one (2.15)-(2.16). Indeed, if ¥(&) is a solution to (2.15)/(3.1), then setting ¥({) =
e~ =MLy (L, 4 ¢) for € € [0,£2,] yields a solution to (2.15)-(2.16) on [0, Lc]. Similarly, any solution to
the boundary-value problem (2.15)-(2.16) yields a solution to (2.15)/(3.1). The reason for introducing the
shift is that it turns out to be most convenient to apply the Floquet boundary condition along the slow
manifold /\/ll6 just after the wave train has passed the lower left fold point.

We recall that the period of the wave train is given by L. = L. + L, ., where L; . measures the time
spent along the left slow manifold ./\/lla, and L, . denotes the time spent along the right slow manifold M,
so that £ = L, . occurs along the back ¢y, and { = Lj . + L, . is identified with £ = 0, occurring along the
front ¢¢. We split the interval 7 into four sub-intervals

Ti= [t ] =[5 e+ 3],
Tut = [EhewrEoten] = [Lie + £ Loe + 4],
To= [0 8] = [Le + 4 Lic + Lec + 2]
Iy = { e 50““] = [Lie+Le+ 2, Lic+ Lo + 4],

If e,

for 0 < e < v < 1, so that the intervals Z; , describe the wave-train solution away from the nonhyperbolic
fold points, while the intervals Zjs and Z,s describe passage near the lower fold and upper fold, respectively;
see Figure 13. We note that

fout,L - géy — ggy I L

Ife,v If,e,v
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Figure 13: Shown is the setup for Lin’s method in the region Ri(u):
Ty, Zut, I, Zis and matched at the endpoints £ = &y ., and § = ﬁ}ltgl,
lower fold point. Finally, the Floquet boundary condition (3.1) is applied at £ = §ﬁcu;f =¢
point.

solutions are constructed along the four intervals

near the upper fold point, and at £ = §1iREW near the
out,0

it.e» T Le near the lower point

Solving the eigenvalue problem (2.15) then amounts to solving boundary value problems on each of these
four intervals, matching the resulting solutions at the end points of each of the intervals, and applying
the Floquet condition (3.1). Eliminating all free variables results in an implicit equation, which we call
the “main formula”, which relates A, e, and the Floquet parameter p and whose solutions correspond to
spectrum of the linearization L. in the region Rj(u). We then split the region R;(p) into several smaller
subregions in order to obtain a leading-order expression for the critical spectral curve at the origin, and to
rule out the possibility of spectrum in the part of Rj(x) which lies in the right half plane.

We begin in §3.1-3.2 with some preliminary results concerning the existence of exponential trichotomies
along the fast jumps and near the slow manifolds /\/lla’r. This allows us to solve the resulting boundary value
problems on the intervals Z;, (“between” the fold points) in §3.3. We then turn to the boundary value
problems on the intervals Zj¢ s (“near” the fold points) in §3.4; the analysis in these intervals requires
the use of blow-up desingularization techniques to track the linearized problem alongside the existence
problem, the technical details of which are presented in §4. In §3.5-3.6, we solve the overall boundary value
problem (2.15) along with the Floquet condition (3.1), and we derive an expression for the critical spectral
curve and analyze its behavior near the origin, allowing us to complete the proof of Proposition 2.4 in §3.7.

3.1 The reduced variational problem

The variational equation of the layer problem (2.5) about the front and the back solution reads

<—f’(2z(€)) —10>

for i = f,b. By Proposition 2.1 the coefficient matrices A¢(¢) and Ay (€) converge exponentially to the

asymptotic matrices
~ 0 1 ~ 0 1
Af oo = ) Ap oo = — )
b (—f’(uz) —C> > <—f’(u2) —C>
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respectively, as £ — —oco. In addition, Ef(g) and /Tb(f) converge algebraically to the asymptotic matrix

-~ 0 1
A =
as & — oo. The hyperbolic matrices A\ﬁ_oo and A\b,—oo possess one positive and one negative eigenvalue.

Therefore, [76, Lemma 3.4] yields the existence of an exponential dichotomy.

Proposition 3.1. There exist K, > 0 such that for each v > 0 there exists a constant C, > 0 such

that system (3.2) has an exponential dichotomy on (—oo, %] with constants C,,ac > 0. The associated

projections P;(§) have rank 1 and satisfy
5000 u;(£)
(e =5 (1))

P§) = Piwo| <K, £ <0,

|

where 731‘,—00 18 the spectral projection onto the stable eigenspace of A\i,—oo for i = f.b, and where 73Oo 18

and

RO -Pul< i S f0s],

the spectral projection onto the stable eigenspace of A\oo.
Proof. Let i € {f,b}. First, Proposition 2.1 yields constants C,v > 0 such that

~ ~ _ ~ ~ C
|Ai-0) - Ao s cem, | Aile) - A|| < 7 (3.3)
14+¢
for £ > 0. Noting that f’(u2), f'(42) < 0 and ¢ > c¢.(a) > 0, we find that A\i,,oo is hyperbolic with one
positive and one negative eigenvalue. Consequently, there exists a constant kg € (0, c) such that for any
k € [0, ko| the constant-coefficient system

U = (Ei,_oo + ﬁIQ) v, (3.4)

has an exponential dichotomy on R with rank-one projection 731-,_00. On the other hand, since Eoo has the
eigenvalues 0 and —c, the constant coefficient system

T = (Aoo + fio.72> v,

possesses an exponential dichotomy on R with rank-one projection 7300.
Hence, by estimate (3.3) and [76, Lemma 3.4] the weighted variational problem

e = (Ai() + rolz) W, (3.5)

admits exponential dichotomies on both (—oo, 0] and [0, c0) with associated rank-one projections ﬁi,i(:lzf K
/

see Appendix B. By Proposition 2.1 the solution (u/(€), vi(£)) Te®¢ to (3.5) decays exponentially as & — —oc

'
and increases exponentially as £ — co. Hence, (u(0),v}(0)) must span the kernel of P; _(0), and cannot

lie in the range of ﬁz+(0) We conclude that ker(ﬁi7_(0)) N ]3Z-7+(0) [C?] = {0}, which implies by [76,
Proposition 2.1] that (3.5) possesses an exponential dichotomy on R with projections P;(£). Combining
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estimate (3.3) with [76, Lemma 3.4] and its proof, we deduce that there exist constants K,ag > 0 such

that
for £ > 0.

On the other hand, by estimate (3.3) and [76, Lemma 3.4] the exponential dichotomy of (3.4) for
k = 0 carries over to an exponential dichotomy for the unweighted variational problem (3.2) on (—o0, 0]
with constants C7,a; > 0 and associated rank-one projections CA)Z (£). By Proposition 2.1 the exponen-
tially decaying solution (u/(£),v}(€))7 to (3. 2) must span the kernel of QZ (&) for £ < 0. On the other

3 a2

P(=€) = Proo|| < K0, |

hand, there is freedom to choose the range of Qz, (0) to be any subspace complementary to ker(Qz (0)),
cf. [81, Lemma 1.2(ii)]. Recalling ker(P;(0)) = ker(Qu_( )), we select Qly_( )[C?] = P;(0)[C?. Since
the unweighted problem (3.2) has the same action on subspaces as the weighted problem (3.5), we find
131(5) = @i,_(f) for all £ < 0. By [27, p. 13] the exponential dichotomy of (3.2) on (—o0,0] can be ex-
tended to an exponential dichotomy on (—oo, %] with constants C,, a1 > 0 and projections ]31(5) Taking
a = min{ag, a1} the result follows. O

We consider the reduced variational problem

v Adgv. A= (3 ) (5.5)

for i = f, b, which arises by setting ¢ = A = 0 and replacing u(§) by u;(§) in the eigenvalue problem (2.15).
Denoting by 7;(§,y) the evolution of system (3.2), the evolution 7;(&, y) of the upper triangular system (3.6)
can be expressed as

~ R
Fey) = [TV / 7i(¢,2) Bodz
O1x2 1

Thus, the exponential dichotomy of (3.2), established in Proposition 3.1, readily yields an exponential

trichotomy for system (3.6).
Proposition 3.2. There exists & > 0 such that for each v > 0 there exists a constant C, > 0 such
that system (3.6) has an exponential trichotomy on (—oo, ] with constants C,,& > 0. The associated

projections are given by

) - [ Tensa) g (27 /TufyBody

01><2 01><2 0
ﬁz u(é) - I3 - PS (‘S) - f)zljy(é.)?

Py, (&) =

i

where 7A;j (&, 2), g =u,s, i =1,b denotes the (un)stable evolution of (3.2) under the exponential dichotomy
established in proposition 3.1. The projections have rank 1 and satisfy

/(&) - 75]_OOH < Ce®, (3.7)

‘ i,V
fOT’f < 0} i = f)b andj = s,u,c, where 75137
asymptotic matriz

—oor Pi! and P are the spectral projections of the

~ A; o By
A‘_ — 1,— 00
1,—00 < 01><2 0 ) )

29

—00 —00



onto its stable, unstable and center eigenpace, respectively. Finally, we have

PL(E)[CY =Sp{®:(&)}, P (O[C =Sp{W¥, ()}, (3.8)

where we denote

)

N -
U, (§) = /i 7;u(g’y)BOdy+/007?(57?J)Body
0 1

for € € (—o0, 1] and i = f,b.

v

Proof. Let i € {f,b}. Using Proposition 3.1, one readily verifies that ﬁis’y(f), ﬁzuy(f) and écy(f) are
projections satisfying (3.8). We compute

~ vy
Tew - [ TleaB:| 2

B (6)Til€,y) = _ &y P, (),
01x2 0
Tu y”?“ Byd
BTy =Y ‘/; SEABd) e B ),
O1x2 0

& §

O / T5(€, 2) Bodz + / F(€, 2)Bydz
N \

01x2 1

PE(6)TilE,y) = = Ti(&.y)PS, (y).

With the aid of Proposition 3.1 we estimate

v y
H/ T (&, 2) Bodz|| < Cy/ e &2 qy = %e_o‘(ﬁ_y)7 y<E< %’
Yy o)
H/ 7:1(57 Z)-BOdZ S CI// ea(giz)dZ = 2605(67?!)7 f S Yy S l
v Y « v
1 20,

Hence, system (3.6) has an exponential trichotomy on (—oo, ;-] with constants ,a > 0 and projections

P} (€), 7 =s,u,c.
Clearly, the weighted system

«

Ve = (Zl(f) + %L%) v,

22” ;5 > 0 and projections ﬁfy(g) Simi-

possesses an exponential dichotomy on (—oo, %] with constants
larly, the weighted system

Ve = (Ai(O) - Sh) v,

has an exponential dichotomy on (—oo, %] with constants 22”, $ > 0 and projections I3 —ﬁilfy(ﬁ).f\lﬂence, by
combining estimate (3.3) with [76, Lemma 3.4] and its proof, we infer that there exist constants M,y > 0

such that

for £ <0 and j = s,c. So, taking C, = maX{Ml,, 22”} and & = min{«, ap} yields the desired result. [

ﬁljﬂf(g) — 73]—00” < Myeaof,

1y
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3.2 The eigenvalue problem along the left and right branch of the critical manifold

We establish exponential trichotomies for the eigenvalue problem (2.15) along the left and the right branch
of the critical manifold; see Appendix B. First of all, we show that the fast (2 x 2)-subsystem

Ve = Ap(&6, )W (3.9)

of (2.15) possesses an exponential dichotomy along these branches by using that its coefficient matrix is
slowly varying and pointwise hyperbolic. Thus, we can diagonalize the full eigenvalue problem (2.15) with
the aid of the Riccati transformation [23, 31|, yielding the desired exponential trichotomy. The explicit
diagonalization levaraged by the Riccati transformation allows us to determine the scalar dynamics in the
one-dimensional center direction of the trichotomy to leading-order. All in all, we arrive at the following
result.

Proposition 3.3. Provided 0 < ¢, |\ < v < 1, system (2.15) admits exponential trichotomies on I} =
(%, Lie + %] and on I, = [Lie + %, L1e + Ly + @] with A\- and e-independent constants C,,19, > 0

and projections Plj (&) and P’

A Y (&), 7 =s,u,c, respectively. The projections have rank 1 and satisfy

|

for £ € I;, i = 1,r and j = s,u,c, where 7355,)\(5), QA(ﬁ) and Pg’)\(é’) are the spectral projections of the
coefficient matriz A(&;e,N) of (2.15) onto its stable, unstable and center eigenspace, respectively. Finally,
the center evolutions T, (&,Q), i = 1,r under the exponential trichotomies satisfy

C
1,E,\,V
v log(e .
’<e377icg7)\’y <€7Ll75+gy()> ez>’ S CI/E, 1= 1,2,

. v log(e) u(v) —vf(w(v)) —a
’<93, T <€’ Lie + 1/> e3> Gy —f(@2) —a

1€,V

PL (O = PLA©)]| < Cuet, (3.10)

(3.11)

<C (N +27),

and

< Cue, 1=1,2

v log(e
<83, TI‘?«S,)\,V <Ll,€ + g7 Ll,z—: + Lr,a + gy( )> ei>

o)) ) - ) =3/ (() o

1%
L TE L.+ —-,Li.+L e
’<e3 reAv ( le + 2o Me F dre + ug —7f(uz) —a

<Gy (N +et),

where {e1,ez,e3} denotes the standard unit basis of C3.

Proof. In this proof C, > 1 denotes an -, A- and £-independent constant, which will be taken larger if
necessary.

We prove the result for £ € [}, i.e. along the left branch of the critical manifold, only. The argument
for £ € I, i.e. along the right branch of the critical manifold, is similar. We aim to diagonalize the block
system (2.15) via the Riccati transformation, cf. [31, Theorem 5.1]. To do so, we establish an exponential
dichotomy for the fast subsystem (3.9) using roughness techniques. By Proposition 2.2 we have

14e(€ 8, 2) = A=) < Oy (5 4+ A1) (3.12)
for € € I}, where we denote

Al(y) = <_f’(21(y)) _IC> .

For each y € [v, Ly + 1] it holds f’(w(y)) < —1/C,.. Therefore, there exists a constant ¥, > 0 such that the
matrix A)(y) is hyperbolic with one positive and one negative eigenvalue lying at distance > 54, from the
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imaginary axis for each y € [v, L + 1]. Hence, provided 0 < ¢, |\| < v < 1, estimate (3.12) implies that
Ag(&; e, \) is also hyperbolic with one positive and one negative eigenvalue lying at distance > 44, from
the imaginary axis for each & € 1.

By [27, Proposition 6.1] the slowly varying system

\Ifg = A](Ef)\y,

has an exponential dichotomy on [%, Lljl] with e-independent constants C,, 449, > 0. Recalling esti-
mates (2.11) and (3.12), we observe that roughness results, cf. [27, Proposition 5.1, yield an expo-
nential dichotomy for system (3.9) on I} with A- and e-independent constants C,,3d, > 0, provided
O<eN<r<l

By [31, Theorem 5.1] there exist continuous matrix functions U, : [} — C?*! and Sexv: h = Cclx2
such that, if ¥(§) is a solution to (2.15), then

. o Iy — EUE,)\,U(S)S&)\,V(é) Uz—:,)\,u(g)
B(E) = HorOVE,  Hoan() = (27 Uy 0),
satisfies the block diagonal system
b, — <Af(§a g, )‘) - EUE,)\,V(&)Bl 02><1 > &
¢ O1x2 eAs +eBUpp(§))

for ¢ € I. Moreover, Ue » , and S; ), are bounded by A- and e-independent constants. Hence, the evolution

3
Toente) = o (= (26 -2+ [ Btont)), (3.13)
of the scalar slow subsystem
\Ilﬁ =€ (As + BIUE,/\,V(g)) \117

is bounded on I} x I} by an e- and A-independent constant. Moreover, by roughness, [27, Theorem 5.1],
the exponential dichotomy of (3.9) carries over to an exponential dichotomy of the fast subsystem

Ve = (Ap(&e,A) —eUzao(€)Bo) ¥,

on [} with A\- and e-independent constants C,, 29, > 0 and projections Q. x . (§).
We conclude that

o3, (&) = Hepp(§) <Q1’E’)\’V(§) 020“> He ()71

O1x2

Riasl®) = Hool©) (27 e ) 1o,

O1x2

0 0 _
Bonl® = Honol®) (22 51 ) Hoal

are projections of an exponential trichotomy of the eigenvalue problem (2.15) on I} with A- and e-
independent constants C,, 29, > 0, where we use that the matrix function H; ), (£) and its inverse

1 I _Ue’;‘,)\,V(g)
Hg,)\,ll(é.) - (5557)\71/(5) 1-— 855,)\7,/(6)175,)\,1/({)) )

are bounded by A- and e-independent constants on 1.
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To prove the estimate (3.10), we consider the positively weighted eigenvalue problem
Ve = (A(&e, ) +0u13) 0. (3.14)

Clearly, (3.14) has an exponential dichotomy on [} with A- and e-independent constants C,, 4, > 0 and
projections .y ,(§). First, we note that the coefficient matrix A({;¢e,A) + 9,13 is hyperbolic with two
positive and one negative eigenvalue lying at distance > ¢, from the imaginary axis for each £ € I;. Second,
Proposition 2.2 yields

10 A(E; 2, \)|| < Cues,

for £ € ;. Hence, following the proof of [30, Proposition A.3] verbatim, one establishes estimate (3.10) for
j = s. Similarly, by considering the negatively weighted eigenvalue problem (with weight —,) one obtains
estimate (3.10) for j = u. Finally, estimate (3.10) for j = ¢ follows readily from the ones for j = s and
7 = u after applying the triangle inequality.

All that remains is to establish (3.11). First, we observe that the spectral projection of

()

onto its center eigenspace is given by

for y € [v, L) + 1]. Hence, by estimate (3.12), we have
2
[PEa©) — @) < o (7 + 1AT). (3.15)

for £ € I}. Next, we compute

c 02 02 -
Tonnl€2) = Hon® (2 % ) Honalo)”

012 (3.16)
— <5U5 A V(§)7g ,\ 1/(57 ) e, I/(Z) Us,)\,u(g)l]g,s,)\,u(fa Z) (1 - 555,/\,1/(Z)U6,)\,1/(Z>)>
5T€Ay(€7 ) a)\y( ) 7;,5,)\,1/(&2) (1 _5S€,A,V(Z)Ue,)\,u(z)) '

for £,z € I,. First, upon recalling that S; )., Uz x, and Ts. », are bounded on [j, on I} and on I} x I,
respectively, by e- and A-independent constants, the first estimate in (3.11) readily follows from (3.16).
Second, setting z = § in (3.16), noting 7;$ , ,(§,§) = P, , ,(§) and applying estimates (3.10) and (3.15),

we arrive at
et - (V00D )H SACED)] (3.17)

for £ € I}, where we recall that S; ) , and U, ), are bounded on I; by e- and M-independent constants. So,
with the aid of (2.11), (3.13) and (3.17) we approximate

v log(e) B Y B L 1 1
Toon (Lne+ ) o (Tm-n+ [T sa (et @

provided 0 < ¢, |\| € v < 1. Next, we use (2.3) and recall uj(L;) = @2 and u(0) = u; to compute

Y. [ P A a)ui(y) b uj(y)

c ”/y Flu) Y = / Vf(m(y))+am(y)dy+/y (@) +a— ()
_ [ af =t () = f (e ) -
- /W) O E—— 1g< iy~ f () )
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provided 0 < v < 1, where we note that u; —yf(u1) —a,us — vf(u2) —a # 0 as 0 < v < y«(a). Finally,
combining (3.16), (3.18), and (3.19), we arrive at the second inequality in (3.11), where we recall that
Seaws Uspp and Tgon, are bounded on I, on I} and on I; x I, respectively, by e- and A-independent
constants. O

3.3 Solving the eigenvalue problem away from the fold points

Here, we construct a solution to the eigenvalue problem (2.15) on the intervals
To= e et ) = (Dot DDt Lot | = Lot Dono s
T uf,e,v Slf e, v Le e’ Le r,e v lLe e’ € M
t,0 1% 1
[gffus v guf £ 11:| = |:€7 Lye + l/]

away from the fold points with the aid of Lin’s method. We employ the exponential trichotomies, established
in Propositions 3.2 and 3.3, to represent solutions to (2.15) along the front or back and along the right or
left branch of the critical manifold, respectively. The result concerning the eigenvalue problem along the
front and the right branch of the critical manifold reads as follows.

Proposition 3.4. Provided 0 < ¢, |\| < v < 1, there exists for each

r € P RP.W (éout ) [Cg]v and O‘f?ﬁf S (Ca

uf,e,v
a unique solution : T, — C3 to the eigenvalue problem (2.15) subject to the boundary conditions
Py (EFe) ¥ (E8E,) = 7 (3.20)
Py (3) 0 (Eifen) = Bi¥ew (5) . B () ¥ (Gifen) = as®e () - (3.21)

Moreover, there exist e- and A-independent constants Cy,,9, > 0 such that the solution 1 enjoys the
estimates

|2, () (€] < €0 (5 +101) Garl +181]) + el )
H‘Prl,le,)\,u (gﬁkl,ta,u) ( ( 3fufe,u) H < CVe_ﬂV/E (|af| + |ﬁf| + ||'7r||) ) (322)
|PEens (€550) ¥ (k) | < G (1864 (3 4 I larl + =il

and

(€3, B, (EL,) ¥ (&8L,)) — ur(zz : Z;EZ;()VE)(; ¢ <,8f + % (ug(L) — us) af)

< Gy (=5 +1A1) (181l + elal) + ="/}

(3.23)

where e3 = (0,0,1)" is the third standard basis vector.

Proof. In this proof C;, > 1 denotes an -, A\- and £-independent constant, which will be taken larger if
necessary. Moreover, we introduce the short-cut notation I, , = @.

We wish to express the solution ¢ on [L. + I, Le + %] = [Le + e, flifn’e’y] using the variation of con-
stants formula by regarding the eigenvalue problem (2.15) as a perturbation of the reduced variational
problem (3.6). Thus, we determine the perturbation matrix

A(&e,N) — Ap(€ — L) = eBy + Bi(&; ¢, M),
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where we denote

0 —2 0 0
0),  Bil&eA) = | A= f(ue() + f(w( = Lc)) =2 0
v 0 0 O

o O O

By Proposition 3.2 any solution ¢ to (2.15) with initial condition (3.21) must satisfy for £ € [L. + lc ., &P, ]
the variation of constants formula

W(€) = ar®s (€ — Le) + Br¥, (€ — L) + T2, (€ — Le, o)t

&
e Tio (€ = Le,y — Le) (eBo + Bi(y; €, A)) ¢ (y)dy
1f,e,v
¢ - (3.24)
" /L TRE ~ Loy = L) (Bo+ Bily: e, N) 6(0)dy
etlew
&
e | TEE - Loy — L)Bov(y)dy,
If,e,v

for some ¢ € ﬁfiy(ls,y)[c?’], where we use that ]Sf‘iy(y — Le)Bi(y;e,A) =0 for any y € [Le + Iz, flifrts’y]. We
note that Proposition 2.2 yields

|Bi(gi e, VIl < G (=5 + A1) (3.25)

for &€ € [L. + le,yyfliﬁay]- So, bounding the right-hand side of (3.24) with the aid of estimate (3.25) and
Proposition 3.2, we find that the solution ¢ is linear in «f, B¢ and ¢ and, provided 0 < ¢, |A\| € v < 1, it
enjoys the estimates

sup ([0 < Cu (o] + [Be| + [l , (3.26)
g€[Letlev&ip. ]

and

sup (€)= as@e(§ — L) < G (I8¢l + el + (€5 + 1) lael ) (3.27)
€[Letie, g2, ]

Next, we express ¢ on | Sﬁts,mLs + 1., with the aid of the exponential trichotomy established in

Proposition 3.3. We find that any solution % to (2.15) with initial condition (3.20) must satisfy

V(&) = Topw (6 Le +lep) oan + T s, (66082 ) B+ Toew (66005 0) 1y €€ (€08 s Le +lew]
(3.28)
for some o, € P, (L: 4+ 1.,)[C3 and B, € P°_, (L. + 1.,)[C?].

The next stef) is to equate the right-hand sides of (3.24) and (3.28) at the matching point { = L. +1.,,
which will yield unique expressions for ay, 5y, and . We derive matching conditions by applying the
complementary rank-one projections P, (L. +1.,), P2, (Le +1:,) and P°_, (Le 4 lc,). However,
we first show that these projections are close to the projecti7o7né of the exponential ’tlliéhotomy of the reduced
variational problem (3.6), established in Proposition 3.2, at £ = L. + . ,. Propositions 2.1 and 2.2 yield

A+ 1wse ) = Ao < € (5 4+ 01),

provided 0 < ¢, |A\] < v < 1. Clearly, the same bound holds for the associated spectral projections

2N

P (Le+1ey) — ﬁg}_ooH <c, (5% + W) ,
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for j =s,u,c. Hence, combining the latter with estimates (3.7) and (3.10) we arrive at

for j =s,u,¢, provided 0 < ¢, |\ < v < 1.
We now apply the projection P?_, , (Le+1.0) to (3.24) and (3.28), equate the right-hand sides and use

Propositions 3.2 and 3.3 and estimates (2.11), (3.25), (3.26) and (3.29) to obtain the matching condition

P!y (Le+1cy) — P (1)

r,e,\,v

<c, (e§ v |/\|) , (3.29)

V= fl(afv ﬂf?fyﬁ 71“)7 (330)

where the linear map JF; satisfies

2
11 (at, e, 1)l < Co (25 4 A1) (el + 186] + Iell) + €7/ g )

for some e- and A-independent constant ¢, > 0, provided 0 < ¢,|\| < v < 1. Similarly, applying the
projection P , (L. +1.,), we find

r,e,\,v

ar = Falag, B, ), (3.31)

where the linear map JF» satisfies

2
|Fa(as, B30l < Co (7 + 71 (lael + 18] + el

provided 0 < ¢, |A\| € v < 1. Finally, applying the projection P¢

rEN (Le + 1), we arrive at

Br = Fs(ar, Br, ) (3.32)

where the linear map JF3 satisfies

| Fs(as. B ae)l < Co (181 + (€3 + 1) (el + 1l

provided 0 < g, |A\| < v < 1.
We observe that the matching conditions (3.30), (3.31), and (3.32) constitute a linear system in the

variables o, B¢, ¥t, ar, By, and 7y, which can be uniquely solved for 8;,v¢ and «a; by the above estimates on
the linear maps JF1, F2 and F3. We find

V= fl(()éf, ﬁf) ’Yr)v Gy = ].:2(047 Bf? ’71")7 Br = ‘%3(0[107 ﬁh’yr)? (333)
where the linear maps j':i, 1 =1,2,3 enjoy the bounds

Hfi(afaﬁfa%)

Hﬁii(afyﬁfv’)’r)

< Cy (5 + ) ol + 18e) + e}, i =1,2,

< G (18i1+ (3 + A1) lael + ¢~/ )

provided 0 < ¢, |A\| € ¥ < 1. The estimate (3.22) now follows readily by observing

Prl,la,/\,u ( ERZ,V) ¢ ( Sllcl,ta,l/) = 7?7187)\,V ( 81?:2#7 LE + lf,l’) Qr,
Pr(is,)\,u ( 8?}5,1/) 1/) ( 311"1,2,1/) = 7;(,:5,)\,1/ ( 8?2,1}7 LE + lE,V) ﬁl"?

ﬁfsﬂ/ (%) (G (é-lilp,a,u) = ﬁ?y (%a ls,u) Y+ /L

If,e,v ~
Te, (1.y — Lc) (eBo + Be(yie, A)) v(y)dy,

et g,V

and applying Propositions 3.2 and 3.3 and estimates (3.25) and (3.26).
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For the refined estimate (3.23), we first note that
0 ~ ~ -
Madr(€) =0, Tyl (¢) = ( 21“) LT =T TGO =0, TR =0,
holds for &,y € [lc ., %], where II3 € R3*3 is the orthogonal projection on the third standard basis vector es,

cf. Proposition 3.2. So, applying the complementary projections I3 and I3 —II3 to (3.24) at { = Le + 1.,
while using Proposition 3.2 and estimates (3.25), (3.26), (3.27) and (3.33), we arrive at

2 — 13
(s = ) (Le + L)) < Co (186 + (3 4 A lagl + e ) (3.34)
and
0 1 ug(§)
Msp(Le + 1) — | Be | O —afeﬂgBo/ vp(§) | d¢
I =\ g (3.35)

< Gy (elBil +¢ (£ + X)) lag  + ="/l )

provided 0 < ¢, |\| < v < 1. We compute

[e.9]

t (€ - 0
—I135 v(€) | A& = = (up($) —ug) | 0
3 0/_ fo c 2 .

So, combining estimates (3.34) and (3.35) with Proposition 3.3 yields

<e37 Pf,e)\,u ( 3?:5#) w ( 3Rt6,u)> = <63, TI‘?&)\,V ( 311“1:56#7 LE + lE,V) H3w(L€ + l€7l/)>
+ <eSa Tr?a7/\7y ( 8?2 v Ls + ls 1/) (I3 - H3)1/}(LE + ls,u)>

U,r(V) — ﬂ}/f(ur( )) - .
T up—f(uz) - (5 te ( () — u2) 0‘f> + Fa(as, B, n),

where the linear map .7?31 satisfies

~ 1 _
[ Farlas, B30l < Cu (5 + 1) (18] +elagl) + |1l
provided 0 < ¢,|A] < v < 1. This proves the final estimate (3.23). O

Analogously, one obtains the following result concerning the eigenvalue problem along the back and
the left branch of the critical manifold away from the fold points.

Proposition 3.5. Provided 0 < ¢, |\| < v < 1, there exists for each
e P, (g;’f“;‘j) (€3], and o, fy€C,
a unique solution 1: Ty — C? to the eigenvalue problem (2.15) subject to the boundary conditions
Bew ( ﬁ"uatg) ¥ (51‘}“53) Lo B, (D) v () =BTy (1), B (3) v (8) = an®s (3).

Moreover, there exist e- and A-independent constants C,,v, > 0 such that the solution i enjoys the
estimates

H‘lgﬁ (1)1#( ufal/)
[P, (6220)  (50)

C out,0 out,0
H‘Pl,s,)\,z/ (glf e 1/) (glf € 1/>

< G ((F 4+ 1) (ol + 1Bul) + =/l )
| < G (o] + [Bo] + Il

<G (186l + (<54 M) o]+~ ).
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and

(oo Fn (628) 0 (6022)) - 0 00 2 (ot L) - ) o)

< Gy (5 + A1) (18] + elaw]) + ¢~/ )

where e3 = (0,0,1) 7 is the third standard basis vector.

3.4 Solving the eigenvalue problem near the fold points

Propositions 3.4 and 3.5 provide estimates on solutions to the eigenvalue problem (2.15) between the fold
points, on the intervals Z, = | 3}{27”,5”6”] and 7; = [flofugtg, ;‘}787,/] It remains to obtain estimates on
solutions near the fold points, on the intervals Z, = [£}; . Sf“tey] and Iy = [¢P gy,fﬁl’g”f]. This is a
delicate problem due to the loss of normal hyperbolicity at each of the fold points; in particular, it is
not possible to establish suitable exponential trichotomies on the intervals Z,¢, Zyr due to the lack of an
(e, A)-independent spectral gap for the center-unstable spatial eigenvalues of (2.15). Blow-up methods are
needed in order to track the solution on these intervals — this procedure is carried out in detail in §4, and

here we state the main results. In preparation, we define complex-valued functions Yi¢, Ty by

22 22 (5400)
T -__ 0)pc3 Ai(s)2 — Ai'(s)?
W) = o / o (sAi(s)? — AT (5)?) ds
22 o 2 (s4+%0) ./ N2 . 2
TM@%—eMaAm_Q@;[Qf%ﬁ (sAi(s)” — A¥(s)?) ds

where —Qy < 0 denotes the largest zero of the Airy function Ai(z) (see Appendix C), and 6y, O,¢ are given
by

(62— a+ )Y~ 1f(w) =0

O = — " (3.36)
3.36
2 160 ~f(m ) \1/3
O = (a® —a+ 1)/t —vf(u1) —a) -0
C

as in §2.1.4. We first consider the eigenvalue problem near the lower fold on the interval Zjs. The estimates

on solutions at the endpoints of the interval are given in terms of dichotomy projections Pl?u;)\l,(ﬁ ) obtained

from a convenient local change of coordinates on the interval Zjs which places the system into a normal form

for slow passage through a fold. We refer to §4 for details of these projections. Similarly, near the upper

fold, on the interval Z,¢, it is convenient to state estimates on solutions in terms of dichotomy projections

Plflll ; N ,(&). For the purposes of the matching procedure, we require estimates which relate the dichotomy
cu,Ss

projections P e (&) to those of Propositions 3.4 and 3.5 at the endpoints of the respective intervals
Zuspre- All in a,l( we have the following.

Proposition 3.6. There exists a continuous function n: [0,00) — [0,00) satisfying n(0) = 0 such that,
provided 0 < ¢ K p K v K 1, there exist e- and p-independent constants Cy,, 9, > 0 and complementary
projections Pt \ (), P .5, (§) € C3%3 for £ € Iy = [flfey,fffu;f] such that the following holds for
A€ Ry(p).

(i) The projections obey the estimates

| P cns () = Bl (D) < €0 (5 +100) (3.37)
H})lfa)\u (gﬁu;f) PIE)\V (gﬁuatt(/)>‘ < C ~dv/e (338)
‘63 Pfc,u(y) Plfz—:)\z/ flfsz/ SC (339)
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for i = s, cu, where we denote

PE6) = P, () + B (6, AZA(6) = AL () + AL (),
and where e3 = (0,0,1)T is the third standard basis vector.

(ii) For each

B,
Yt € By (Gfen) [C7], Bir= | Pa | € RiLa, (ﬁfugt ”L) <],
£3,1¢

there exists a solution v : Ty — C? to the eigenvalue problem (2.15) subject to the boundary conditions

i i t,L t,L
Piow (@) ¥ (600) = e PR (600) @ (6150) = B

satisfying the estimate
t,L t,L _
| Pcos (&1250) 0 (g5 || < Coe % el

Furthermore, if R(X\) > €'/5, then we have

vR
H lfz—:)\u(lfsu)w(lfsl/)H<Cexp( ( )>HﬂlfH (340)
while if [ RN)| < pe'/S, then it holds
Uyt
})lf e,\v (glf € 1/) (0 (glf € V) = Wit (Blf)a
Wit

where Uy, Vir and Wit satisfy

| () )it (37 ) e

Wit (Bie) — 853,1fwé(§lfw)
wt (

out,L
5 glf,a,u )

Co (18l + [ og M| - |83¢])

< CuellBill + (Cue IMog Xl + en(v) [T (/%)) ) |Baurl

with
€031t
oL
wt (&)

The proof of Proposition 3.6 will be given in §4.5. Analogously, we have the following proposition
concerning solutions to the eigenvalue problem near the upper fold.

aft(Birs e A) = (1= 1)) | < (o) [Tie(e™0) Bl

Proposition 3.7. There exists a continuous function n: [0,00) — [0,00) satisfying n(0) = 0 such that,
provided 0 < ¢ € p K v K 1, there exist e- and p-independent constants Cp, ¥, > 0 and complementary
projections Pyt  (§), Py, (&) € C33 for & € Ty = (€%, &% ] such that the following holds for
AE Rl( )
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(i) The projections obey the estimates

2
‘ ufs)\u(ufau) Pbu i)‘gC’V(53+|)\\>,
H‘Pufa/\u ( 8?2 I/) v ( 81?71;7,/) H < Cue_ﬂ”/s
H Pbu % ufa/\u(lill%,e,y) ‘SCV&
for i = s, cu, where we denote
P (§) = B (&) + Ry, (8), e (&) = Pioan(§) + Picx (6,

and where e3 = (0,0,1)T is the third standard basis vector.

(ii) For each

B1,uf
Buf = /82,uf € SEE,A,V (53?,?—:,1/) [C?’] ’

3
Yuf € PfEAl/({ufEl/) [(C ] )
€83 uf
there exists a solution 1: Tys — C3 to the eigenvalue problem (2.15) subject to the boundary conditions

Sf £,\,V (giur%,s,l/) Tﬁ (guf € 1/) Yuf, PSEE,)\,I/ (gglfl,te,u) w (fgﬁts,u) - Blﬂ?

satisfying the estimate

1Pt e (€35,) ¢ (58] < Cue™  [lyutl-

Furthermore, if R(X\) > €'/5, then we have

vR
H ufsAy(Eufs,u)w( ufz-:l/)H <C eXp( ( )> Hﬁlﬁ” (341)
while if [ R(N)| < pe'/S, then it holds
) ) qu
PSE&,)\J/ (51141%,&,1/) ¢ ( 1111%,5,1/) = Vuf (Buf),
Wuf

where Uys, Vur and Wy satisfy

H < > ﬁuf ﬁf(ﬁuf; €, )‘) (:]LZ> (5311%,5,1/)

/ in
We ( uf,s,u)

Wt (Bug) — Eﬁ&ufwé(om)

uf,e,v

Co (1Butl + [Alog [A[] - [B,ut)

< CzlguﬁufH

+ (c,,s IMog M| + en(v) )*ruf(As—l/G)]) B3 0t

with

y(Buti £, ) — ?ﬁ?’j) (1= Tur79) | < n) [TucA™0)| 15l
uf,e,v

/
wa
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3.5 Derivation of the main formula

We recall that A € C lies in the spectrum of the linearization L. if and only if there exists p € [-7/Le, 7/L¢)
such that the eigenvalue problem (2.15) with the associated Floquet boundary condition (3.1) admits a
nontrivial solution. To access results from complex function theory, we complexify p and consider p-values
in a bounded e- and A-independent open set U C C containing the interval [—7/L., 7/L;). We employ
Lin’s method to construct nontrivial solutions to (2.15)-(3.1) for p € U and A € Ri(u). Specifically,
we match solutions to the eigenvalue problem (2.15) on the intervals Z,, 7j, Zir, and Z¢, established in
Propositions 3.4, 3.4, 3.6, and 3.7, respectively. The outcome of this matching procedure, which is given
in the following result, leads to an implicit transcendental equation, which we call the “main formula”,
relating A, e, and p.

Proposition 3.8. There exists a continuous function n: [0,00) — [0,00) satisfying n(0) = 0 such that,
provided 0 < ¢ € u K v K 1, there exists an e- and p-independent constant C, > 0 such that the
eigenvalue problem (2.15)-(2.16) admits a nontrivial solution for p € U and X\ € Ry (p) == Ri(p) N{\ €
C: |[RN)| < pe'/%} if and only if we have

o—(ir=2)Le _ (ur — ug) Tip(Ae~/6) (1 — 1) Tur(Ae~/6)
’ <1+ uz —vf(u2) —a bt g — 7y f(u2) —a

> F RN, (3.42)

where the residual R.: Ri () — C obeys the bound

Re(A &)l < Cy (5 + Nog A1) + n(v) (ITurRe™0)] + Xir(2e™70)]) (3.43)
Furthermore, if A € Ry(p) satisfies R(\) > e'/°, the eigenvalue problem (2.15)-(2.16) admits no nontrivial
solution.

Proof. In this proof, C > 1 denotes a A-, &-, v-, u-, and e-independent constant, which will be taken larger,
if necessary. Moreover, C, > 1 and v, > 0 denote \-, &, u-, and e-independent constants, which will be
taken larger and smaller, respectively, if necessary.

Combining the results of Propositions 3.4, 3.5, 3.6, and 3.7, we impose matching conditions at £ =

t
uf V) 58%15 v glf JESV0 and
out,, _ L out,0
fzélf,a,u_fs,l/ §€V+L _glfay+L

to reduce the existence of a nontrivial solution ¥ (§) to the eigenvalue problem (2.15) satisfying the Floquet
boundary condition (3.1) for some p € U to a system of equations in the free variables oy /by Bt /bs N/rs Vuf /185
and By /f, where we define

apPp (%) = ‘[:jl;l,z/ (%) 1/} (gufs 1/) ) ﬁbqu,l/ (%) = ﬁlg,y (%) w (Euf € z/) y  Tuf = Psf,e)\,u (guf € 1/) w (gufa 1/)

at & =

ufsz/’

B1,uf
BUf - 62,Uf = PSRE,)\,V (fSRts,u) Tb (ggfu,te,y) y = Prs,s,)\,z/ (fgﬁts,u) w (ggl%l,f-:,y)
€03,ut

at § = &%

ar®s (1) = PP, (3) v (€Fen) s Be%en (3) = BY, () ¢ (GEn) s = Pioa, (6Re) v (6Fe)
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at £ = &P and

If e,
0
0 B(l)’lf t,L t,0 0 t,0 t,0
out, out, out, out,
d= | B | = Beta (6050 0 (650) P = R (6050) 0 (67250).
éﬂS,lf
L
L BIL’H t,L t,L L t,0 t,L
out, out, out, out,
Bif = 52L1f = P <§1f,e,u> (4 (flf,a,u) v = By <§1f,a,u) (& (§1f,s,u)
553,11?
at £ = §§u€tf = 1‘}“53 + L.. Moreover, we set
Be=P () v (&hes) . Br=HB0 () ¥ (Gitew) - (3.44)
Clearly, it holds
18]l < Co (Jesl +18¢l), Bl < Co (Jew | + [Bo]) - (3.45)

On the other hand, applying the projections ﬁﬁy (l) and ﬁ]‘-fy (%) for j =f,b to (3.44) and using Proposi-

v
tion 3.2, we establish
el [Bel < CullBell, o], [Bo] < CullBill- (3.46)
We begin by solving for /¢, Yup/an 0 terms of By, Bup/dn- By Proposition 3.6, we have that
L L _ Y
P e (€150 ) (&1250) || < Coe % Il
provided 0 < ¢, |A| < ¥ < 1. Using the fact that
t,L t,L t,L t,L t,L
O () = Pt (670) 0 (6000) + Preaw (6750 v (6750)
L t,L t,L
= /Blf + Plsf,e,)\,u (gffl,ls,u) 1/) (&?2,1/) ’

applying the projection F_, , (5&“;3), and employing Propositions 3.3 and 3.6, we obtain
W = Fu(Bi, ) (3.47)
provided 0 < ¢, |\| € v < 1, where F} is a linear map satisfying
| FL (B, o) || < Coe™ 7= (11BEN + el - (3.48)
Similarly, we establish
Ve = Fo(But, Tuf), (3.49)
where F5 is a linear map satisfying
1E (But, var) | < Coe™ /= ([1Butll + Il - (3.50)

Next, using estimate (3.46), Propositions 3.4 and 3.5, and the fact that ’ylo = e_(ip_%)LefylL holds by the
Floquet-Bloch boundary condition (3.1), we have

|22, () ()| < 00 (54 ) 1860+ e el
125, &) @) < e ((5+ ) 18l +e =)

(3.51)
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where we used 0 < &,|]\| < v < 1 and (2.11). Therefore, applying Proposition 3.7 and using (3.47)
and (3.48), we obtain

Yut = F3(B1, Bif s ne), (3.52)

provided 0 < ¢, |A\] € v < 1, where F3 is a linear map satisfying

17581, B )l < Co (5 + M) 181+ e/ (UBEI + lnel) ) - (3.53)
Similarly, we have

mng = F4(Bra /Bufa 'Yuf); (3.54)

where F} is a linear map satisfying

1P (Br, Bty 3l < Co (25 4+ N 18l + €77 (18t + 1)) - (3.55)

Combining the estimates (3.48), (3.50), (3.53), and (3.55), we solve the system (3.47), (3.49), (3.52)
and (3.54) of linear equations for 7,¢, y1¢ and 1,7, and obtain

Yat = F5 (B1, Brs Buts BE) »

’Ylf = Fs (B, Br, But, B
W= Fr (B, B, But, Bi) »
= Fs (B1, Br, But, Bf) »

provided 0 < ¢, |\| € v < 1, where F5, Fg, F7 and Fg are linear maps obeying
2 _
1B (B Bes Bur B) 1< C (5 + IN) 1811+ = 7= (181 + 1Bt + 1851 )
2 -9y /e
15 (B Bes Buts BE) I < Co (25 + M) 18el + €72/= (181l + 118l + I8E1) )

)

(3.56)

and

1E (81, Bes But, B) || < Coe™ /= (I1G1] + 18ell + [ But | + 1)
for j =17,8.

Precluding spectrum for R(\) > £!/5.  For R()\) > £'/5 the estimates (3.40) and (3.41) hold, providing
a tame bound on the backward growth in the center-unstable direction of the solution () along the
lower and upper fold points. We show that these estimates preclude the existence of a nontrivial solution
0 (2.15)-(3.1) for any p € U. More specifically, we derive a homogeneous linear system in the remaining free
variables )/, and B, /r and show that its determinant is nonzero. Consequently, it must hold 5y, By¢ /1 = 0,
implying vy, Yu/ir = 0 via (3.56). This, in turn, yields that () must be identically zero.

Provided 0 < ¢, |\| < v < 1 and R()\) > £/, Proposition 3.7 yields

1P (e ) v (€5.,) || < o™ [|Bull-

Hence, applying Proposition 3.7 and using (3.51) and (3.56), we arrive at
Bl = Gl(ﬁh/@raﬁufaﬁllf/)v (357)

where (G1 is a linear map satisfying

1G1 (81 Brs Buts BN < G (€557 utll + (23 + IN) I8+ % (Ul + 18E1)) - (3.58)
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Similarly, we have

Br = Go(B1, Br, But, BF), (3.59)

where G is a linear map obeying

I RO o 2 _ Y
G, By Bur, BN < Co (55 BRI+ (5 + IN) 18+ (U8 + 18ucl)) - (3.60)
Next, by estimate (3.46), Propositions 3.4 and 3.5, and the fact that 7 = e_(i”_%)LgfylL, we have

[Pe s (6388 ¥ ()| < G (18 + el )

(

| At () w (&) | < oo (8l + eIt 1)
)-§
-

where we used 0 < &, [\ < v <1 and (2.11
identities B} = e (lp_*)LeﬁL and 7 =e”
R(N\) > /% we establish

So applylng Propositions 3.3, 3.6, and 3.7 and recalling the
Lenl, while using (2.11), (3.56), 0 < &,|A\| < v < 1 and

Buf — G3(ﬁl? ﬁra Bufa Bllf/)a

(3.61)
/Bllfl = G4(ﬁ17ﬁraﬁufaﬁllf/)a
where G5 and G4 are linear maps satisfying
_
1G5 (B Be, But. BN < Co (18:1 + =% (1810 + 18utll + 1851)) o

IG4(6n Be, Bus, BN < Co (= *EellBill + 2 (15l + 1Bl + 1851) )

The equations (3.57), (3.59) and (3.61) comprise a homogeneous system of four linear equations in the
variables B/, and By of the form

VR(N)
1 + a1 e v bl,s,)\,u € cc Clelv b2,a,)\,u 5|
vR(A)
b3,a,>\,u 1+ a2 e\ v b4,a,/\,u € cc Coe v Br -0 (3 63)
, )
b5 e A C3e v 1+ bgeaw b7 e A Pt
w0

e ¢ Caery  bygeaw bg e A 1+ bioew Pt

where, by estimates (3.58), (3.60) and (3.62), the coefficients obey

2 .
|aj,6,>\,l/‘ < C,/(€3 + ’)\D, ji=1,2,

Iy .
bjeaw| < Coe” <, j=1,...,10,
Cjeaw] < Cu, j=1,....4.

So, combining the latter with estimate (2.11), one readily obtains that, provided 0 < ¢, |\| < v < 1 and
R(\) > £!/?, the determinant d. y, of the (4 x 4)-matrix system (3.63) can be approximated as

ldery — 1] < Ce7 +|A]),

yielding d. », # 0. This implies that 3/, But/if = 0 and, via (3.56), also that ¥y, vu¢¢ = 0. Therefore,
(&) vanishes identically. We conclude that (2.15)-(3.1) possesses no nontrivial solution for any p € U.
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Matching at & = flf ., and { = &n v+ We continue with the derivation of the main formula (3.42).
Having expressed the variables MW and Yut 1 10 terms of agy, By, and By through (3.56), we proceed
with solving for oy and ff by matching at £ = fﬁle ,- By Proposition 3.6, we have that

Ut

lfs/\zz (élfey) w (glfsu) = Vif (/BIIfl)a
Wit

provided A € Ry .(p) and 0 < ¢ < p < v < 1, where the linear maps Uy, Vi, Wis satisfy
Ui u u’
H <‘/1f> (/31%) - alf(ﬂl[f/; g, /\) <UZ> (glf € 1/)

W) - Bf lf“}(&“”) < (CueIntog Al + en(v) [Ti(re9)| ) |8

wt (ge))

< Gy (I8l + [N og Al - 185l

(3.64)

+ Cuel Bt
and where aft and n(v) are as in Proposition 3.6. By the definition of f¢, we have
_ _ Uyt 5
BV, (1) =P, (L) v (&h.,) =P, (1) Vie | (Bi) +
Wi

To determine 3¢, we note that the third component of both W, (%) and PC ( )es equals 1 by Proposi-
tion 3.2, so we can ignore the first two components and write

* * "
* | = * + P, (3) i
Be Wit (Bf)
Hence, by using estimate (3.39) in Proposition 3.6 and the bounds (3.45), (3.56), and (3.64), we arrive at
/Bf = Fg(afwauabuﬂba/Bufa/Bllf/% (365)

where the linear map Fy satisfies

it

FQ(O‘faﬁfvabaﬁbaBufaﬁllf/) - 6/83 1f<<£(1)futL>) < (C’l,e |)\10g |)‘|| + 57’(7/) ‘Tlf()\g_l/ﬁ)‘)
Ife,v

+ Cuell Bl + Co (= (5 4 IXT) (ol + 181]) + =/ (Jaw | + 86| + 1Bur | + 18511 ) -

Similarly, using Proposition 3.2, we compute

af(I)f (%) = f)fljy (%) 1/’ (§1f5 l/)

:Pfl,lz/(%) Vif +Pfl,lu(V)Plfsz\y(glfsy)w(flfsu)
0
u/s glf&‘l/
= aft(Bit; e, )P () + Pfy () aji (i e, V) vl §lf€ S s (5)

_ Uit u,a élfsu "
+ P, (5) | | Ve | —adiBie N | o glfw + P, () me
0
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so that, by Propositions 2.2 and 3.6, and estimates (3.45), (3.56), and (3.64), we have
afp = Flo(afaﬁfvabyﬁbaﬁufaﬁllf/)a (366)

provided A € Ry (p) and 0 < ¢ < p < v < 1, where the linear map Fjq satisfies

2 u
| Fro(ag, Be, o, Bo, Buts Bif) — cdt (Bl e, M| < Gy (53 |oft (B 2, )| + 18] + |\ log [Al]185)]

) 2 o (3.67)
(<4 A1) a8+ 0 Jaul + 156l + 1) )
Proposition 2.2 yields
— ou 1 2
el (€5)) + —(u(v) = v/ () - a)| < Cuet,
(3.68)
—1, 1 ( cout,LL 1
el (€10) + —(u = £ () — )| < Coo(w).

Combining the latter with (3.67) and Proposition 3.6, while using the fact that u; — v f(u1) —a # 0, we
obtain

1— T]f(/\E_l/6)
(V) = vflu(v)) —a

< (Cl, (5§ + |Alog |)\||) + Cn(v) )Tlf()\f_l/ﬁ)D W;}L,lf‘

Fio(a, Bty Bo, But, BE) + 053L,1fu

2 2 _
+ G, <||ﬁl%||+ (3 +1A1) (arl + 180) + e ﬂv/f<|ab|+\5b\+||ﬂufu>),
provided A € Ry.(u) and 0 < ¢ < p < v < 1. Solving (3.65) and (3.66) for (o, 5¢) by the implicit

function theorem and using (3.68) and Proposition 2.2, we establish

1 — Y\ /0)
af = —cBE
() — v f(u(v)) -
u() —7f(uz) —a
Br = 65:%,11“
w(v) —vf(w(v)) —a
provided \ € RLS(/L) and 0 < e € p K v < 1, where the linear maps Fi1, Fo satisfy

By o B Bur. BE)| < o (181 + €772 (] + 18] + 18]
+ (Cl, (5% + ]/\log]/\|]> + Cn(v) Tlf(/\e_l/6)’) ‘@‘ﬁlf‘-

a + FH(Oéb, ﬂba 5ufv 61%)7
(3.69)

+ eF12(an, Bo, But, B,

for j = 11, 12. For the matching at £ = Qﬁ .,» we proceed similarly as above and solve for (o, B1,) in terms

of the other variables, from which we obtain

- 1— Tuf()‘g_l/G)
ap = —cf3uf ur(v) — vf(ur(v)) —

up(3) —7f(G2) —a
By = eBi
ur(v) — v f(ue(v)) —
where the linear maps Fi3, F4 satisfy

|Fj(o, Be, But, Bif)| < Cu (HﬁufH +e "/ (Jog| + | Be| + Hﬁl%”))
+ (Co (&5 + Nog AIT) + Cn(v) [Tur(2e™)] ) 1B,

- + Fuz(at, B, But, B),
(3.70)

a + €F14(Oéf, 5f} /Buf> Bllf/))

for j = 13,14.
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Matching at £ = %% and ¢ = 51(;“;’5 . By Proposition 3.4, at £ = £°*  we have the estimates

uf,e,v uf,e,v

1B (€3050) ¥ (XL < Coe™™ = (o] + 18] + %)

) - (3.71)
1P (65.) (€)= G (181 + (5 + N o] + /=g )

provided 0 < ¢, |A| < v < 1. Recalling the definition of Sy, we write

BUf = Prfnsl AV (SSFZ‘,V) (1 - Sf R W2 (gﬁlfl,t:,l/)) w (gglflts 1/) [ SF& AV (fgﬁts,u) - r s AV (fggts,u)] 5uf
r s AV (égklté,y) w (gglflte 1/) [ 3%1,5,)\,1/ (63?,2‘,1/) - r 5 AV (guf 15 1/)] /Bllf (372)

rl,ls,)\,l/ ( llﬁl,tew) (Puf,e)\,l/ ( 3?:5,V) - Prs,e)\,l/ ( 3Rt€y)) (’Yr + Prc,lal,A,I/ ( 3?,?—:,1/) 1/} ( ﬁl,tsy)) :

So, using Propositions 3.3 and 3.7 and applying estimates (3.45), (3.56), and (3.71), we have that

18urll < € (1811 + (25 + A1) lagl + 7/ (jan | + 8] + 1BE1) ) (3.73)

provided A € R .(p) and 0 < ¢ < pp < v < 1. We obtain more detailed estimates by bounding the fast
and slow components of Bys = (51 ufs 527uf,5,837uf)—r separately. To bound the fast components of [y¢, we
write

But = P2, (€5 ) Bus + [Pstens (Efe,) — Poia, (Eofe.)] Bus
= Pty (60850) But + [Pite s, (E005,) — Pt (6385,)] But
+ P, (6Fe,) (1= P, (65L)) v (€5L,) (3.74)
= Pl (&Fey) But + [Potens (GaFsn) — PiEas (Eafen)] Bur + Py, (G085,) ¥ (60F5)

- Prl,le,/\,y (gﬁfu;—:,z/) (ij,e,/\,u (gﬁfg,f-:,l/) - Prs,e,/\,u (ggﬁg,y)) (71‘ r s AV (53%11;7”) w (gﬁﬁt:,y)) .

Applying Proposition 3.7 and the bounds (3.45), (3.56), (3.71), and (3.73) to (3.74), as well as the esti-
mates (3.10) and (3.15) in Proposition 3.3 and its proof, we arrive at

Bl,uf - Fl5(5uf7af7 Qp, ﬁf)ﬁbu ﬁllf/)u
BQ,uf - Flﬁ(ﬁuﬁafa Qh, ﬁf)ﬁbu ﬁllf/)u

where the linear maps Fj}, j = 15, 16 satisfy

| Fj (But, o, s, Bt Bo, i)
Co (el8sutl + (25 + IN) (1Br,ael + [Bzatl) + =%/ (lagl + 8¢l + o] + 16| + 1B ) -

Solving this system for 3 y+ and 32 ¢, we obtain

L
ﬂl,uf — Fl7(ﬁ3,ufa af, ab?le’ Bbaﬁlf)v

L
ﬂ?,uf — F18(ﬁ3,ufa af, ab?le’ Bbaﬁlf)v

provided A € Ry .(¢) and 0 < e < p < v < 1, where the linear maps F}, j = 17,18 satisfy

|Fj(Buts it s Bty B BiE)| < O, (6\53,@\ +e /% (|| + |8 + |aw| + [Bo] + HBI%H)) ;
whence we obtain the estimate

1Butll < Co (<185l + €/ (Jal + 18el + o] + 18] + 18E1) ) (3.75)
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Focusing on the third (slow) component in (3.72) and using Propositions 3.3, 3.4, and 3.7 and esti-
mates (3.45), (3.56), and (3.75), we find that

ur(v) = vf(u(v)) —a £
R . (5f + (ue (L) — ug) af)

< Cy (25 + 1) 186l + o) + e/ (el + 18ut]) (3.76)

< Cpe™/% (o] + (8] + 1Busll + IBE]) + Co (5 + IN) (18e] + el

563,uf -

out,L
If,e,v>

provided A € Ri(p) and 0 < e < p v < 1. At {=¢ proceeding similarly as above, we obtain

1311 < Co (<186l + 7%/ (o] + 18e] + ] + 5ol + 1 Busl + 181 (3.77)

and

B3y — m(gz : z;g;;@a_ - (510 + % (un(y) — u2) Oéb)

<Cy ((6% + IAI) (18b| + €law|) + e~/ (JA0] + Hﬁ@u)) (3.78)

< Cue™ % (Jag] + 18] + 1Bull + 1B 1) + Co (5 + M) (18] + laws]).

From (3.73) and (3.77), and employing the Floquet condition (3.1) and possibly shrinking ¥, > 0, we
arrive at

18utll < Co (lBa.uel + ¢/ (el + il + law| + 185 ] + 1Be]) )
1811 < Co (18816l + 7%/ (Jael + 18] + ol + 1ol + 1Bsat])) (3.79)

181 < Cu (18516l + /% (latl + 86| + law| + |Bb] + Bsut))

provided A € Ri(p) and 0 < e K p < v < 1.

The main formula. We begin by solving (3.69) and (3.70) for ax, B¢, o, and fy, in terms of B3¢ and
ﬁ:’ﬁlf' Using (3.79), we obtain

1-— Tlf()\E_l/G)

v) —vf(u(v) —a
ug(y;) =7 f(u2) —a

w(v) = vf(m(v)) —a

ar + cBi u1( = Fi9(Bs,ut, B51r)

L L
Be — eB3 = el (B3,uf, B31f)

and

1 — YN /0)
r(V) =7 f(w(v)) —a
ub(%) —f(u2) —a
ur(v) = 7f(w(v)) —a

provided A € Ry (1) and 0 < ¢ <« p < v < 1, where Fj, j = 19,20, 21,22 are linear maps satisfying

L
ap + Cﬁ3,ufu = F21(B3,ut> 831),

L
Bo — B3¢

= eFy(Bs.ut, B 1),

By (B, 0] < (Cu (=3 + Nlog M) + Cn(w) [Tue(he™7%)| ) 181l + Cre /%y
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for 7 = 19,20 and
2
By (Baar, BE0)] < (o (3 + N Tog NI} + Cnw) [ urAe™/9)| ) Bs.ue] + Cue™ /|8

for j = 21,22. Employing these estimates in (3.76) and (3.78), applying Proposition 2.2, using esti-
mates (3.68) and (3.79), and dividing by &, we arrive at

o W) = f(w(v) —a (u1 — up) Yir(Ae~1/6)
Pt = S (0) 3 () —a (l ) —a ) '

< (Cu (£ + INog A1) + Cn() [ Tur (A7) ) 18l + Cue™ /%[ By .

Similarly, we obtain

0
BS,lf - B3,uf

u() —yflu) —a [ (W - ) Tur(Ae™ /%)
ur(v) =7 f(ur(v)) —a uz —vf(i2) — a
< (Cu (23 + NIog M) + Cnw) | Tu (A7) ) Ba.uel + Cue™ /% 8.

Using Proposition 2.2, employing the Floquet condition (3.1), solving for f3 ¢ in terms of B?%lf, and sub-
stituting into the second estimate, we factor out Bélf and deduce that

o (ir=2)Le _ (1 R “2)T1f(A6‘1/6)> (1 N i) e (Ae=1/0)

uz —vf(u2) —a ug — v f(u2) —a

) +Re(),
provided A € Ry (1) and 0 < e < p < v < 1, where R.(A) is as in (3.43). O

3.6 Analysis of the main formula

We proceed by analyzing the main formula (3.42) of Proposition 3.8 which controls the spectrum in the
region Rj(p). It is helpful to consider the following four subregions

Ri6(p) = Bo (%M€%>
Ripe(s,p, M) = {)\ € Ri(p) \ Ripe(p): RN < %%7 IS(V)| < Msé}
Rages M) = {0 € Ba() : [ROV| < o8, [S(Y)] = Met |,

Riae(p) = {A € Ri(p) : R(\) > 5%},

where 0 < ¢ < p < 1 <« M are chosen independently of ¢ > 0; see Figure 14. The fact that there is no
spectrum in the region Ry 4.(pt) follows immediately from Proposition 3.8. Furthermore, the union of the
remaining regions satisfies

RLLE(:U’) U R172,€(g7 s M) U Rl,S,E(ga My M) - Rl,a(ﬂ),
where R; .(u) is defined in Proposition 3.8, so that the main formula (3.42) is valid throughout these three
regions. We consider each region separately as the associated estimates are slightly different in each.
3.6.1 The region Ry ()

We begin with the analysis of the main formula in the region Ry .(x), which is the most delicate as it
contains the critical spectral curve which touches the imaginary axis at the origin. In the following, we use
analytic function theory to obtain an expansion for the critical curve and verify the quadratic tangency
which is needed for diffusive spectral stability of the wave trains.
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Figure 14: Shown are the subregions Ri1,c(p), R1,2,e(S, pt, M), R1,3,e(s, pt, M), and Ry ,4.c(u), of the ball Ry (u) C C.

Proposition 3.9. Let 0 < a < 3, 0 < v < v(a), and ¢ > ¢(a). Fiz § > 0. Provided 0 < e < p < 1,
there ezist an open interval I. C R containing 0 and a smooth function Ac: I. — C such that X € Ry 1 .(p)
is a solution of the main formula (3.42) for some p € R if and only if we have A\ = A\.(p) for some p € I..
In addition, it holds A\:(0) = R(AL(0)) = 0, R(A\(p)) < 0 for p € I.\ {0}, and

2 3
IN(0) —ic| <6, |\(0) + I’_jz 3| < ged (3.80)

where Ly = Ly + L1 > 0 is defined by (2.7) and (2.8), and k > 0 is given by

H___zﬂo(l—a+a2)1/3< 1
- 3¢2 (ur —f(u1) — a)/3(ug — v f(u2) — a)

(3.81)

1
+ )
(a1 —yf(u1) — a)t/3(t — v f(a2) — a))
with —Q < 0 denoting the largest zero of the Airy function Ai(z) (see Appendiz C).
Proof. In this proof, C' > 1 denotes a A-, v-, y- and e-independent constant, which will be taken larger, if

necessary. Moreover, C, > 1 denotes a A-, y-, and e-independent constant, which will be taken larger if
necessary.

We use Proposition C.2 to expand

TJ(Z) =1 <—ejz3> = 2% 2 + 0(24) (382)
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for z € C with |z| < 1 and j = uf,If, where Iy is given by (C.1). On the other hand, Proposition 2.2 yields
the expansion
L
20— O(ed), (3.83)
L,
for 0 < ¢ < 1. We take the principal complex logarithm of the main formula (3.42), multiply by Lg/L.,
and insert the expansions (3.82) and (3.83). Using the identities (2.6) and (3.36) and the residual esti-
mate (3.43), we arrive at

A
Lo — = Lo + Ke3AZ = hey(N) (3.84)

for peU,0<e<pu<v<l,and A € By(ue'/%), where U C C is, as in §3.5, a p-, -, M-, and v-
independent bounded open set containing the interval [—7/Le, 7/L.) and the function he ,,: Bo(ue/®) — C
enjoys the estimate

hew )] < Cy (3 + 21D + [\e] 1og(2)]) + Cn(v)eF A2 (3.85)

By translational invariance, the eigenvalue problem (2.15)-(2.16) admits the nontrivial solution ¥(§) =
(ul(&),vL(€),wl (&))" at (N, p) = (0,0). Hence, (), p) = (0,0) must be a solution of (3.84) by Proposi-
tion 3.8, implying h. . (0) = 0.

Next, we show that h., is an analytic function. First, we observe that (2.15)-(2.16) has a nontrivial
solution for \,p € C if and only if e”* is an eigenvalue of the monodromy matrix 7z(Le,0; \), where
T-(&,y; A) denotes the evolution of system (2.15). By [65, Lemma 2.1.4] the evolution 7:(£,y; \) depends
analytically on A € C, since its coefficient matrix does. Denote by e?1.=(MLe gir2e(MNLe gp( elrscMle the
eigenvalues of T2(L,0; ). By analytic perturbation theory, cf. [66, Chapter II.1], p; ., p2- and p3 . can be
chosen to be continuous functions and the matrix 72(L., 0; \) has a constant number of distinct eigenvalues
for all A € C, except for a discrete set of exceptional points.

Arguing by contradiction, we suppose that g € Bo(ue'/%) is a point where we have p; - (Xo) = pj(Ao) €
U for i,j € {1,2,3} with ¢ # j. Then, using the continuity of p; . and p;. and applying Proposition 3.8, we
infer that there exists an open neighborhood U. C B(ue'/%) of A such that the pairs (p;.-(\), A), (pj.c(A), \)
lie in U x U. and must obey the main formula (3.42) for all A € U.. Hence, we have p;.(\) = p;(A) for
each A € U.. Since the set of exceptional points is discrete in C, this implies that there are at most
two distinct eigenvalues of T:(L.,0;\) for all A € C. This can however not be true at A = 0, since
at A = 0 the eigenvalue problem (2.15) coincides with the variational equation about the periodic orbit
(ue(€),v(€), w(€))T in (2.1), which is hyperbolic with a two-dimensional stable and a two-dimensional
unstable manifold by [22, Proposition 4.7]. That is, the monodromy matrix 7:(L., 0;0) possesses three
distinct eigenvalues: one neutral eigenvalue 1, one eigenvalue with modulus > 1 and one eigenvalue with
modulus < 1. We conclude that for each A € By(ue'/%) eigenvalues L= of T.(L.,0;\) with p € U are
algebraically simple. Hence, by analytic perturbation theory, cf. [66, Chapter II1.1], they depend analytically
on . Since (3.84) has a unique solution p € U for each \ € By(ue'/%) by estimate (3.87), there must be a
Jo € {1,2,3} such that

A
hew(N) = ipj e (N Lo — “Lo + Ked A2
holds for each A € By(ue'/®). We conclude that h., is analytic and pj, : Bo(ue'/%) — C is given by

A1 2
pioe(N) = =i +ig- (/%3)\2 - hW(A)) .
By estimate (3.85) it holds

sup
)\EBO(,usl/G)

’

KeS A — he V()\)‘ < Cpe
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for all 0 < ¢ € p <K v < 1. Hence, using Cauchy estimates on the first derivative, we obtain

sup {‘KLE%ZQ —hey(2)]| 12 € RLLE(M)}
Let/o

|0, (N +ic!| < < Ced (3.86)
forall 0 < e « p < v < 1and XA € Ry1.(p). Therefore, we find that, provided 0 < e € p < v < 1,
the analytic function pj, . maps the ball Ry .(u) bijectively onto its image V., which must be open by
the open mapping theorem and contains the origin as pj, -(0) = 0. By the holomorphic inverse function
theorem, its inverse A.: V. — Ri1.(p) must be analytic, too. Using that the interval [—7/L.,7/L.) is
contained in U, we conclude that there exists an open interval I. C R such that A € Ry 1.(u) is a solution
of the main formula (3.42) for some p € R if and only if we have A = \.(p) for some p € I..

To obtain bounds on the spectral curve A;|r., we start by bounding the second derivative of pj, . using
Cauchy estimates. Thus, with the aid of estimate (3.85) we arrive at

2'sup{\hau( )\ 12 € Riae(p)}
= 2.1/3

2

L Ro2
Pl o(A) — 21L—053

(3.87)

< Ces (,u2 + /f26§ + M_lsé\log(s)o + Cn(v)es

for all 0 < ¢ << p<v<<land A € Ryjeo(pn). So, provided 0 < ¢ < p < v < 1, we find that the
real function pf: (—3uet/®, Iuet/%) — R given by pB(w) = Rpjy < (iw) is strictly convex. Moreover, by real
symmetry of the problem 1t rnust hold p .(0) € R, implying pE(0) =0 = (,of)/ (0). We conclude that
pR(w) attains a strict minimum at w = 0 and is thus strictly positive for all w € (—Suet/, Luet/6)\ {0}.
That is, the spectral curve A.|;. does not touch the imaginary axis other than at the origin, at which we
have

_ Ny = L r0) = —Pioe®
A (0) = 0, A(0) = g (0) Az (0) = <p;-0,5(0)>3

by the inverse function theorem. Usmg estimate (3.87) and recalling p; _(0) € R, we observe that ML —
R with A% (p) = R\.(p) satisfies (/\R) (0) =0 and (/\R) (0) <0, as desired. Finally, using (3.86), (3.87),
and (3.88), we obtain (3.80). O

(3.88)

3.6.2 The region Ry o.(s,p, M)

We preclude the existence of unstable spectrum in the region Rj2.(s, 1, M) by showing that any solution
A € Ri2.(s, u, M) to the main formula (3.42) must have strictly negative real part. To this end, we use
the Airy function expansions from Appendix C and exploit monotonicity properties of the functions Y
and T]f.

Proposition 3.10. Let 0 < a < % and 0 < v < y(a). Fiz p > 0. Provided 0 < ¢ < ¢ < 1, any solution
A€ Ryoc(s, s~ 2) of the main formula (3.42) satisfies R(\) < 0

Proof. In this proof, C' > 1 denotes a A-, e-, v-, and ¢-independent constant, which will be taken larger, if
necessary. Throughout the proof, we use the abbreviations A, = e V/OR(\) and \; = e~ /63(N).

Provided 0 < ¢ < ¢ < 1, we have, for A € Ri2.(s, ;s /2), that 1 < |[\] < ¢7/2 and M| < ¢ so
that
)\2

2
17/34‘)\

)\2
<C\E, §R<€1/3> §§2.

Hence, using the mean value theorem in combination with Proposition C.2, we estimate

by X2 A2 z A
() 5 (5)| = o (i) -0 (ga) [ =ove - [a(ga)| < o
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for j = If,uf, provided 0 < e K ¢ < 1 and A € Rlvg,g(g,u,g_lﬂ), where the function Iy is given by (C.1).
Thus, taking absolute values in the main formula (3.42) and using (3.89) and Proposition 3.8, we arrive at

(ug — 1)1 (5;%) (g — 1)y (%)
e ¢ <||l1- s = f () —a 1-— = f () —a + Cn(v) (3.90)

provided 0 < e K ¢ <K v < 1land X € R17275(§,/L,§_1/2). We proceed by showing that the right-hand
side of (3.90) is strictly less than one for A € Ry 2.(s, p, ¢~1/2). By Proposition C.2, the function Iy(z) is
strictly increasing on [0, 00) with Ip(0) = 0 and Ip(z) — 1 as z — oco. Hence, using that

U — U U — U1
uz — v f(uz) —a ’ g — 7y f(tu2) —a

> 0,

we observe that the functions

(ug —u1)lo (9;3)
ug —vf(u2) —a ’

(g — u1)lo (9;203)

uy —vf(u2) —a

Alf(z) =1- Auf(z) =

are strictly decreasing on [0, 00). Therefore, we have that

1= 4n(0) > A (51) 2 An(2) > Jim Aglw) = =20

and

1= 4u(0) > Aut (51) 2 Au(2) > Jim Aug(w) = 2= HEH =

for z > 1p, where we used that f(u1) = f(u2) and f(uu1) = f(u2). Recalling the expressions (1.4), (1 5),
and (1.6) for uy, 1, u2, and Uy and using that f(u1) = f(u2) < 0, f(@1) = f(d2) > 0,0 < a < %, and
v > 0, we establish

—vflwm)—a _ui—a 1 ur —yf(u)—a

0> U > > = 0> S B

ug —vf(uz) —a = uz —a 2’ tp —vf(u2) —a = s

so that

A(2) > —%, A (2) > —2
for = > 0. Hence, if the product |A¢(2)||Aue(2)] is ever equal to one for z > Ty, it must occur at a value
of z, > %,u such that Aj(z.) > % > 0 and Ays(zy) < —1 <0, so that Ajy(zs)Aus(ze) = —1. Let 2z, > %,u
be such that Aji(z.) > 0 and Ays(2«) < 0. Then, there exists 0 < z— < 2z, < z4 such that Ay(z—) =0
and Aj(z4) = 0, so that Aj(z)Aue(z) achieves its minimum on the interval (z_, z;). We show that this
minimum is strictly greater than —1. For z € (2_, z;), we have

1—%2:?;5:2@ e
(ug —u1)ly ( ) - (tig — 1)1y (9;13)

uz — v f(u2) — ! g — v f(tu2) —a
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due to the fact that 6y > ¢ for 0 < a < 1 and 0 < v < y.(a); see (3.36). The right-hand side of the latter
is quadratic in Iy(22/(0uec?)). Using (2.6), one finds that it reaches its minimum when

z

2
(us — un)o () — Ly — () — 2 + 7 (),

Oyusc3 2

so that, using 0 < a < % and 0 < v < 7«(a) < 6, we have that

(u2 — v (ug) — a + @z — 7 f(u2) — a)®
A > 4y ) — a)(uz 17 (wa) — )
(1—-2a)%2(9+ (=2 — a + a?)7)? 1

27(9 + 2(2 — 5a + 5a?)y + (=1 + a)?a®4?) 3

Therefore, the quantity |Aj(z)Aus(z)| is uniformly bounded away from 1 for z > 1u. Thus, by taking
0 <e < ¢ < v <1, we can ensure that the right-hand side of (3.90) is strictly bounded away from 1 for
A € Ry2.(s, 1, s~ /?) and hence any solution of (3.42) in this region must satisfy R(\) < 0. O

3.6.3 The region Ri3.(s,u, M)

Finally, we prove that any solution A\ € Ri3.(s,p, M) of the main formula (3.42) must have strictly
negative real part. This follows by studying the limiting behavior of the functions Yy¢(z) and Ty (z) as
2 — 00.

Proposition 3.11. Let 0 < a < % and 0 < v < v«(a). Provided 0 < ¢ < ¢,pu,1/M < 1, any solution
A€ Ri3c(s,p, M) of the main formula (3.42) satisfies F(A\) < 0.

Proof. We proceed similarly to the proof of Proposition 3.10. Again C' > 1 denotes a \-, &-, v-, M-,
and ¢-independent constant, which will be taken larger, if necessary. Moreover, we use the abbreviations
A= e VOR(N) and \; = e 1/63(N).

Provided 0 < ¢ < ¢,1/M, pu < 1, we have, for A\ € Ry 3.(s,u, M), that M < |\;| < pe™/% and |\, <

so that
A2 s M2
R ) =N N< -,
(51/3) Ar = 2

Therefore, Proposition C.2 yields
A2 1 oo _ ]MQ'; (s4+90)
_ _ < 20 c” 3 2
fo < 9j0351/3> 1' ~ Ai'(—Qp)? /Qoe J Al(s)"ds

M? C
D) < =
0 (29jc3> = MY
for j = uf,If, provided 0 < ¢ < ¢,1/M,pp < 1 and X\ € Ry 3.(s, 1, M), where the function I is given
by (C.1). Thus, Proposition 3.8 implies

e“?)Ls:KH U — Uz ><1+ UL — Uz >'+cn(y), (3.91)

uy —vf(u2) —a uy —vf(u2) —a

T;(\e"1/6) - 1‘ -

provided 0 < e € ¢, 1, 1/ M < v < 1and A € Ry 3.(s, 1, M).

We proceed by showing that the right-hand side of (3.91) is strictly less than one from which we
can deduce that any solution A € Ry 3.(s,pu, M) of (3.42) must satisfy R(A) < 0. Recalling the formu-
lae (1.4), (1.5), and (1.6) for wuy, w1, u2, and w2, we compute

(1+ UL — U )( Uy — s )_a(l—a)(9—(2+4a—4a2)’y+a(1—a)'72)
uz — vf(uz) —a Uy —vf(td2) —a/) 942(2—5a+5a2)y+ (1 —a)?a®~?
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We note that the prefactors in front of the v-terms in both the numerator and denominator have no zeros
in the region 0 < a < %, so every term has fixed sign. We also note that ,(a) < 6 for 0 < a < % Hence,
we estimate

a(l—a)(9— (2+4a —4a®) v + a(l — a)y?) < a(l—a) (9+a(l —a)y?) < 1
9+2(2—5a+5a?)y+ (1 —a)?a®~? - 9 —2

and
a(l—a)(9— (2+4a —4a®) v+ a(l — a)y?) a(l—a)(2+4a—4a2)fy> 1
9+2(2—>5a+5a%)y+ (1 —a)?a?y? - 9 -2

from which we deduce that the right-hand side of (3.91) is strictly less than 1, provided 0 < ¢ € ¢ € p <K
v< 1< Mand X € Ry 3.(s,p, M), and hence R(\) < 0. O

3.7 Proof of Proposition 2.4
The result follows by combining Propositions 3.8, 3.9, 3.10, and 3.11.

4 Eigenvalue problem near the fold points

The proof of Proposition 2.4, particularly the analysis of the main formula in §3.6, relies on the estimates
of Propositions 3.6-3.7 regarding the behavior of the eigenvalue problem (2.15) on the intervals Zjr and Zy,
along which the wave train passes through small neighborhoods of the lower left and upper right folds,
respectively. In this section, we prove Propositions 3.6-3.7 through a careful analysis of (2.15) along these
intervals. We develop an approach based on geometric desingularization techniques [20, 69], which we
apply to the system obtained by coupling the linearized eigenvalue problem to the existence problem for
the wave trains [22].

The key challenge is the lack of a uniform (g, \)-independent spectral gap between the center and
unstable spatial eigenvalues as the wave train passes near the nonhyperbolic folds; it is therefore not possible
to construct (&, A)-uniform exponential trichotomies for the eigenvalue problem (2.15) for small A € Ry (u)
on the intervals Zjy and Z,¢. A spectral gap is nevertheless present between the center-unstable and stable
dynamics. Therefore, guided by the structure of the existence problem, as described in §4.1, we derive a
change of coordinates which separates the two-dimensional (nonhyperbolic) center-unstable dynamics from
the (hyperbolic) stable dynamics. Based on the structure of the resulting linearized problem, in §4.2 we
propose a simplified model which identifies the key terms, particularly those capturing the leading-order
effect of the eigenvalue parameter A, from which we derive the expected leading-order behavior of the
eigenvalue problem (2.15) near the folds. Informed by the behavior of the toy model, in §4.3 we return
to the full problem, and we derive precise estimates for the behavior of the eigenvalue problem in the
(nonhyperbolic) center-unstable space. Finally, we obtain tame estimates in §4.4 for the dynamics in the
case R(A) > e1/5. and complete the proof of Propositions 3.6-3.7 in §4.5.

Notation. Throughout this section, we use the notation f = O(g) to denote |f| < Clg|, where C' is a
constant which can be taken independent of 0 < e, |\| € v < 1.

4.1 Setup and local coordinates

We study the eigenvalue problem (2.15) in a neighborhood of the lower fold point (u,w) = (uq, f(u1)),
which we rewrite as

0 1

0
Vo= (&) HAB) Y, Ao(6e)= (@) e 1), B= (4.1)

(L}

o 1M
o

|

=
o O O

95



We recall from §2.1.4 that in a neighborhood of the fold point, in the existence problem (2.1), there
exists a smooth change of coordinates which reduces the nontrivial dynamics to a two-dimensional center
manifold, in which one can employ blow-up desingularization techniques to track the wave-train solution
around the nonhyperbolic fold. Here, we derive an analogous local coordinate system to analyze (4.1).

The wave-train solution U.(§) = (ue, ul,w.)(§) satisfies the first-order system (2.1), which we write in
the form

Us = F(U), (4.2)

where U = (u,v,w), F(U) = (v, —cv — f(u) + w,—&/c(u — yw — a)). As described in §2.1.4, for any k > 0,
there exists a neighborhood of the origin ¥V € R? and a C*-change of coordinates N : V — R3 such that
the map U = (uy,0, f(u1))" + No(V) transforms (2.1) to the system (2.9), in which the nonhyperbolic
center dynamics on a local (non-unique) two-dimensional center manifold W€ := {(z,y,z) € V : z = 0}
are decoupled from the normally hyperbolic z-dynamics. Following the analysis in [22], tracking the two-
dimensional unstable manifold W*"(T'.) of the periodic orbit I'. corresponding to the wave train into a
neighborhood of the fold, W"(T';) enters such a neighborhood aligned exponentially close in ¢ to the
unstable manifold W"(MZ) of the right slow manifold, and transverse to the strong stable fibers of the
two-dimensional center manifold W¢; hence W"(T';) aligns along W° and subsequently along the unstable
manifold W*(ML) of the right slow manifold M. In a neighborhood of the fold point, we exploit the
invariance of the manifold W"(I';) and choose coordinates relative to this manifold which will simplify the
analysis for the existence and stability problems.

In particular, we note that W"(I';) is itself a two-dimensional normally attracting locally invariant
center-like manifold in a neighborhood of the fold point (and hence represents a choice of the non-unique
center manifold W¢). Therefore, choosing coordinates relative to this manifold, and straightening the
corresponding strong stable fibers, results in a vector field of the same form as (2.9), in which now the
manifold W"(T';) is represented by z = 0. Slightly abusing notation, we continue to denote this coordinate
transformation by M.

Summarizing the above discussion, there exist an e-independent neighborhood of the origin V C R3
and a change of coordinates NV; : V — R? (see also e.g. [20]) such that the map U = (uq,0, f(u)) " +No(V)
transforms the existence problem (4.2) to the system

Ve =G(V), (4.3)
where V' = (z,y,2) and
91(2,y;¢) L)y — By + O (e, 2y,2%)
GV)=| ozye) | =|-% (m —vfu)—a-g -F+0 (6,332756%212))
gl 7:2) 2(~e+ O (2,,7,2)
The map N, satisfies
1
B 1 —p -2 %
No=Ng(0)=| 0 5 —c|, Nyg'=1| 0 0o 2],
(&
0 £ 0 o -1 %

where
B = (> —a+1)"P(ur — yf(ur) —a)~'/?, By = c(a® — a+ 1)"%(uy — vf(ur) —a) /3.
Thus, the linear map N{(0) transforms the system into its Jordan normal form for e = 0. In the (z,y, 2)-

coordinates, W"(I';) is given by the subspace z = 0, and is parameterized by the (x,y)-coordinates. In
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these coordinates, the wave train T':(¢) is given by U-(€) = (u1,0, f(u1))" + Ne(V:(€)) where V.(§) =
(2:(£),y:(£),0). Furthermore, we have that

Na/(va) = Ny + (nij(wa Y; 8))173‘:172,3 s (4'4)
where

nij(z,y;e) = Oz + |yl +¢), i=1,2,j=1,2,3

ngj(z,y;€) = 0(e),  j=1,2,3.
As described in §2.1.4, in this local coordinate system, for € = 0 the critical manifold M is determined
by the conditions z = 0 and g;(x,y;0) = 0, locally taking the form of an upward facing parabola centered
at the origin (x,y) = (0,0), with the left and right branches of the parabola representing M} and M,
respectively; see Figure 10. the dynamics of (4.3) in the subspace z = 0 can be analyzed using blow-up
desingularization techniques; in particular, by tracking the perturbed manifold ./\/ll6 around the fold [20,
§4], it is known that the extended manifold MB”L (2.10) obtained by appending the positive z-axis to M})
perturbs to a locally invariant manifold MY which is O(e2/3)-close in C° to M%)’Jr and O(e'/3)-close in
C! to M%)’—F. Furthermore, following the analysis in [22, Proposition 4.7], tracking the periodic orbit I'.
backwards around the fold, we deduce that I'. is C'-O(e~?*/¢)-close to MET in the neighborhood V for
some v, > 0. Hence we can characterize the behavior of the wave train I'z in these local coordinates in
the same manner as the manifold M}f, up to exponentially small errors. For sufficiently small g9 > 0, we
denote Mbt = UoSsSEOMIE’Jr

We have the following, due to [20, 22|, Proposition 2.2, and the above discussion.

Lemma 4.1. There exists a continuous function n: [0,00) — [0, 00) satisfying n(0) = 0 such that, provided
0 < e € v < 1, there exist e-independent constants C,,9, > 0 such that the following holds. On
the interval Ty the periodic orbit T of (2.1) corresponding to the wave-train solution (ue,w.)(€) is C'-
O(e="/#)-close to M15’+, and can be represented by a solution (x,y, z) = (x:(£),y=(£),0) of (2.9) satisfying

Sup (&) + [y ()] < n(v)

€Ly¢

and
($5’y5) (élifn,e,u) = ($1H(V7€)7yin(yv E))?
<x57y6) (5&2;:,5) = (mout(l/? 5)7y0ut(’/75))a

where x;y, Jouts Yin/out GT€ CONLINUOUS functions satisfying

|xin(V7 5) - xin(Vv 0)’; ’yin(ya 5)‘7 ‘xout(Va 5) - xout(V)O)L |yout(V7 5) - yout(Va O)’ < Cl/52/37
0 < zin(v,0) < n(v), (V) < Tout(,0) < 0 < Yous(v,0) < n(v)

and g1(Zou (v, 0), Yous (¥, 0);0) = 0.

We now turn to the linearized stability problem (4.1), which we transform to this same local coordinate
system, in the following lemma.

Lemma 4.2. For any k > 0 and 0 < v < 1, there exist p,eqg > 0 and a C*-change of coordinates
Ri(p) x (0,e0) x Iyt x C3 — C3 defined by ¥ = N.(£)®, where N (&) = NL(V-(E)) + O(N), and a
rescaling ¢ = 0& which transforms the linearized equation (4.1) to the system

2
XC =X <—2SL‘ - 9)\7@3 + O(ZL‘2, Y, €, AT, >‘3)> +Y (1 + O(m,y,e, )‘)) )
1f
Yo = O0(eX,€Y), (4.5)

Ze = —£+(9(:c,y,5,)\) Z,
O
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where the wave train (x,y)(¢) = (ze, y:)((/01) satisfies the equation
a¢ = —a® +y+ O(zy,y* 2% ¢),
Yo =¢ (]‘ + O(CL‘,y,E))

on the interval £ = (/0 € Lys.

Proof. We first transform ¥ = N(V.(£))®, where ® = (X,Y, Z)", which results in the system

B¢ = (A(2e(6), 4 (€)i) + AB(2:(8), :(€)s€)) D, (4.6)

where A(z,y;e) = G’ ((z,y,0) ) and

mam@:['(uy,>ﬂ‘BN{@y,>)

bll(‘rayvg) (xaya 8) -1 +b13(x7y7€)
= eba1(z,y,€) b (z,y,€) ebas(,y,€)
%'}_b?)l(xvyvg) ﬁ+b32(’xaya€) _%+b33($7y75)

with b;j(x,y,e) = O(x,y,€). Since the wave-train solution is confined to the invariant manifold W*"(I';)
given by the subspace z = 0, we can restrict our attention to this subspace and note that solutions of the
eigenvalue problem (4.6) are given by solutions of the system

i)g = (zé_l(a:, y;e) + )\B(m,y;&“)) P, (4.7)

where (z,y) = (2:(£),y:(&)) satisfies

This reduction effectively factors out the local hyperbolic dynamics in the existence problem.

We now aim to similarly factor out the corresponding hyperbolic dynamics in the linearized ®-variables.
Note that when (z,y) = (z(€),y:(€)) and A = 0, the derivative ® = V/(£) of the wave train satisfies
the linearized equation <i>5 = A(z,y; 5)@, which has a normally attracting invariant subspace given by
{Z = 0}, foliated by strong stable fibers. In general, this manifold (and its stable foliation) persists as a
normally attracting invariant manifold in (4.7) for small |A|. We therefore seek a coordinate transformation
(X,Y,Z) — ® = (X,Y, Z), linear in the variables ® = (X, Y, Z), which shifts this manifold to the subspace
{Z = 0} for small ||, and straightens its stable fibers. The goal of this transformation is to preserve the
linearity of the vector field in the linearized coordinates, while block diagonalizing the system in order to
separate the strong stable hyperbolic dynamics from the non-hyperbolic dynamics near the fold.

To achieve this, we first consider the alternative system

Ve =4(V),
_ - (4.8)
We=G(V+W)—G(V)+AB(z,y;6)W,
where V = (z,y,2), and W = (W1, Wa, W3). Note that linearizing the W-equation about the solution
(V,W) = (V.,0) results in precisely the eigenvalue problem (4.6). Considering (4.8) in the invariant
subspace z = 0, when A = 0, there exists a normally attracting invariant submanifold given by the
subspace W3 = 0. For A\ € R, (u), for p > 0 sufficiently small, we therefore obtain a A-dependent local
center manifold of (4.8) which is contained in the subspace z = 0 [26]. We now perform a near-identity
coordinate transformation W = H. \(W, V) = W + O()\), where W = (W7, Wa, W3) which transforms this
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center manifold to the subspace W3 = 0 and straightens its strong stable fibers. A short computation
shows that this transformation satisfies

DWHE,A(()) Vs) =I+A (Hij (55, Y&, A))i,j:1,2,3 > (4'9)
where

Hij(z,y;,A) = O (|| + |y + [e[ + [A]) ,
H2j($ay; &, )‘) = 0(5)7

1
Hzi (2, y;6,\) = gt O (] + [yl + [e] + A,
1

Has(z,y;6,A) =0
for j = 1,2,3. Linearizing the resulting system about the solution (V, W) = (V,, 0) reduces to the linearized
equations

)\2
Xe =0 X (233 — 4+ 0%y, e, A, )\3)) +60kY (14 O(z,y,e,N)),

e 4.10
Ye = 0(eX,eY), (4.10)
Ze = (—c+ O(z,y,¢, M) Z,
where
f"(u1) 5)! (® —a+ D)YS(uy —yf () — a)'/®
2b1c 165 c
The corresponding transformation to obtain (4.10) directly from (4.6) is therefore achieved by setting
. X
o= 1|Y | =H ()2,
Z

where the matrix H. (£) = DwH1(0,V:(£)). Returning to (4.1), we therefore obtain a C*-change of
coordinates ¥ = N, »(£)®, linear in ®, where

Nea(§) = NI(Ve(§)) Hoa (8) (4.11)
and a rescaling ¢ = 0¢ which transforms (4.1) to (4.5). O
Results analogous to Lemma 4.1 and Lemma 4.2 hold for the wave train I'; and (4.1) near the upper

fold (u,w) = (uy, f(u1)) on the interval Zys.

4.2 A simplified system

Motivated by the results of Lemma 4.2, we first ignore higher order terms and consider a simpler toy model
for the eigenvalue problem in the XY Z-coordinates near the fold

)\2
X=-22X+Y — X
¢ rAE Orpcd
Y, =0, (4.12)
C
Ze=-Lz
¢ O
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The wave-train solution (z,y)(() = (z, y:)({/6)) is assumed to satisfy the corresponding existence problem
with higher order terms ignored
ze = —a® +y,

(4.13)
Ye = €.

We abbreviate &, = 5{35,,/, Sout = éffu; VL and define (in = Oi¢&in, Cout = Airéout, and we let ziy = 2((in), Yout =
y(Cout ), noting that xiy, Your > 0 are bounded away from zero independently of € by Lemma 4.1. We consider
the problem of solving (4.12) subject to the boundary conditions

X (Cout) = Xouta Y (Cout) = 8}/outa Z (Cin) = Zina

where Xout, Yout, Zin € C. The choice of scaling the Y-coordinate by ¢ is for convenience (see below).
From the form of the equations, we immediately see that Y ({) = eYyu, while Z(() = Zine~¢(6—Cin) /01,
in particular the stable Z-dynamics are completely decoupled from the center-unstable XY -dynamics, in
which Y remains constant. Hence it remains to determine X (().

By the discussion in §4.1, the wave-train solution is exponentially close to the perturbed manifold M1€,+
obtained by tracking the perturbed critical manifold M}, backwards around the fold. In the simplified
system (4.13), M}, is simply given by the branch of the parabola y = 22 in the region z < 0. Thus z(¢) is
described by the equation

Te = _xQ + Yout + 5(C - Cout)-
Up to exponentially small errors, we obtain that
2(¢) = e ar (Y5 + 1% (¢ = Gour))
y(C) = Yout + 5(< - gout)

is the solution of (4.13) corresponding to MET; here the bijective function zz: (—Qo, 00) — R is the unique
monotonically increasing solution of the Riccati equation

Ty =—2°+s (4.14)
that satisfies
1 1
SNxR++O<3), TR — —00,
2z Th
) ) (4.15)
N—Qo++(’)< >, TR — 00,
TR xR

where ) is the smallest positive zero of J(s) = J_ (253/2/3) + J1 (25%/2/3), where Ji1 are Bessel func-
tions of the first kind [69]. By writing x = %, we can re- express (4 14) as the Airy equatlon
¢ss = 5¢7

where the conditions (4.15) ensure that ¢(s) = Ai(s), the Airy function satisfying Ai(s) — 0 as s — oo,
where —() is the first zero of Ai(s).
We note that Y (¢) = eYour = Youty'(¢), and set

X(¢) = Youa'(¢) + X(0),
which results in the equation

_ _ )\2 _ )\2 ,
XC - —23}X - m - @Youtx (C),
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from which we obtain the solution

i ¢ ALa2 F )2 CoC o+ 22, -~
X(¢) = Xouse St 2Ot gead _ 911”(33’Yout/C ef_C RARATT dcm'(é)dé-
out

Letting s := ¥4 + !/3(¢ — Cou) and similarly for ¢, {, with

— ( Yout 1/3/ - Yout
(Sina Sout) = (82/3 +e / (Cm - Cout)y 62/3) , (4'16)

and using the fact that zg(s) = iii/((ss)), we have that

; 2 22 s
Ai(sout) IREVET (sout—sin)

out Ai(sln)z

\2¢1/3 Sout 1/5’.\723(5781& ./ \2 10 \2
Yo | e (sAi(9)2 - AT () s

X(Cin) =X

Using (4.15) and (4.16), Lemma 4.1, and properties of the Airy function Ai (see Lemma C.1(iii)) we have
that

|3in + QO| < CV51/3

and

x/(gin) SoutAi(SOut)2 — Ai/(Sout)Z ﬁ(Sout—sin)

" x,<C0ut) SinAi(Sin)2 - Ail(Sin)Q

Aznutxl(Cin) Sout #23(5—&,}) . \9 A2
€ c A _A d
T 305 (snAi(sin)? — AT (50)?) / © (5Ai(s)” = AT(5)%) ds,

X(Cin) = Xo

We deduce that, for \ satisfying [Ae~ /%] < 1 or R(A\?) < 0 (or equivalently, |R(\)| < |S(N)]), there exist
C,, 9, > 0 such that

X(Gn) + T (A7) You' (Gn)

< Cl/ (e_ﬂu/e|X0ut| + |>\‘2|ng|)

OV A2 ‘Ilf ()\5*1/6> Your' (i)

)

where

2

00 2

z Z_(54+Q . .

Tielz) = M/ o " (s4i(s)? — AV (5)?) ds.
—w&0

The properties of the function Yy¢(z) are described in Appendix C.

Returning to the boundary value problem associated with (4.12), given exit conditions Xout, Yout € C,
we therefore obtain a solution of (4.12) satisfying Y (¢) = eYout, X (Cout) = Xout, and corresponding entry
conditions at ( = (i

X (Cin) = YoutZ' (Gin) (1 — Ty ()\5_1/6)> +h.o.t.
Y(Cin) = Yvoutg = Youty/(Cin)-

In effect, at ¢ = (j, the corresponding solution to the linearized problem (4.12) resembles a multiple of the
derivative (z/,4)(¢) (which solves (4.12) for A = 0), up to a leading-order correction in X (¢) described
by the function Yy ()\5_1/6) due to the presence of the A\2X term in (4.12). In the next section, we
return to (4.5) and focus on the center-unstable XY-dynamics. Guided by (4.17), we solve an analogous
boundary value problem in the full XY dynamics of (4.5) including all higher-order terms, and we precisely
characterize the resulting estimates on the solution.

(4.17)
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4.3 Blow-up analysis of the center-unstable XY-dynamics

Guided by the analysis in §4.2, we now consider the full XY-dynamics. Coupling the existence problem
to the eigenvalue problem through the fold, rescaling 6,;( = (, and restricting to the invariant subspace
Z =0, we have the following

ve = -2 +y+ O(zy,y°, 2% ),

Y¢ = E(l +0(1’,y,€)),
2

Xe= X (22— o+ 0GR A X)) Y (14 O, 0).
1fc

Yo = O(eX,eY).

(4.18)

Here, we note that the wave-train solution (x.,y.)({/6)¢) satisfies the first two equations on the rescaled
interval ¢ € [(in, Cout) corresponding to £ € Iy, where we abbreviate &, := §lf " V,fout = 5101}1;5 and write
Cin= O1t&in, Cout = Oit&out- The derivative (z,y)'(¢) satisfies the linearized equatlons in the last two com-
ponent of (4.18) when taking (z,y)(() = (2, y:)((/6if) and A = 0. Guided by the results of §4.2, for
0 < p< M, we define

AE(,M, M) = Ar,a(,ua M) U Ac,a(,uv M)7

where
Ave(p, M) = {A e C: RN < ue/s, |30 < M51/6} :

Nee( M) = {X € € [RO| < M SO, M0 < S(N)] < e

define rectangular and (partial) cone-shaped regions, respectively, near A = 0. See Figure 15 for a depiction
of the regions Ar (e, M) U Ace(pp, M) = Ac(p, M). Note that the union Ac(p, M) contains the subregion
Ric(p) = {X € Ri(p) : [R(V)| < ,wsl/G} of Proposition 3.8, and in particular contains the union of the three
subreglons Riie,i=1,2,3 analyzed in §3.6. We recall the function

2

z ]. o0 i(S*FQO) . 2 . 2
Ti(e) = 5 5 AT o) /Q e (sAi(s)? - AY(5)%) ds,

where Ai(s) denotes the Airy function and where —()g is largest zero of Ai(s), or equivalently € is the
smallest positive zero of J(z) == J_ (223/2/3) + J1 (22%/2/3), where Ji1 are Bessel functions of the first
kind. We have the following.

Proposition 4.3. Fiz M > 0. There exists a continuous function n: [0,00) — [0,00) with n(0) = 0 such
that, provided 0 < ¢ < v < pu < 1, for each (Xous, Your) € C? and X\ € A(u, M), there exists a solution

¢lf = (z, y,Xl(%, lf) [Cin, Cout) — ]R2 x C? of (4.18) with (z,y)(C) = (ze, ye)(/b), which satisfies

Xl?” (Cout) = Xouta
}/1? (gout) = e¥out-

Moreover, there exist (¢, \)-independent constants Cy,,9,, > 0 such that the solution satisfies the following
estimates

‘Xl(% (Cin) - aff,zx(yz)ut; &, /\)1}; (Cin/elf)‘ < Rin,V(XOUtv Yout; €, A)v

YO (Gn) — £Yout Y (Gin/brs)

<Ry ‘)(Ollayou;ﬁ,)\7
o G /0y | = Tty (Xouts Yousi &, 4)
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AC-,E(/M A/[) \‘\ ’/’ §R)\ AC,E(,Uv ]\[) / \ %A
e/ // \\ 1e1/6 /
/ AN N1
A el
_//l‘ \\
). (Right) Shown are the regions A; . (u, M) and

MYUAce(pu, M) = Ac(p, M).
3, ), and Ri,4..(p) from §3.6; compare with

Figure 15: (Left) Depicted are the regions A . (1,
Ac,e(u, M) overlaid on the (unlabeled) regions Ri,1,c(u), R1,2.c(s, g, M), R1,3,(s, pu, M

Figure 14.
where of; , and R ,, Rip,, satisfy
x . . eYout _ ~1/6 -1/6
oowi =0 = gz Sy (1= (7) +.0 (ot (3717)) )
([ Xout| + (¢ + [Moge|) [Yout|), A € Ave(p, M),
Ae A, 6(,“7 )7

RE Xo 7You§6a)‘ =

o (Xou Yous ) {cyuxout\ £ (= + Mog A Yot

Cue | Xout| + (Cue (e + [Moge|) +en() [ Yie (Ae™)|) [Yous|, A € Avo(p, M),
)\ 6 AC,E(M) M)7

Cue[Xout| + (Cue (¢ + [Mog [A]]) + en(v))[Yous|,

R%f,y(Xout, Yout; g, )\) = {
(e, y)(¢/b)) and A # 0, we use blow-up

To solve the full eigenvalue problem (4.18) when (z,y)(()
methods as in the existence problem; see §2.1. In the existence problem, as with the blow-up of a canonical
fold point [69], the strategy is to append the equation e, = 0 and perform a quasi-homogeneous spherical

blow-up transformation for the three coordinates (x,y,¢) given by
(@,9,8,7) — (z,y,¢) = (rz,7°y,7°¢

Here, we perform the same procedure for the coupled existence-stability prob-
, Y, \). Based on

where (Z,7,8) € S%. ,
lem (4.18), which necessitates simultaneously applying a blow-up transformation to (X,Y,\)
the analysis of §4.2, we expect the linearized solution (X,Y’) to behave like the derivative (z¢,yc) of the

solution to the existence problem, hence the weights for (X,Y") are chosen accordingly. Again inspired by
the analysis in §4.2, we further choose the weight for A to retain the anticipated leading-order A2 X-term in
the X-equation in (4.18). We correspondingly adjust the scalings from the existence problem to avoid frac-
tional powers of the scaling variable in each chart, due to the appearance of A2 in the linearized equations.

This results in the blow-up transformation
(7,9,6, X, Y, M) = (z,y,8, X, Y, \) = (Fz, 7'y, 798, 7 X, 707, 7)) |
X,Y,\) eC3

where (7,7, ) € S? and (X
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Figure 16: Shown is the setup for the proof of Proposition 4.3, outlining the charts IC;, i = 1, 2, 3,4 where the solution is tracked
to solve the boundary value problem for the center-unstable (XY )-dynamics on the interval £ € Ti. The sections S/
represent the entry/exit sections for solutions passing through the charts K;,7 = 1,2, 3,4, which are analyzed in §4.3.1-§4.3.4.

The solution must then be tracked through the three coordinate charts IC;,7 = 1,2, 3 as in the existence
problem; see [20, 22, 69]. An additional chart K4 will be needed to capture values of A € Aco(p, M),
corresponding to values of A outside a small neighborhood of O(¢'/6) up to small O(1) values of S(\),
independent of €.

In the chart Ky, the transformation takes the form

c=riz, y=ri e=1%, X=riX,, Y=rV, A=rA. (4.19)
Similarly in the chart Ko, the transformation takes the form
=131y, y=rhys, e=15, X=r)Xy, Y =rYs, A=r2) (4.20)
and in the chart K3, the transformation takes the form
v=13, y=riys, e=ries, X =riXs, Y =riYs, A=r3\s (4.21)
Finally in the chart K4, we have the transformation
ra=riws, y=riys, e=rfes, X =riXy, Y =18V, A=rs(\s+1i) (4.22)

Note that this chart amounts to a rescaling by the real quantity r4 = J(\).

Based on the existence analysis in [22] (and the corresponding theory for passage through a generic fold
point [69]), the wave train (z,v)(¢) = (z<,y:)((/0y) passes through each of the three charts, IC;,7 = 1,2, 3.
We denote by

Ii = [Cin,ijOUt,j]) 1= 17273

the (-intervals over which the wave train lies within each chart. Since we will refer to the geometric setup for
known results concerning passage through a nondegenerate fold point [20, 69], we have chosen the labelling
of charts to correspond to the notation in those works, though due to the direction of the flow (see Figures 11
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and 16), the wave train actually passes through each of the charts in the order K3 — K9 — K1, so that
that Gz = Gn and Cout,1 = Cout and [Cin, Cout] = I3 U Io U I1. For values of A € A, (p, M), the eigenvalue
problem can be analyzed using these three charts; however, values of A € A (u, M) will require a detour
via the chart K4, instead of the chart ICo; see Figure 16.

We will also make use of the fact that the derivative of the wave train, which we denote by (X, Yz)({) ==
(x,y)'(¢) where (z,v)(¢) = (xe,y:)(¢/bs) satisfies the linearized equations when A = 0. Motivated by the
analysis in §4.2 and the anticipated form of the solution (4.17), we write (X,Y) = (aX.,aY:) 4+ (X,Y) for
a to be determined, and obtain the system

zc = —a® +y+ O(zy,y?,2°,¢),
Y¢ = 5(1 + O(l’,y7€)),

A2 2 3
X=X <—2x ot Ol e A X )) +Y (1+0(,9,¢, 1)), (4.23)
AQ
#aX (— 25+ O (el + bl + ]+ AP) ) + OaYs),
If

Ye = O(eX, €Y, aeAX,, ac\Y;),

where we have dropped the tildes on (X,Y).

In the remainder of this section, we analyze (4.23) by deriving estimates satisfied by solutions of
boundary value problems in each of the charts IC; (§4.3.1), KCa (84.3.2), K0y (§4.3.3), and K3 (§4.3.4). These
solutions are then matched to obtain a solution of (4.18) satisfying the estimates of Proposition 4.3, the
proof of which is presented in §4.3.5.

4.3.1 Chart £;

We begin in the chart 1, which upon applying the coordinate transformation (4.19), results in the system

1
(r)e = 17"%611’1(961,7"1,61),
1
(z1)c =1} (1 —af - Je1T1 + O(T%)) ;

3
(e1)¢ = —57“%5%}71(931,7“1,51)7

2

A
(X1)e = 71Xy <_2$1 - Kig —e1+ O("”MM“%)) +11Y1 (1+ O(rig, 1))

2
Oy c3

1
+ <2Tf€1F1($1, r1,€1)21 + (M)c) < + 0(7“1>\1)> +O(arfeih),

3
(Y1)e = —57“%811/1F1(3?177“17€1) + O(rfe1 X1, r%e111, aret M X, ariet M Yz),

1
(A)e = —ZT%€1>\1F1(961,7"1,81),
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where Fy(z1,71,e1) = 1+ O(r}). We now desingularize the system via the rescaling dz; = 72d¢ and obtain

/
= Zr1€1F1(:c1,7‘1,€1),

1
) =1—2% - JE11 + O(r?),

€1 = —55%F1(1’1,7“1,€1),

2

X=X 221 — L
1 1( X1 91f03

— 1+ O(ri A, r%)) + Y1 (1+0(ri A, 1))

2

1 A
+ « *€1F1(IL‘1,T‘1,€1)ZL‘1—|—1',1 —713—1—0(7“1)\1) —I—O(O&T‘p‘:l)\l),
2 hec

3 _ _
Yll = *§€1Y1F1(331,T1,61) + O(T%&le, 7"[1161Y1, Oé’l"l 181>\1X5,Oé7’1 161)\1}/5),

1
)\/1 — —151)\1F1(«T177"1751)7

where ' = ddTl' Focusing first on the existence problem in the coordinates (r1,x1, 1), we rescrict attention
to the flow between the sections ¥ and ¥.¢" defined by

=z +1] < 21,0 <71 < 1r1.(0),61 = 6},
S = {lar + 1| < 71,11 = r12(61),0 < &1 < 6,

where 71 c(61)* = yout(v,€) satisfies |r1o(e1) — 71| < C’l,ei/3 and where 7} = 71:(0)* = yout(,0) > 0
by Lemma 4.1, and d,Z; > 0 are sufficiently small constants. In the Ki-coordinates, the wave train
is represented by a solution (z1.,71¢,€1,¢)(21) which reaches these sections at values of z; = 2B pout
respectively. The fixed point (x1,71,e1) = (—1,0,0) admits a center-unstable manifold M~ given by the
graph

M1+ = {xl = xf(rl,a) =-14+0 (T%,El) ,O <r < 7’178(61),0 <eg < (5} .

The manifold M 1+ is the representation of MU+ in the Kj-coordinates; see e.g. [20, Proposition 4.2]. There-
fore, by Lemma 4.1, in between the sections Xi", 9" the solution (1 ,71.¢,61.)(21) remains O(e?/¢)-
close to Mfr . The corresponding eigenvalue problem can therefore be written as

A

X{:Xl <2— —|—O(T1)\1,T’%,€1)> +YV1(1+O(T1)\1J"%))

Oyec3
+a —151 +0 (7’261 52) —L% + O(riA1) | + O(arie1Ar)
9 1¢1y<1 HlfCS y (424)
3 _
Y| = —551Y1F1(7“1, e1) + (’)(r%lel, r‘flel, ar:ff-:%)\l),
1 _
A= —Z€1>\1F1(7”1,€1)
over the interval z; € [z 20"], where Fi(r1,e1) = F (xf(rl,el),m,z—:l) + O(e_ﬁ"/(’”?fl)). We con-
sider (4.24) on the invariant set 7 = Y; =0
3
el = —55%,
)\2 )\261
X=X (2-"+0 " (1+0
{= X0 (20 4 0)) +agidoh (14 0G).
1
)\/1 = —151)\1.
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Fix p > 0 sufficiently small. Given a solution of the (€1, A\1)-subsystem restricted to the region
A€ A1 (8, i, M) == {)\1 e C: RO < uo'/S, |S(\)] < M61/6},

there is a unique solution X; = X7 = O (a)\lsl) which is bounded as z; — oo given by

a = = A (5)?
Xi(e1) = g3 /OO exp ( / 2 ;écg —i—(’)(al(s))ds) N(s)er(s) (1+ O (s)ds,  (4.25)

where we note that | X7 (2¢"")| < Cr, [ag)|. We set X1 = X] + X in the full system (4.24), which results
in the system

X; = X1h1x(r1,e1, M) + Yihiy (r1, 61, A1) + ahy (1,61, M),
3 _ By
Y! = *§€1Y1F1(7“1761) +e1 X191, x(r1,61, A1) Fe1Yig1,y (r1, €1, A1) + €1091,0(r1, €1, A1), (4.26)

1 _
A= —181>\1F1(T1,61),

where
z2
hix(r1,€1,A1) =2 — K + O(ri\, 72, 61),
hiy(ri,e1, A1) = 1+ O(rih, r%),
h1,a(r1,€1, A1) = O(rie1 A1),
g1,x(r1,e1, M) = O(r),
g1y (r1,e1,\1) = O(r}),
Gr.a(r1,61, A1) = O3\ riei ).

We have the following.

Proposition 4.4. Consider (4.24) with (z1,71,€1) = (T1,6,716,€1,)(21), and fit M > 0. There exists
C,Cr,, 05, > 0 such that the following holds. Given X{"* € C and any X € C such that A\i(zin) =: A1 €
A1 (8, , M), there exists a solution (X1,Y1, A1) : [P ,zf“t} — C? x Ay (6, u, M) of (4.24) satisfying

() = X + X Y =0,
as well as the estimates

XU = XTE] < G (1X7e P+ faN]) s MG < O X+ Crlae)]

Proof. We focus on solving the system (4.26). We first construct a solution to the inhomogeneous equation
satisfying the boundary conditions X1 (29") = 0,Y;(2i") = 0. Using the fact that

[ Sa@RmGa@ds = [ 6/ ()05 = log(e (1) ~ logler(5) (4.27)
so that
exp ( / _%51(5) F1<r1(g),51<5))dg> _ 6511((251))’ (4.28)
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we can write the solution of the inhomogeneous equation satisfying X 1(29%) = 0, Y1 (21") = 0 as an integral

equation
~ 21
Xi(2) = / H1G19) (Y ()hny (5) + ahra(s)) ds,
Zout
= (4.29)
Yi(z1) = €1(21) / X1(s)g1,x(s) + Yi(s)g1,y (s) + ag1,a(s)ds.
2"

where

51(21720) = /z1 hlyx(s)ds

20

and we denote

~—

91+(5) == g1,(r1(s),€1(s), A1 (s)),
hly*(S) = hl,*(rl (s),el(s), )\1(8))

for ¥ = X, Y, a. We consider the integral equation (4.29) on the space X1,Y; € C([2i", 29"]) with the norm

I(X, Y)lr = 1 Xilley + I¥illne, = sup

z1 €[00, 290t

() i)+ s (e () i)

z1 €[00, 290t

)

Using a fixed-point argument, the equation (4.29) admits a unique solution (X{ ,Yi)(21) satisfying the
estimates

be{Cy)

< Cﬁ‘a}"a ‘Yll(zfllt)‘ < 07_’1‘0‘5)‘"

We next construct a solution of the homogeneous equation, given by (4.26) with o = 0, satisfying the

boundary conditions X (20") = X" ¥ (zi") = 0, as a solution of the integral equation

21
Xl(zl) _ Xi)Uteﬁl(zl’z(l)m) +/ eﬁl(t’S)YVl(S)hLY(S)dS,

out
21

Z1

Yl(zl) = 81(21) ) Xl(s)gl,x(s) + YlgLy(S)dS.

1mn
21

Similarly, for small £ > 0 fixed independently of 71,4, ¢, \, a fixed point argument on the space X;,Y] €
C([z", 20"]) with the norm

(X1, Y1)]l1e = sup

z1 E[210, 291t

eﬁf"(z?ut’zl))zl(zl)‘ + sup 51(zl)_leﬁf(z?ut’zl)ﬂ(zl) ;

z1 E[210, 291t

where

Bt (21, 20) = /21(h1,X($) — k)ds.

20
yields a solution (X, Y/)(z;) satisfying the estimates
X (1) < CIXP TG Y (z1)] < CLXP" [er (1) 1A,
and in particular we find that

g
Y (0] < 05 X7,
1
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Thus, we obtain a solution of (4.24) given by

satisfying
X1 (290) = XF(200) 4 X (20ut) 4 XH (pouty 4 xout — yx(youty | yout
‘Y1 out ‘_ ‘Yl (29" + Y (2 out)‘ §C%]Xf“t]+Cﬁ]a£)\\,
and
X (1) = X ()] = [ X (a0 + X ()| < Gy (1X9" e /% + )
Yi(a") = Y{ (o) + i (o) = 0,
as claimed. O

We consider the condition on A present in Proposition 4.4. Note that since both the real and imaginary
parts of A\ decrease strictly in absolute value on the interval [i", 20"], A;(z1) remains in the set A1 (6, u, M)
for z; € [22", 29"]. This restricts consideration to values of \ satisfying |[R(\)| < ue/® and |S(N\)| < Mel/6,
where p may need to be taken small; that is, we restrict to values of A € A, .(p, M). The solutions
constructed in Proposition 4.4 for such values of A can be matched with solutions from chart s.

In order to extend the argument to values of A € A (i, M) (that is, small, but e-independent values of
|(A)|), we must consider solutions for which A;(z1) lies outside of A (4, u, M) for some part of the interval
21 € [2i% 29", The corresponding solutions will satisfy slightly different estimates and will instead be

matched with solutions from the chart /4. We focus on orbits which enter Ky via the section
b= {S0n) = Mo},

in particular, those solutions for which S\ (215) = M6 and |RA; (215)] < pd'/6 for some 2" < 23 < 29Ut
These solutions will be matched with solutions from the chart Ky (the case I(\;) = —M§'/6 is similar),
while those which enter via the boundary |R(\;)| = pd'/6 are not relevant. We have the following

Proposition 4.5. Consider (4.24) with (z1,71,€1) = (Z1¢,71,6,€1,)(21), and fix M > 0. There exist
C,Cr,, > 0 such that the following holds. Given X" € C and any A € Ac(p, M) such that S\ (21) =
MSY6 and R (213)] < ud'/S for some 2* < 21 < 29" there exists a solution (X1, Y1, A1) @ [21, 29" —
C? x Ay (6, 1, M) of (4.24) satisfying

X1(27") = X3 (9") + X7, Yi(ef) =0,

as well as the estimates

| X1(213) = XT(eD)| < Cry (IXP] +[ad), M) <C 4|Xf“t! + Cr fagA|.

Proof. The argument is similar to the proof of Proposition 4.4. O
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4.3.2 Chart Ko

We use the change of coordinates (4.20) and set 29 = 73¢. Denoting ’ di we arrive at the system
ahy = —x3 +y2 + O(r3)
Yo =14 0(r3),
X=Xy | —22 ——)\% +O(r2, o)) | + Y- (1+(’)(r2 r2A2))
2 2 2 91f03 29122 2 25 T2A2 (430)
2 2 A3
+ « (—mQ + yo + (9(7“2)) _91f7 + O(raA2) | + O(araAg),
Yy = O(riXo, raYs, aris),
which we consider on the interval 2o € [21%,25%], on which the wave-train solution is represented by a

solution (z. 2, Y- 2) in the Ko-coordinates which traverses between the sections
Eizn = {.1'2 = (5_1/3} 5
Egut _ {y2 _ 572/3} '

We note that Ay = A\;6~1/% so that Ay satisfies [R(X2)| < p, |F(A\2)| < M. When 75 = 0, we arrive at the
System

Th = —x5 + 1o,
yy = 1,
A3 A3 (4.31)
2 2 < T2 91f03> + Y3 e (22 +42),
Yy =0,

which is a rescaled version of the toy model which was analyzed in §4.2. The first pair of equations have
dynamics organized by the unique solution xp of the Riccati equation

x' = —2? + 2, (4.32)
satisfying
1 1
ZQN.'ER+7+O — | TR — —00,
2xp Th
1 1
z2~—§20+—+0 ) TR — 00,
TR «TR

where Q is the smallest positive zero of J(z) = J_1(22%/2/3) + J1 (22%/2/3), where Ji1 are Bessel func-
tions of the first kind. For small ro > 0, this soiutlon perturbs (in a regular fashlon) to a solution
of the (z2,ys)-system in (4.30) satisfying (z9,92)(22) = (vr(22),22) + O(r3) corresponding to a slice of
the manifold Mt in the Ks-coordinates; see [20, Remark 4.3]. By Lemma 4.1, the wave-train solu-
tion is exponentially close to this solution, and is thus represented in the Ks-coordinates by a solution
(7c2,Ve2) = (vRr(22), 22) + O(r3) for small 79 on the interval zo € [z, 29"]. Hence in the limit 72 — 0, we
identify the wave-train solution (z.2,¥e2) in the Ko-coordinates with the solution (x2,y2) = (zr(22), 22),
and we write the linearized problem as

/ A X5
X5 = Xo (—2:ER - 91f03> + Yy — a—CxR,
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When Y5 = 0, the Xs-equation has a unique solution X2 = X3 (22) which is bounded as zo — oo, given by

* 8 (] SUAW
X5 (22) = _aﬁhc,c?’ /OO exp (/S —2zR(8) — 01fC3d§> xp(s)ds,

which corresponds to the solution X| from the chart K, now represented in the Ks-coordinates. We set
X9 = X3 + X5 which results in the equation

ah = —x3 +y2 + O(r3),
/
2

=1+ 0(r3),
2

~ ~ A5
X5 =X ( 229 — K + (9(7‘2,7"2)\2)) + Y5 (14 O(r3,m2X2)) + O(arahe),

Yy =0 (r%Xg,rng, arsg, ar%A%) .

(4.33)

We have the following.

Proposition 4.6. Consider (4.30) with (z2,v2) = (T2, Y2.c)(22). Given (X$U, Y1) € C? and any Ay € C
satisfying | R(A2)| < i, |S(\2)| < M, there exists a solution (Xa,Ys) : [, 29%] — C? of (4.30) satisfying

X2( out) Xout+X ( out)7 Y2( out) _0

as well as the estimates
2 A2 :
Xo(2) = X9 exp / —2zR(Z) — Wd X5(z3") + 0O (r§|X§ut|, raXa| X5, araXa)
Zgut ]fc

Ya(24') = O (r3|X5"|, ardA3, ar3hs)
for all sufficiently small ro > 0.

Proof. Using the fact that (za.,v2.)(22) = (zr(22), —22) + O(r3), and the fact that the transition time
|20 — 299 is bounded independently of ro, A2, the estimates follow from a regular perturbation argument
applied to (4.33) for sufficiently small rs. O

4.3.3 Chart K4

We transform to the Ky-coordinates (4.22), desingularize through the scaling dzy = r2d¢, and denote
! to obtain the system

dz ’
xil - F4(I'4, Y4, €4, T4),
yy=ea (1+0(r7)),
r_ _ _ (Ad+ i)2
X4 = X4 ( 2y W—FO(T@ + Yy (1+O(T4)) (4‘34)
Ay +1)2
+ aFy(T4,Y4,€4,74) <_(;lfcg) + 0(7“4)) + O(aryey),

Y, = O(ries Xy, riesYy, ariey),
where Fy(z4,ys4,€4,74) = —23 + y4 + O(r?). The chart K4 concerns values of ¢4 < M~5. We fix a small
constant 64 > 0 and first consider (4.34) for values of 04 < e4 < M —6 for sufficiently small values of 74 on

the interval [z}, 29"] encompassing the transition between the sections

in — {964 _ M’Zé’l/?’} ’ sout — {y4 _ M’45’2/3} .
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Note that the section X$" corresponds to the section ¥ from the chart Ki; see §4.3.1. Setting ry = 0,
we obtain the system

T = —x3 4y,
Yy = €4,
A4+ 1)2 ()\4 + 1)2
X, =X 2 ( Y, — —x?
4 4 < T4 B +Y O3 (—2%+ya),
Y/ =0,

which corresponds to the system (4.31) transformed to the K4-coordinates. The (x4, y4) system corresponds
to a rescaled Riccati equation (4.32) given by

/ 2
Ty = —Ty + €424,

which admits the rescaled distinguished solution x4(z4) = 5411/ Sy R(ei/ 324). Similarly to the analysis in the
K2 in §4.3.2, the wave-train solution can be represented by a solution (z4,ys) = (24, ya.)(24) of (4.34)
e 1/3 1/3
satisfying (x4e,ya)(24) = (54/ mR(€4/ 24),€424) + O(r3).
When Y = 0 we can construct the unique solution X4 = X (24) given by

A \2 24 24 by \2
X (z4) = —a(;lf—z;)/ exp (/ —2531/3x3(6}1/3§) — (zlf—z;)d§) 53/3x}%(€i/38)d5,

which corresponds to the solution X from the chart ;. We set Xy = X + )~(4 which results in the
equation

&y = Fy(4,y4,€4,74),

vy =ea (1+007)),

(A + i)2
O3

Y, = (’)(7‘2545(4, 7“3541/4, ari).

(4.35)

K= % (201 - +0(rm)) + Y1 (14 O(r)) + Ofara)

We have the following.

Proposition 4.7. Consider (4.34) with (x4,ys) = (Tae,Yac)(24), and fix M > 0 and 64 > 0 sufficiently
small. For all sufficiently small r4 > 0, the following holds. Given (X3, YW) € C2, any e4 satisfying
0y < €4 < M7 and any sufficiently small \y € R, there exists a solution (X4,Yn) : [z}f‘,zjj“t] — 2
of (4.34) satisfying

Xa(o) = X9+ X[ (4%), Va(g) =0,

as well as the estimates

in ou in ~ Ay +1 2 ~ *(_in ou
Xa(2l") = X§" exp < / ~2¢*xp(e)/*3) - (;fs)d) + X1(2") + O (ra X9, ara)

out
4

Ya(z') = O (rf|1X§", arf) .

Proof. Using the fact that (z4.,y4:)(22) = (¢Y/32r('/324),e424) When 74 = 0, and the fact that the
transition time |2}" — 29"*| is bounded independently of 74, the estimates follow from a regular perturbation
argument applied to (4.35) for sufficiently small ry. dJ
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Proposition 4.7 relies on a perturbation argument for sufficiently small r4; in particular, one needs to
be able to bound (independently of r4) the transition time, which behaves as EZI. For small values of
0 < g4 <64 < 1, we note that the existence problem in the K4-coordinates

xﬁl - F4(954,?/475477“4)7
yp=¢es (14 O(ri))

amounts to slow passage through a fold point (in reverse time) with small parameter 4. In the limit ¢4 — 0,
for sufficiently small r4 > 0 the critical manifold Fy(x4,y4,0,74) = 0 in the region |z4| < M~25-1/3 lya| <
M~—45-2/3 takes the form of an upward-facing parabola. The union of the left branch of this parabola with
the positive x-axis corresponds to the manifold MBJF in the 4-coordinates. This manifold perturbs for
small £4 > 0 using blow-up desingularization techniques, much like the system (2.9). The manifold M"*
therefore has a natural representation in these coordinates as the corresponding union of these manifolds
for small e4. By Lemma 4.1, the wave train is again represented by a solution (x4,y4) = (Zae,Ya,e)(24)
which is exponentially close to MU+ in these coordinates. We have the following.

Proposition 4.8. Consider (4.34) with (x4,y1) = (T4,,Yac)(24). There exist 04,04 > 0 such that for all
0 < g4 < 64 and all sufficiently small r4, Ay > 0, the following holds. Given XJ"* € C2, there exists a
solution (Xy,Yy) : [z, 29" — C? of (4.34) satisfying

X ( out) Xout’ Y4(2’Zut) — 07

as well as the estimates

=
—
N .
hal=!
N—
[l

Xl(z}f‘; ry) + O <Oé7’4€4,7’264’X§fm’,6704/€4|X2m|> )
Y4(z§f’) @) (ozr454,r454|X°ut]) ,
for all 0 < e4 < 04, where X:[(z4; r4) is a solution which satisfies
XT( in, o0 iny [ 1/3
a(z1hra) = awy (257) (=1 + O (14,84 + O(aryey).

Proof. We rewrite (4.34) as

xy = Fy(xa,ys,€4,74),

yi =1 (14+0(r7)),

X} = Xyha x (w4, ya,74,64, A1) + Yahay (T4, ya, 74, €4, A1)

(Mg +1)?
Oy c3

}/;1, = X4g4,X(1:47 Yq,74,€4, )\4) + Y4g4’Y(ZL'4, Y4,7T4,E4, )\4) + 049470[(1174, Y4,74,E4, >\4)

+ aFy(z4,Y4,€4,74) (- + O(T4)> + ahy o (x4, Ya, ra,€4, M),

where
Ay +1)2
ha x(x4,Y4,74,64, \a) = =214 — ( glfcg) + O(r4),
hay (x4,ys,74,€4, M) = 1+ O(r4),
hao(Ta,Ya, 14, €4, Aa) = O(ra4),
9a,x (T4, Y4, 74, €4, M) = O(ries),
g4y (1E4, Y4,7T4,E4, >\4) O(T284>7
( ) = O(ries)

94,0(T4,Y4,74,€4, M4



We set h4,*(5) = h4,*($4(5),?/4(5)’7“47547/\4) and 947*(8) = 94,*($4(8)7y4(3)77“4a54a>\4) for * = XuKaa and
we define

We set Xy = X); + 5(4, where

# A +1)?

Xi(24;r4) = / t Pa(z4,5) (awﬁl?e(s) <_(21fc3) + O(m)) + ah47a(s)> ds,
zg"

and we rewrite the eigenvalue problem as the integral equation

~ out #4

Xy(24) = XgUteP1Ceosi™) / Y hyy (s)ds,
. = (4.36)

Yi(za) = / (XI(S; r4) + X4> 9a,x(8) + Ya(5)ga,y (s) + aga,a(s)ds.

out
4

We first estimate XI(Z4; r4) by noting that

Ay +1)?
h47x(8) = —2%478(8) — (glfcg))

o xg,z—:(s) yfl,s(s) ()\4 + i)2

+ O(T4)

= — — + O(ry),
xﬁl,s(s) 'rﬁl,s(s) Orc? ( 4)
so that
A \2 24 -
X1 (24 r4) = oy (20) <_(;t;) n @(m)) / B s 4 Oarses),
If zzut
where

z4 ! rs Z4 / ~ \2
Bi(24,8) = Ba(24, 5) —/ (%) ds :/ —y4’€(s~) Qa7 O(ry)d5.

mﬁl,e(g) xil,z—:(s) Orec?

We note that the first term of the integrand represents the slope of the graph formed by the solution
(4,y4) = (Ta,e,Ya,e)(24) which satisfies

.
s gy 21l Cey, (4.37)

Tda T T 6)

see for example [20, Remark 4.1]. Integrating by parts — where we integrate the term exp <()‘9‘t;?2 (s — 24))
— we obtain

XA ) = axl (AP) (—1 4 O (r4,e4)) + O(arseq)

A (B 5 (i
—i—ozxgﬂa(zil“)/ t <y47€(~) +(’)(r4)> ePa(ed'8) g g,
Ete

()

Finally, following the estimates in [20, §4.7], we find that

(4.38)

Yu,c(3)
) (3)
on an interval of width (’)(571/ 3) near § = z\; on the remainder of the integration interval, the integrand
is exponentially small in €, /3 due to the exponential term and (4.37), from which we obtain

X1 ry) = anly (21 (71 +O (r4, el 3)) + O(arses). (4.39)

< Cai/g

The result then follows by applying a fixed-point argument to the integral equation (4.36) on the space
X4, Y € O([Hp, 25)). 0
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4.3.4 Chart K3

We transform to the Ks-coordinates (4.21), desingularize via dzg = r%d( , and denote ' = %, which results
in the system

1

Ty = —§T3F3(T3,y3,€3)7

ys = 2y3F3(rs, ys,e3) +e3 (1 +O(r3)),
€5 = 3e3F3(r3, 3, €3),
A3

Xé = 2X3F3(’l“3, y3,€3) + X3 <—2 — @ + 0(7‘%,1”3)\3)) +Y; (1 + O(T%,’l‘g)\g))

)\2
+ « (91;;)3 + O(T3A3)) F3(T37 Ys, 83) + O(CKT3€3)\3)7
Y; = 3Y3F3(r3, y3, €3) + O(r3e3 X3, m383Y3, arzAses),

1
3= 5)\3F3(7“3,y3,53)7

where F3(r3,y3,€3) = 1 —y3+O(r3). Considering first the existence problem in the (r3, 3, £3)-coordinates,
we restrict attention to the flow between the sections 213)“ and 29" defined by

13“ = {rs =r3e(e3), lys| < 3,0 <e3 <4},
28" = {0 < r3 < r3.(6), lys| < Us,e3 = 6},

where by Lemma 4.1, r3.(3)? = zin(v,€) satisfies |r3c(e3) — 73] < Cyeg/s and where 73 = r3.(0)? =
Zin(1,0), and g3 is a small constant. The wave train is represented in the Ks-coordinates by a solution
(13,6, Y3,2,€3.)(23), which reaches these sections at z = 2z, 23", respectively. Using [69, Lemma 2.10]
and the form of the equations, for sufficiently small 73, the manifold M"T can be represented in the
Ks-coordinates as a graph y3 = —Qosg/g + O(r§53 loges, e3), and thus by Lemma 4.1, the wave train lies
exponentially close to this graph.

We therefore consider the corresponding eigenvalue problem

)\2
X} = 2X3F5(r3,y3, €3) + X3 <—2 — Kig + O<r§,r3A3)> + Y3 (14 0(r3,m3)3))
+a /\7%—1—0(7“/\) F5(r e3) + O(arsesAs)
e 3173 33, Y3, €3 3E3A3); (4.40)

Yy = 3Y3F5(r3, y3,€3) + O(r3es X, riesYs, arshses),
1
N = 5)\3F3(7“3,y3,83)

over the interval zz € [z, 23", for values of A3 € A3(d, 1, M) = {\3 € C : [R(\3)| < ud"/6,|S(\3)| <
MésY 6. We first consider solutions which depart K3 via the section 9" these solutions will be matched
with solutions from the chart ICo. Rescaling dZs = F3(r3, ys3,£3)dzs and denoting the corresponding trans-

formed interval by Z3 € [25“, z3"], we first consider the system on the invariant subspace rs = 0

. €3
ys = 2ys + 1 ,
— Y3
€3 = 3e3,
A3
T Pe3 T 2y3) 2
. 91fC3 }/3 )\3
X3 =X, + + ,
° ° 1—ys 1—ys O3
Y'3 — 3Y37
1
A3 = 5)\3,

75



where - = ddzg' In the subspace Y3 = 0, let X3 = XJ be a solution to this equation which satisfies

limz, o X3(23) = X3°. We use the fact that \3 = )\263/6 and y3 = —906:23/3 + O(r3e3loges, e3) to find
that in the subspace r3 = 0,

dX; X X. 22 Y
o X <_2+0< 15 \2 2/3>> TN . (4.41)
des €3 3¢5 3e3 Oy

so that X3 admits the expansion in terms of €3 as

2
3 el/3 A2

xi = e w0 (Lo (F%40)) o (10w (10 (4780))
—xe w10 () va (10w ) (10 (7)),

as €3 — 0. In order to determine the value of X5° such that this solution corresponds to the distinguished
solution X3 from the chart Ko, we transform X3 to the chart K3, where X3 admits the expansion in €3

A3 1 1/3 —Q 9A§3(5+Qo) D .9
X = ot (140 () [ em T (16 — sai(e?) as

o0

from which we find that X3 and XJ correspond to the same solution when

)\2 1 o X% s+, . .
X3° =aTy(A) = e AT (02 / efre ) (A¥'(s)* — sAi(s)?) ds.

We note that |Tir(A2)| is well-defined and uniformly bounded in the region |[R(A\2)| < p, |S(A2)| < M for
sufficiently small ¢ > 0; see Appendix C.
Setting X3 = X3 + X3, we obtain the system

X3 = X3h3 x (3,3, Y3, \3) + Yahs v (73,63, Y3, A3) + ah o (73, €3, Y3, A3),

Y3 = 3Y3 + &3 (5(393,)((?“3,53,3/3, A3) + Y393,y (73, €3, Y3, A3) + g3,a(r3, €3, Y3, /\3)> 7 (4.42)
: 1
A = 523,
where
A3 >
hBX r3,€3,Y3, >\3 = -+ (@) (T37T3>\3)y3) ’

Oy c3

hay (r3,e3,y3, A3) = 1+ O (13,7303, 93) ,
(7‘3)\3,T3T1f()\2))
(r3) .
(r5) .
(

7‘3)\3, ’I”%Tlf()\g)) .

>

( )
( )=
3,a(73,€3,3,A3) = O
93.x(73,€3,Y3,A3) = O
93,y (73,€3,Y3,A3) = O
93.a(r3,€3,93,A3) = O

We have the following.

Proposition 4.9. Consider (4.40) with (r3,y3,€3) = (136,Y3.6,€3.)(23), and fix M > 0. There exist
C,Cry, 11 > 0 such that the following holds. Given (X, YL) € C? and any A € Ay c(u, M), there exists a
solution (X3, Y3, A3) @ [, 2] — C? x A3(6, u, M) of (4.40) satisfying

Xg( out) X3( out) _|_X?c)>ut’ Yé( out) Yout
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as well as the estimates

[ Xa(=47) = Tar o) Pyl it )] < Cr, (| X578 +

Y|+ yaAlogsD + Clai3 (),

: g
[Ya(=H)] < Crye (1X8™ 4 Y™ + ladlogel ) + O [aTie(Mo)]
3

where (ri, yi, &) := (r3, ys, e3) ().

Proof. Using the relation X3 = X3 + X3, we solve (4.42) subject to the boundary conditions X3(2§“t) =
XU and Y3(25") = Y. We write (4.42) as the corresponding integral equation

Z3

X (2) = Kypte O [ (15l (5) + by (o)
3 e (4.43)
=\ _ yout E3(2"3) ~ P
Y3(23) = Y3 —5 £3(%3) X3(5)93,x(8) + Y3(5)g3,y (5) + ag3,a(s)ds,

sout
23

sout )

where we used the fact that e3(2§"") = §, and where

B3(23, 20) = /Z3 hs x (s)ds.

20

We note that since )\3 remains in the set Ag(d, u, M) by assumption; by taking p sufﬁciently small, we can

ensure that |ef83 Z3,%0) | is uniformly bounded, independently of M, §, 73, u, whenever zi* < Z3 < Z5 < Z3".
zin zout

Considering (4.43) as a fixed point equation on the space X3, Y3 € C([2*, 23"]) with the norm

Xg(sg)(+ sup  |es(3s) "1 Va(3s)]
Zz€[zin, zut

I(X3,Y3)[l = sup

Zz€[£in, 231t

we obtain a solution satisfying the estimates
I Xa(2)] < Cry (1X8™] +[¥5™ | + A loge] ) + CT3|aT1f(>\2)|
[¥a(Z)] < Crye (IX5™] + Y5 | + oA logel ) + O o)l
Noting that
X3 (E) = XER(ry e ui) + 0 (X322, X2 0)?)

where ' = ¢/(r?)6 and A = A\/ri® and expressing the solution in terms of the original independent
variable z3, we therefore obtain a solution of (4.40) satisfying

[Xa(4) — @i ) B3yt &) = [ X3 (3 + Ka(el) — aTue ) Ba(rif i )

< Cr, (1K) + [¥5"| + oA log e[ ) + Cr3laTir (M),

as claimed. 0

We separately consider solutions which depart K3 via the section Y35t = {S(\3) = M§Y/6}, corre-
sponding to the section X from the chart Ky; the case S(\3) = —M§'/6 is similar. We split into the
cases covered by Propositions 4.7 and 4.8 separately, corresponding to orbits meeting 337* for values of
S4MOS < e3/6 <1 and 0 < e3/6 < §4MPF, respectively, where we obtain slightly different estimates in each
case.
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The case of J4M% < e3/6 < 1, governed by Proposition 4.7, is nearly identical to the argument above.
Transforming the solution X from K4 to K3 results in the expansion

. _ (g t+)?

(M ti)? 1 2 1/3 Yo i, ST ()2

X3 =« 73y 5 AT (= ()2 (1 + O(N3¢, )) /OO ess it (Ai'(s)? — sAi(s)?) ds.
€y 1fC

This solution corresponds to the solution X3 upon taking X§° = aYi((A + i)le/ 6)
A3 — 0. This essentially extends the definition of X3 above to values of Ay satisfying |J(A2)| < ¢,
noting that Yie((As +1)e, Y %) is well defined as 4 — 0 provided |A4| is sufficiently small.

On the other hand, for the case 0 < g3/6 < 6, MO, we recall the estimate (4.39) satisfied by XT(z}ln; T4)
from the proof of Proposition 4.8. In particular, we see that when r4 = 0, X:[ corresponds to a solution in

the chart K5 satisfying

, now in the limit
-1/

Xz =a(1+0 (3 7)),

which in turn corresponds to the solution X3 in K3 upon taking

=140 () =ate (e 05) (10 (7).

Analogously to Proposition 4.9, we have the following.

Proposition 4.10. Consider (4.40) with (r3,ys,€3) = (r3.c,Y3.e,€3.)(23), and fir M > 0. There exist
Cry, O, > 0 such that the following holds. Given (X, Y?U) € C? and any A € Acc(u, M), there exists a
solution (X3,Y3,A3) : [21%, 238%] — C3 of (4.40) satisfying

X3(294") = X5 (251") + X5, V3(254") = e3(254") Y3,
as well as the estimates

X3(28) — aXie(Ne VO By (ri, yi, )

< Cr, (’Xout’ + |Y0ut| + |aXlog ‘)\H) + Cf%’a’ ‘TH()\E*UG’)) :
|V3(23")| < Crye <|X§ut| Y 4 \aAlog|)\|\) +C 4|Oé|

where (1§, yi, €F') = (r3,y3, €3) ().

Proof. We again rewrite the system (4.42) as an integral equation

gt gt s, sout z3
X3(53) = Xgel a3 )+/ G99 (Vahg v (s) + ahg o(s)) ds,
gy
zZ3
Vi(z3) = Y3 es(%) +e3(Z) | Xa(s)gs,x(s) + Va(s)gsy (s) + agsa(s)ds
gy

on the transformed interval Z3 € [ZI", 294!] where the functions g., h, B3 are as in (4.42) except that

h3 ., 93,0 now satisfy the slightly modified estimates
h3,a(’r3> €3,Y3, )‘3) = O(T3)\37 7"%),
93,0(r3,€3,3, A3) = O(r3)3,73).

Continuing as in the proof of Proposition 4.9, the corresponding solution now satisfies the estimates

[Xa(Z)| < Cry (1K) + Y5 + [aAlog |Al]) + C73 \omf (a+0)e1)

)

)

Ya(H)] = Crae (X571 + 1151+ laklog A ) + O |otue (O + 3™

where we note that the interval [, 293%] is now of length O(log \)\]) The result follows as in the proof of

Proposition 4.9. O
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4.3.5 Proof of Proposition 4.3

We can now complete the proof of Proposition 4.3, concerning the estimates for the eigenvalue problem
through the fold.

Proof of Proposition 4.3. We combine the results of Propositions 4.4-4.10. For values of A € A, o(u, M),
solutions are tracked through the chart ICy, while for A € A¢ (1, M) we use the chart Ky. We first consider
the former.

We begin by matching the solutions in the charts K1, 2. By Proposition 4.4, in the section Y1, the
solution (X1, Y7) satisfies

X2 — X5 < G (IXP ™ 4 [oA]), W) =0,
which, transformed into the Ks-coordinates, corresponds to a solution satisfying
[Xo(28") = X5 (:5")] < Cry (IXPe /5 4 Jan]),  Ya(25™) =0

in the section $$"*. Thus, we can match with a solution from Proposition 4.6 by choosing X$"* appropri-

ately, satisfying
55| < G, (IX9"e 2% + o))

Recalling Proposition 4.6, and using the fact that the transition time |2* —23"| is bounded independently of
T2, A2 to bound the exponential factor in the solution X5(z5"), the solution therefore satisfies the estimates

[Xa(28) = X3 ()] < Cry (1XPM]e™1/% + [aradal )
[YVa(al)| < Cry (15|17 + aradal (|ra| + [Aal) )

in the section X', where the constant Cy may be taken larger if necessary. Transforming into the K3-
coordinates, in the section X3, this corresponds to a solution satisfying

[Xa(28") = X3 (5] < Cr, (X917 + Jaraal)
[Ya(25")] < Gy (X977 + aradal (|ral + D))

which in turn corresponds to a solution of Proposition 4.9 for appropriate choice of Xgut,Yg’“t e C,
satisfying

out
%

< Cr, (1X5" e/ 4 Jar])
V5] < G, (X500 e0 /e + jaal/?’A( +|an?]).
In the section X, this solution therefore satisfies the estimates
| Xs(25") — oM () F3(riy, ', e5)| < Cry (\Xfm\ e /E 4 \a)\log€!> +Clams T (V).

; i €
[Va(#)] < Crume (X9 €77/% + JaXlog ] ) + C—laTi(h2)],
3
which, transformed into the original (blow-down) coordinates, satisfies

74 Xa(5) + @33 0, 2) Xe (€in)| < Cryr (| X7 e70/%),
. (4.44)
75Y3(23")| < Gy e <|X?ut\ e mi/% 4 |an 10g€\> + Ci2e|aYp(Ae~9)).
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where
az(a; A e) — aTir(Ae™V0)| < Cp, rladloge| + Clar3 Ty (Ae™0)].

Finally, we match the full solution with the exit conditions at { = (,yt by transforming from the ;-
coordinates in the section X9, namely

Xowt = 0 Xe(Cour) + P XD + R (a, X" N e)
eYout = ¥z (Cout) + €RY (O‘>XfUta )\75) )

where

[T (o X750 )|
| (o, °“tA€)\

CFI|QEA|7

<
< Cp o + C | X7

From the equation for Yy, we find that

Yout =

Yz (Cou
€(§° )y Ry (o, XPU5 0 ) (4.45)

which, noting that Yz((out) = (1 + O(71,¢€)) can be solved for «, satisfying the estimate

5}/0ut

sz (Cout)

Substituting into the equation for Xy, we find that

< Cry (| X2 + M [Youtl) -

o —

Xout = rl out + Rm ()(Out Yout; >\75) )
where

’Rx )(OHt oth)\v‘g)’ < Cre (‘Xfut‘ + ’YOHtD ’

which we can solve for X" satisfying the estimate

‘ X Ollt Xout

< Cr e (\Xf“t| + [Yout|) - (4.46)

Substituting these estimates into (4.44), at ¢ = (i, we obtain the following

| X (Cin) — aXe(Gn) + az(a; A, €) Xe(&in)| < Cry s (‘Xfut’ 6—9;1/5) ,
¥ (Gn) = @Ye(Ga)| < Cr e (| X7 [e790/% + JaXToge]) + Crielay(Ae™/0).

so that
‘X(Cin) - afcf,ﬁ,fg(yout;ga A)XS(QH)‘ < Cry g (| Xout| + (€ + | logel) [Yout]) ,
eY:(Cn _ _
Y (Gn) — Ygft; | < oy (1 Xout| + (¢ + [\ ogel) [Your]) + Cde [Yie(he /%) Vo
€ ou

where

z ) £¥out 1/6 2

Oy (Yo £, 0) = 225 (1= 1w (14+0 (13))). (4.47)
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where we note that the quantities 71,73 satisfy 7} = yout(v,€) and f% = Zin(v, ) and hence can be taken
smaller as v — 0; see Lemma 4.1. Therefore, we obtain the desired estimate

| X (Cin) — ot (Youss €, N2l (&) | < O (IXout] + (¢ + [Moge]) [Yourl) ,

G

Y(Cin) - 5Yout out L <
yE (glf e,V )

Cue (| Xout| + (e + [Nogel) [Yout|) (4.48)

T8 [Yous,

for A € Ay (i, M) and n(v) satisfying n(v) — 0 as v — 0, where

o (Yowii . X) = — oo ) (1= 160 (1 4+ 0 (r(v)))) (4.49)

out,L
(glf 587
and we used the relation

(XY () = - (o) (eff)

i L
and Gin = Oie&lf. ,» Cour = O, -
Next, we consider values of A € Ac.(u, M), for which solutions must pass through the chart ICy. We
first match the solutions in the charts K;, 4. By Proposition 4.5, in the section X7, the solution (X7, Y7)
satisfies

|1 X1 (=) = X7 ()] < Cpy (IXP] +Ja]) . Vi) =0,
which, transformed into the K4-coordinates, corresponds to a solution satisfying
| Xa(25") — X5 (28")] < Cr, (IXT™] + |aA]) . Ya(z8") =0
in the section ¥.3". Transforming to the K4-coordinates, we either match with a solution from Proposi-
tion 4.7 or Proposition 4.8, depending on whether g4 > 4 or g4 < d4.
Case 04 < g4 < MY In this case, we use Proposition 4.7, matching with a solution satisfying
| X5 | < Cry (JX] + [@A]) -

Using the fact that the transition time |zi® — 2"| is bounded independently of r4 and £4 > &, to bound the
exponential factor for the solution X4(2i") in Proposition 4.7, the solution therefore satisfies the estimates

| Xa(=) = X3 ) < Cry (€75 4 Jral ) 1X7) + Jaral)
Ya(z)| < Crylral® (1X9%] + o),

Transforming into the Ks-coordinates, in the section £34*, this solution satisfies the estimates

| Xa(258") — X5 (2859 < Cry (7% + Iral) IXF™| + Jaral)
Ya(519)] = Crlral? (X2 + Jal)

which in turn corresponds to a solution of Proposition 4.10 by taking appropriate X Qut yput | which satisfy
the estimates

‘Xout

< Cry (7% Il ) 1X2 o+ o] ).
[¥5°| < O lral? (1X**| + Ja)
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In the section 213“, this solution therefore satisfies the estimates

X3(28) — aXie (N VO By (i, yit, )

in €
Y3(23")| < Cry e (IXT"] + |ad log [A]) + C—lol.
3

< Cry s (‘Xfut‘ + |aXlog |/\H) + C’F§|a’ ‘Tlf()\sflm)) 7
(4.50)

Case 0 < g4 < 64: We proceed similarly as above, though we match instead with a solution from
Proposition 4.8 by choosing appropriate X", which satisfies

5] < Cry (IX2] 4 (Jeal + [AD )

where we used (4.25) to estimate X7 (zI") in the Ky-coordinates. By Proposition 4.8, this solution therefore
satisfies the estimates

Xa(2) = X[ (25 ‘ ((6794/54 + r254> | X7+ (594/64 + 7"4€4> !a!) ’
|Y4 )| < Cryriea (IXPY] + |al)

in the section Eiln. Transforming into the K3-coordinates, in the section X§4", this corresponds to a solution

satisfying

|X3(z§}ft) . X3 (Zglftﬂ < Gy, ((e—94/€4 +T2€4) |Xfm| + (e—94/84 +T4) ’Oz‘) 7
[V(281)| < Cryrfea (IX7"] + o) |

which in turn corresponds to a solution of Proposition 4.9 by choosing X§Ut, YU appropriately, satisfying

‘Xout

< Cr, ((efe“/e“ + rim) | XU+ (e*94/54 + r4) |a|) )
|Y3"| < Cryrifea (IX9"] + o) -

In the section ¥, this solution therefore satisfies the estimates (4.50), where the correction term e~04/¢4|q

can be absorbed into the final term in the first inequality of (4.50) by taking ¢4 sufficiently small relative

to 71,73, and using Proposition C.2.

Taking into account the estimates (4.50) from the two cases, we have a unified estimate for the solution
in X for all values of 0 < g4 < M9 (and therefore all A\ € Ac.(u, M) for u > 0 sufficiently small).
Transformed into the original (blow-down) coordinates, the solution therefore satisfies

‘F§X3(zfiﬂn) + az(a; A, E)XE(&H){ < 0771,773|Xfut|7 (4.51)
‘ngg(zénﬂ < Cr, 7€ (\Xfut\ + |aXlog |/\|]) + C’f§5|a|,

where
‘ag(a; \g) — aTlf(Asfl/G)’ < Cr, rylaXlog | A|| + C|af§T1f()\€*1/6)\.

Finally, we match the full solution with the exit conditions at { = (,u by transforming from the Ky
coodinates in the section X", namely

Xout = aXe(Cout) + T X" + RY (o, XT3 N, €)
eYout = ¥z (Cout) + eRY (o, X5 N, €)
where
‘ R (o, Xxout, €)
|RY (ar, X7 >\ ,€)

7_’1|a€)‘|a

| <
| < CrlaX] + C | XD
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Proceeding as in (4.45)—(4.46), we solve to find o, X{", satisfying the estimates

N 8Yvout
Y; (Cout)

Xout _ Xout
1 leg

< Cry (| X7+ Al Yourl)

(07

< CFe (‘Xlom} + ’Yout’) .

Substituting these estimates at { = (i, using (4.51), we obtain the following

|X(Cin) - aXs(Cin) + Ozg(Oé; )‘a E)Xs(gin” S Cfl,F3|Xi)ut|7
Y (Gin) — @Y2(Gin)| < Cry g2 (| X7| + [aXlog |A]]) + CFelaTip(Ae /9,

so that
| X (Cin) = ot 7y 7y (Youss € A) Xe (Gn) | < Cry g (| Xout| + (€ + [A[log [A]]) [Yous|)
’Y(Cin) - ;ﬁéi:%ifout < Cry 8| Xout| + (Cry my] Al log [A|| + C’f%s) [Yout |,
where afcfflfg(Yout; g, \) satisfies (4.47). Again we note that the quantities 71, 73 satisfy 7f = yout (v, €) and

72 = zin(v,€) and hence can be taken smaller as ¥ — 0. Analogously to (4.48), we obtain the desired
estimate

| X (Gin) — aif, (Youss &, Nzl (&) < Co (| Xout| + (e + A log [A[[) [Yout])
/ mn
Ye ( lf,s,u)
Y(Cin) - EYoutﬁ < CVE‘Xout‘ + (Cl/d)" log ‘)‘H + U(V)&T) ’YOut’7
y:t (glf,&‘:V )
for A € Ac.(p, M), where o, (Your; €, A) satisfies (4.49). O

4.4 A tame estimate on the center-unstable (X,Y)-dynamics for ()\) > ¢!/°
The center-unstable (X, Y)-dynamics in the transformed eigenvalue problem (4.5) near the fold are given

by

U = (A(g;g,x) + (’)(5)) U, AGe ) = (“1(4;5) +O&1(C%67 ) a2(C667 A)) (4.52)

with ¢ € [(in, Cout], Wwhere we have

AZ
7+ O((€), Ae (€ 1),

a1(C§ 6) = _2$5(C) + 0(3:5(()271/5(()), CNll(C;E, A) = —@

and

a2(<§57 /\) =1+ O(xa(o’ye(ov /\)'

We study (4.52) in the regime 0 < &,|\| < v < 1 and R(\) > £/5. The leading-order dynamics of
system (4.52) is given by the upper triangular system

Vo= A(Ge, N, (4.53)

whose evolution can be explicitly determined in terms of the coefficient functions a1, a1 and ao. Thus, by
bounding these coefficient functions, we establish a tame estimate on the backward growth of the evolution
of (4.53). This estimate can be transferred to the full system (4.52) with the aid of the variation of
constants formula.

The following lemma provides bounds on the coefficient functions a; and a.

83



Lemma 4.11. Provided 0 < ¢, |\| < v < 1, there exist an £- and \-independent constant C), > 0, a v-, A-
and e-independent constant C' > 0, and a point Cmiddle € [Cin, Cout] such that |Cmiadie — Gn| < Coe™Y? and
1 < Cuellout — Cmiddie|, and the coefficients a1((;e) and a1(C;e,\) in (4.52) obey

1

R (a1(¢e,N) + T

(ROV)? =S| < C (IR +ISWP) (2(O] + [y (O)]) + CulAP

fOT C € [Cin’ Cout] and

ar(Ce) > —C, et/

fO?” C € [Cmiddlea Cout] .

Proof. The bound on the coefficient @; can be obtained directly from the coordinate transformation of
Lemma 4.2 by taking real parts and using Lemma 4.1.

For the bound on aj, we note that the point (middie € [Cin, Cout] can be taken as the entry point of the
chart Ky. The estimates on (piqdle follow from the fact that the time spent in the chart K is of O(e71),
and the time spent in the charts Ko 3 is of (’)(5_1/3). For £ € [Cmiddle, Cout, the wave train is thus captured
by either the chart Ky or Ka, in which case we can bound z.(¢) < C,el/3. Furthermore, in the chart
K1, we have that |y.(¢)| < Cy|z-(¢)|?, while in the chart Ko, we have |y.(¢)| < C,e?/3, hence the result
follows. O]

We are now ready to establish the tame estimate on the backward growth of solutions to (4.52) on

[Cina(out]-
Proposition 4.12. Let 0 < ,|\| < v < 1 and R(\) > €'/5. Then, for each Vo € C2, the solution
W [Cin, Cout] — C? with initial condition W(Cou) = Your 0beys
RQA) _G
19 (Gn)| < e e Commtnd [Ty

Proof. Since ¥(¢) solves (4.52) with initial condition ¥({out) = Pout, we find that ®(¢) = e%(c_Cout)\I/(C)
is a solution with initial condition ®((out) = Yout to the weighted problem

O = <A(g;s, \) + O(e) + i) o, (4.54)

whose coefficient matrix may be written as

<a1(C; &) +ar(e, A+ 2 az(C;AE, A)

0 > +eB((;e, M),

C

where the matrix B(;e,\) and the coefficient as(C;e,\) are bounded on [Cin, Cout] by an e-, A- and v-
independent constant Cp > 0. Provided 0 < ¢, || < ¥ < 1 and R(\) > 0, Lemma 4.1 and Lemma 4.11
yield

c) —  4c

R (&1(g;s,>\) + A) > 3%()‘). (4.55)

for ¢ € [Cin, Cout)- The evolution Tz (¢, y) of system

U, = (A(g;g, A) + 2) 0,
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reads

5 ela1(Ge)+ar(GeN+2)(C-y) / ‘ e(@1(Ce) a1 (CeN+2)(C=2) gy (21, N)et V) gy
E,A(Ca y) = Y

for ¢,y € [Cin, Cout]- Hence, combining (4.55) with Lemma 4.11, we establish, provided 0 < e, |\| < v < 1
and R(\) > £/%, a v-, e- and M-independent constant Cy > 0 such that

holds for ¢,y € [(middies Cout] With ¢ < y. We express the solution ®(¢) to (4.54) through the variation of
constants formula

C1 B (cy)
R(A)

(4.56)

Talew)|| <

- ¢ -
B(C) = Ton(C. Cout) Wout + & / For(Coy) Blyse, No(y)dy (4.57)

Cout

for ¢ € [Cmiddies out]. Setting

RA)

n(¢) = sup |[|®(y)[le” ge W Cout)
ye[CvCOut]

we bound (4.57) with the aid of (4.56) and obtain

1 RO (¢ Cous) | 4CyCqe

&j)@*cout)
%()\)e Out” + %()\)2 T](C)e 4

12O <

for ¢ € [Cmiddles Cout). Provided 0 < ¢, |\| < ¥ < 1 and R(A) > £1/5_ the latter implies

C
n(¢) < 2m||‘1’out\|

for ¢ € [Cmiddle; Cout]. Hence, provided 0 < ¢, |\| < v < 1 and R(\) > /%, we establish

_ R -
||®(Cm1ddle)” S 2018 1/5e ac (leddle Cout)H\I}outH.

Therefore, observing that the coefficient matrix of (4.54) is bounded on [(in, (out] by an e-, v- and M-
independent constant Cy > 0, we apply Lemma 4.11 and Gronwall’s inequality to infer

1@ (Gin)|| < eC2lmiadie=Cnl|| B (Ciaate) | < || Pousl,

provided 0 < ¢,|\| < v < 1 and R(\) > e1/5. So, reverting to the original W-coordinate, the result
follows. O

4.5 Proof of Propositions 3.6 and 3.7

Incorporating the (hyperbolic) Z-dynamics in (4.18), we have the following linearized problem
)\2

ﬁ + O(xza Y&, )\.f, )‘3)> +Y (1 + O(.%', Y&, A)) )
1fC

Yo = 0(eX,eY), (4.58)

Zc = —i—i—C’)(:U,y,s,)\) Z.
th

XC =X <—2(IZ—

We have the following.
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Proposition 4.13. Fiz M > 0 and v > 0. There exists u > 0 such that for each (Xout, Yout, Zin) € C?
and X € A.(p, M), there exists a solution 1y = (Xi¢, Yie, Zip) : Tie — C3 of (4.58) which satisfies

v v 1
Xit (7) = Xout, Yie (7) = e¥Yout, Zie <> = Zin
3 g 14

Moreover, (X, Vi) = (X3, Y;0), the corresponding solution guaranteed by Proposition 4.3, and there exist
(e, A)-independent constants Cy,, v, such that the solution satisfies

o (622)| < et
Proof. The results follows from Proposition 4.3 and the block-diagonal form of the equation (4.58). 0

We are now able to complete the proof of Proposition 3.6. The proof of Proposition 3.7 is similar.

Proof of Proposition 3.6 . In light of Proposition 4.13, it remains to reframe the results in terms of the
original (U, V,W)-coordinates. Through the fold, we define projections Q *(¢) for the system (4.58),

given by
aro- (¢ o) @o=(p ) (4.59)

To obtain these projections in the original coordinates, we recall the transformation of Lemma 4.2 and
obtain corresponding projections Pl(fma/ i L&) as

PEY5 (€)= Nea(©)Q (O)Naa(6) ™ (4.60)

For (i), we note that near £ = fﬁcu; VL = L.+ %, when the wave-train solution is close to the left slow manifold
ML the projections P e Bleri=s, cu can both be extended in such a way that they are each well
defined on an overlapplng interval of width g=. As the projections Phc A P1 A along the wave train while
it lies inside and outside an arbitrary small nelghborhood of the fold pomt respectlvely, one can extend
the definition of the projections PIZ,E,/\,V(Q to £ = 2% and the projections P} e, L& to &=L+ Z—Z, where
we note that { = 2 and { = L. + % can be 1dent1ﬁed by periodicity. Therefore applying [14, Lemma B.3],
the estimate (3.38) holds.
In order to describe the behavior of the projections Pff oy as € — 0, we denote

Pioaw (3) = lim Py (Le + ) -

e—0

For the estimate (3.37), we first note that by construction and the pointwise estimates of Proposition 2.2,
we have that

[Pl enw (L + 3) = Proow ()| < C (5§ + |>\|) :
We now claim that me’oy (%) = Pfi,u (%) To see this, we first recall from Proposition 3.2 that
ker Py, (£) = RanFES (2) = Sp {81(2), Wi (2))

where the solutions ®¢(1), ¥¢, (1) are both bounded as £ — —oc. Furthermore, since P, (1) has rank 1,
we have that

RanPf, (3) = Sp{¥r. ()},

where W, is the unique (up to scalar multiple) solution of (3.6) which decays exponentially as & — oo
and is unbounded as £ — —oo.
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Inspecting (4.10) in the limit € — 0, we see that the one dimensional subspace X =Y = 0 uniquely
captures all solutions which decay exponentially in &, hence

RanPff’O’OW (%) = RanPfs,l, (l) .

v

By construction (see Lemma 4.2), when A =0

RanP§L, (Le + 1) =ker By o, (Le + 1) = Ty, (1yW"(T),

v
v

where Tr_(1/,)W"(I'c) denotes the tangent space of the unstable manifold W"(I') of the periodic orbit I’
at & = 1. Furthermore, it follows from the proof of [22, Proposition 4.7] that the manifolds W*(T;) and

14

WH(ME) are C1-O(e)-close upon entering a neighborhood of the upper fold. Thus we have that
RanBEy o, (5) = ker Pio.o, (5) = Tl (1),00(L), plun)) W (MO)-

This space is two dimensional and must consist of solutions which are bounded as £ — —oo. Since the

reduced fast front (uf (L), v (L), f(u1)))7 lies in WY(MF), we have that the derivative ®¢(€) of the

reduced front solution must lie in Ty, (¢) v (e), f(ur)) W' (Mp) at § = L As the solution V¢, is unbounded

v
as { — —oo, the second solution in this space must be a linear combination of ®¢, ¥¢,. Hence

ker Plsf70,0,1/ (%) = ker Pfs,y (%) 5

and Plif,O,O,z/ (%) = P’;V (%) ;1 = s,cu, as required, which completes the proof of estimate (3.37).

For the estimate (3.39), we directly apply the definition of the projection Pffu (%) from Proposition 3.2
to (4.60), from which we note by (4.59) that only the third row of Plsf,s,)\,u(glifn,s,u) is relevant in determin-
ing (3.39). The result follows upon examination of (4.11), noting the structure of the third row of N (Vz(&))
via (4.4) and the second row of Dy H. (0, V) via (4.9).

Finally, we note that the transformation N »(§) given by (4.11) is (e, A, p)-uniformly bounded for

& ey and \ € Rl(ﬂ), and

z(€)
UZ(&) = NZ(V=())VZ(E) = NI(V=(6)) | ye(6) | (4.61)
0
so that
zL(§) O(IMUZ(E)1)
Noa(€) | wi(€) | = ULE) + | O(MULOD) | - (4.62)
0 O(e[AMIULEI)

Interpreting the results of Proposition 4.12 in the region (\) < e1/5 and Proposition 4.13 in the region
IR(N)| < we'/% in terms of the projections Pl?lg/ f\,y(ﬁ), the result follows upon converting back to the
(U, V, W)-coordinates and making use of (4.61)-(4.62). O

5 The region Ry(u,w, o)

Let ¢ > 0 be as in Proposition 2.3 and p > 0 as in Proposition 2.4. In this section, we prove Proposi-
tion 2.5 by analyzing the spectrum of £, in the compact intermediate region Ro(u,w, o), where w > 0 is
a sufficiently small e-independent constant. In particular, we prove that all spectrum of L. in Ro(u,w, o)
must lie in the open left-half plane. To this end, it suffices to show, as outlined in §2.2, that the eigenvalue
problem (2.13)-(2.14) admits no nontrivial solution for A € Ra(u, w, o) with R(A) > 0.

We proceed as follows. First, we establish that the fast subsystem

b= A6 NE AN = (4 ey o) (5.1
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of (2.13) admits an exponential dichotomy on R by relating it to the spectral problem
uge + cug + [ (wi(€))u = Mu (5.2)
associated with the traveling front (or back) solution u;(xz — ct), i = f, b to the Fisher-KPP-type equation
Ut = Ugg + f(u).
Next, we divide Ra(u,w, o) into two subregions

R2,1(M7w79) = {)‘ eC: PR()‘)’ S w, i< p“ < Q}a
Roa(p,w,0) ={A € C: R(\) > @, u < [N < o}

For A € Ry 1(u,w,p) we show that the exponential dichotomy of (5.1) is inherited by the rescaled
system (3.9), which allows for a block diagonalization of the full eigenvalue problem with the aid of
the Riccati transform. As in the proof of Proposition 3.3, the dynamics in the slow component of the
diagonalized eigenvalue problem can be computed to leading-order. The Floquet boundary condition (2.16)
then leads to an equation for A which has no solutions A € R 1(u, w, o) with R(A) > 0, provided w > 0 is
sufficiently small.

Given a fixed @w > 0, roughness results yield that for A\ € Ry 2(p, @, 0) the exponential dichotomy on
R of (5.1) transfers to the full eigenvalue problem (2.13). This prohibits nontrivial solutions to (2.13) to
fulfill the Floquet boundary condition (2.14) and, thus, we find that £. has no spectrum in Ry 2(u, @, o).

5.1 The fast subsystem

We obtain an exponential dichotomy on R for the fast subsystem (5.1) for each A\ € Ry(p, w, 0). First, we
establish exponential dichotomies for (5.1) along the front and the back of the wave train by perturbing
from the reduced fast subsystems given by

b =A@ Awn=(y G L) (53)
for i = f,b. System (5.3) is the first-order formulation of the Sturm-Liouville problem (5.2), which admits,
provided w > 0 is sufficiently small, no nontrivial bounded solutions for A € Ry(u, @, ¢). This yields an
exponential dichotomy on R of (5.3), which can be transferred to (5.1) using roughness results. On the
other hand, the coefficient matrix of (5.1) is pointwise hyperbolic and varies slowly along the left and right
branch of the critical manifold for each A € Ra(u,w, o). As in the proof of Proposition 3.3, this yields
exponential dichotomies of (5.3) along these branches. Finally, pasting the exponential dichotomies on the
various intervals together, we establish an exponential dichotomy on R for (5.1).

Proposition 5.1. Fiz constants p, 0 > 0 with pu < . Provided 0 < ¢ < w < 1, system (5.1) possesses
for each A\ € Ro(u,w, 0) an exponential dichotomy on R with e- and \-independent constants.

Proof. We start by establishing an exponential dichotomy for (5.3) on R. By Proposition 2.1 there exist
A-independent constants C,v > 0 such that

[ ACur(=€); A) = Alug; M|, [[Aun (=€) A) — A(ug; M| < Ce™,

| Aur(€)53) = Alurs V]| [ A (€:3) — AGars ]| < T 54)

)

for ¢ > 0 and A\ € Ro(u,w,0). Using that f'(us), f'(u2) < 0, f’(ul),f’(ﬂl)vz 0 and ¢ > c.(a) > 0, we
infer, provided w > 0 is sufficiently small, that the asymptotic matrices A(u;; A) and A(u;; A\) are for
each A € Ro(u, @, ) and j = 1,2 hyperbolic. Hence, by [76, Lemma 3.4] system (5.3) admits exponential
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dichotomies on both (—o0,0] and [0,00) for ¢ = f,b. Fix i € {f,b}. Since «] is a solution to the Sturm-
Liouville problem (5.2) at A = 0 which possesses no zeros by Proposition 2.1, it follows from [87, p. 344 and
Theorem 5.5] that (5.2) admits, provided w > 0 is sufficiently small, no nontrivial bounded solutions for
all A € Ro(u,w, ). Therefore, the first-order formulation (5.3) also has no nontrivial bounded solutions
for all A € Ry(u,w,p). Hence, [76, Proposition 2.1] implies that (5.3) has for all A € Ra(u,w, o) an
exponential dichotomy on R with projections P;(&;)\). Since Ro(,w, o) is compact and A(u; \) depends
continuously on A, the constants associated with this exponential dichotomy can be chosen independent of
A by roughness of exponential dichotomies, cf. [27, Proposition 5.1]. Finally, [76, Lemma 3.4] and its proof
in conjunction with estimate (5.4) yield A-independent constants K, ag > 0 such that

17

L(=E;A) — Pug; A H < Ke™@0¢,
K (5.5)
46N Pl ] < o

| (=& A) — Plug; )|,
12165 X) = Plars )|

for € > 0 and A\ € Ro(u,w, 0), where P(u; )\) is the spectral projection onto the stable eigenspace of the
matrix A(u; \).

We transfer the exponential dichotomy of (5.3) on R to exponential dichotomies of (5.1) on the intervals
I = [%, i] and 7y, = [L1. + %7111,5 + i] Provided 0 < ¢ <« x < 1, Proposition 2.2 in combination
with roughness results, cf. [27, Proposition 5.1], implies that system (5.1) admits for each A € Ra(u, w, 0)
an exponential dichotomy on Z; with A- and e-independent constants and projections Qm(f ;A) for i =f,b.

In addition, there exists a A- and e-independent constant C', > 0 such that the estimates

|Qr.(&A) = P& A < Cyes, § €1y,
|Qbe(&A) = Bo(€ — Lic; V|| < Cyes, €T

win Wi

(5.6)

hold for A € Ra(p, @, 0).

Next, we establish exponential dichotomies for (5.1) on the intervals J = [X L.+ log(a ] and J; =
[l — L., loi( )]. First, provided 0 < ¢ <« x < 1, Proposition 2.2 yields that the coeffi(:lent matrix
Af(f, g,\) of (5.1) is hyperbolic with &-, -, e- and y-independent spectral gap and is bounded by a &-,
A-, e- and x-independent constant for each £ € NgUTg and X € Ry(u,w, ). Second, there exists a
¢-, A\, e- and ¥-independent constant Cy > 0 such that |9 A¢(&, e, \)|| < Codo(X) for € € Jz U Jrx and
X € Ro(p, w, o) by Proposition 2.2. Noting that {{ +y: 2 € Jiy,y € [-1,1]} C Ji2y for 0 <e < x < 1,
the latter two observations in combination with [30, Proposition A.3] imply, provided 0 < ¢ < x < 1,
that system (5.1) has for A € Ra(u,w, 0) and i = 1,r an exponential dichotomy on J;, with A-, e- and
x-independent constants and projections Qi,a (&; \) satistfying

1Qic(&2) = P(uc(€); M| < C100(2X), € € Tins (5.7)

where C] > 0 is a &-, e-, A- and x-independent constant.

Since (5.1) is Le-periodic with L. = L. + L., any exponential dichotomy of (5.1) on an interval Z
yields an exponential dichotomy on an L.-translate of Z. Our aim is to paste the exponential dichotomies
of (5.1) on the intervals J;, Z, J; and Zy, and their L.-translates together with the aid of [14, Lemma B.2]
to establish an exponential dichotomy for (5.1) on a double periodicity interval of length 2L.. This, in turn,
yields the desired exponential dichotomy of (5.1) on R by an application of [77, Theorem 1]. To this end,
we combine estimates (5.5), (5.6), and (5.7) with Proposition 2.2 and deduce, provided 0 < ¢ < x < 1,

that
o (252:0) e (352) | (23) e (9]

Db (Ll,s + logx(e);/\> — Qe (L e + log( ) ’ )Qbs (Lls ) — Qre (i — Ly g; /\) H < %

(5.8)
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for A € Ro(u,w,0). Therefore, applying [14, Lemma A.1] we deduce that Qf,s(ilog(a);)\)[(cn] and
ker(Qm(ilog(e);)\))vare complementary subspaces for A € Ro(p,w, o). In particular, it implies that
the projection onto Qfﬁ(i log(g)x; A)[C"] along ker(Qr,g(i log(e); A)) is well-defined and can be bounded
by an e-, x- and A-independent constant for A\ € Ra(u,w, 0), because the constants of the exponential
dichotomy of (5.1) on Z; are independent of £, x and A. Applying [14, Lemma B.2] we find, provided
0 <e < x <1, that (5.1) possesses for each A\ € Ra(u, w, 0) an exponential dichotomy on J; UZ¢ with e-,
x- and A-independent constants and projections QVLg (&; ) satisfying

)Ql,s(is N) = Qr (i /\) H <X (5.9)

Combining (5.8) with (5.9) we obtain, provided 0 < ¢ < x < 1, that the estimate
- < 1
HQLa(i;A)—Qm (§/\>H <5 Fx<l1 (5.10)

holds for A € Ra(p,w,e). Continuing analogously as before, we can use estimate (5.10) and [14, Lem-
mas A.1 and B.2] to prove that, provided 0 < ¢ < x < 1, system (5.1) admits for each A € Ra(u, w, 0) an
exponential dichotomy on J; UZ; U J) with e-, x- and A-independent constants. Proceeding inductively,
while using the estimates (5.8), we thus find that system (5.1) has for each A € Ra(u, w, ) an exponential
dichotomy on an interval of length 2L, with e-, x- and A-independent constants. Hence, using that the L.-
periodic coefficient matrix of (5.1) can be bounded by an e- and A-independent constant for A € Ro(u, @, o)
and ¢ € R by Proposition 2.2, system (5.1) has by [77, Theorem 1] an exponential dichotomy on R for each
A € Ry(p, w, 0) with A- and e-independent constants. O

5.2 The region Ry(u,w,0)

The exponential dichotomy of the fast subsystem (5.1), established in Proposition 5.1, allows us to apply
the Riccati transformation to block diagonalize the rescaled eigenvalue problem (2.15). By computing the
scalar dynamics in the one-dimensional slow component of the diagonalized eigenvalue problem to leading
order and employing the Floquet boundary condition (2.16), we preclude the existence of any spectrum of
nonnegative real part in the region Ra1(u, @, o).

Proposition 5.2. Let 0 < a < 3. Fiz 0 < v < v.(a) and ¢ > c.(a). Take constants p,0 > 0 with
< o. Then, provided 0 < ¢ € w K 1, the linearization L. of (1.7) about ¢-(§) possesses no spectrum of

nonnegative real part in the compact set Ra1(j, @, 0).

Proof. As outlined in §2.2, it suffices to show that the eigenvalue problem (2.15)-(2.16) admits no nontrivial
solution for p € R and A € Ry 1(p, @, 0) with R(A) > 0. As in the proof of Proposition 5.1, we adopt the
notation J; = [i,Ll’E + %] and J; = [i — Ly, logx(s)]. Moreover, throughout the proof we denote by
C > 1 any &-, A\, x-, w- and &-independent constant.

First, Proposition 2.2 yields, provided 0 < ¢ < x < 1, that we have

|45 (&8, A) = Ai(e&; V|| < Cdo(x), §ed,
|As(&e,A) — Ac(e€ + Le s V|| < Co(x), €T

(5.11)

for A € Ry 1(p, w, ), where we denote

Aify: ) = < A— f7<§u<y>> —1?>

for ¢ = I, r. Subsequently, we observe that the spectral projection of

<Ai(y§ A) Bo)
01x2 0
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onto its center eigenspace is given by
-1
00 (f(uily) —A+2)
3C (- — -1
QWA=10 0 2 () -2+ %)
0 0 1
fory € [0,L; + 1], A € Ro1(p, w, o) and i = 1, r. By estimate (5.11) we have

|PEAE) — Of (& N)|| < Coox), €€ T,
HP&?’)\(f) - Q?(Ef + Lr,a; )‘)H < CéO(X)a 5 S g7r,

for A € Ry 1(p, @, 0), where 73&‘?7/\(5) is the spectral projection of the coefficient matrix A(&;e, A) of (2.15)
onto its center subspace.

Proposition 5.1 yields, provided 0 < ¢ < w < 1, that the fast subsystem (5.1) has for each A €
Ry 1(p, @, 0) an exponential dichotomy on R with e- and A-independent constants K, > 0. Therefore,
provided 0 < ¢ < w < 1, the rescaled fast subsystem (3.9) has for each A\ € Ryi(u,w,p) also an
exponential dichotomy on R with e- and A-independent constants K, a—% > 0. In addition, the L.-periodic
coefficient matrix of (2.15) can be bounded on R by an e- and A-independent constant for A € Ry 1(u, @, o)
by Proposition 2.2. So, proceeding as in the proof of Proposition 3.3, we apply the Riccati transformation,
cf. [31, Theorem 5.1], to yield continuous L-periodic matrix functions H, y: R — C3*3 and Up:R— C2x1
such that H. »(§) is invertible for each £ € R and U, ) can be bounded on R by a A- and e-independent
constant. Moreover, if ¥() is a solution to (2.15), then ®(&) = H. x(£) V(&) obeys the diagonalized system

B — (Af(ﬁ;&)\) —eU: (&) B1 021 ><I>
¢ 012 eAs+eBUA(E))

(5.12)

(5.13)

for £ € R and A € Ry 1(p, @, o). Analogously as the derivation of estimate (3.17) in the proof of Proposi-
tion 3.3, one establishes the estimates

2\ —1
i ne gy | e et

-1
! r Lrs - A %2
(f (ur(e€ 4 Lic)) T 2) < ey, §ely
A (f’(ur(6§ + Lre)) — A+ i*z)

U57)\(£) -

(5.14)

Ue,A(&) -

for X\ € Ry 1(p, w, 0), where we used (5.12) instead of (3.15). Furthermore, by roughness results, cf. [27,
Theorem 5.1], the fast block system

CI)g = (Af(§;€,>\) —EUE,)\(f)Bﬂ(I) (515)

admits for A € Ry 1(u, w, 0) an exponential dichotomy on R with A\- and e-independent constants.
Now suppose that ¥(§) is a nontrivial solution to the boundary-value problem (2.15)-(2.16) for some
peRand A € Ry1(p, @, 0). Then, ®(§) = H. A(§)¥(€) solves (5.13) and obeys

B(Le +¢) = elP=2)Lea(¢) (5.16)

for all £ € R, where we used that H, 5(0) = H. x(L.) is invertible. The first two components of ®(&) solve
the fast block system (5.15), which has an exponential dichotomy on R with A- and e-independent constants.
Therefore, provided 0 < ¢ < w < 1, the condition (5.16) yields that ®(£) must vanish identically in its
first two components. Since the last component ¢(&) of ®(§) solves the scalar problem

gbf =€ (AS + BIUE,)\(g)) o,
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it must be nonzero for all £ € R and obeys

otz = o ([ (4t Bia©)de) 60)

Substituting the latter into the last component of (5.16) for & = 0, dividing by ¢(0) # 0, taking the complex
logarithm on both sides and equating real parts yields

Le
R <ALE +/ e (As + Ber,A(g))d§> =0.
0

C

Hence, using the approximations (2.11) and (5.14) and the fact that U, ) is bounded on R by an e- and
M-independent constant, we infer that, provided 0 < ¢ < y € w < 1, the estimate

ROy + 2 (py g1y 7P Z RO+ TGS fu(y) - RO) + B
c Do et A+ AF 0 elfluy) - A+ A
< Céo(x)

holds. Therefore, upon recalling that we have v,¢ > 0 and f'(u;(y)) < 0 for y € [0,L;] and i = 1,r, we
deduce that it must hold R(A) < 0, provided 0 < ¢ < x < w < 1, which concludes the proof. ]

5.3 The region Ry -(p,w, o)

We now show that the linearization L. possesses no spectrum in the compact region Rj(u,w, o) for
fixed g,w,pu > 0. The result follows by establishing an exponential dichotomy for the full eigenvalue
problem (2.13) on R.

Proposition 5.3. Let 0 < a < % Fiz 0 < v < v(a) and ¢ > ci(a). Take constants p,o0,w > 0 with
< o. Then, provided 0 < € < 1, there is no spectrum of the linearization Le of (1.7) about ¢-(§) in the
region Ry 2(p, @, 0).

Proof. Suppose ¥(€) is a solution to (2.13)-(2.14) with p € R. Then, it follows by standard Floquet theory,
cf. [48], that

U(Le +€) = ePhel(€)
holds for all £ € R. Consider the invertible matrix

g _( I 02><1>
© 02 Ve )T
We find that ®(&) = S.¥(€) solves the rescaled problem

H,. — A (€;€7)‘) \ﬁB T
d; = ( f\/EBl L (e +0>\)) d (5.17)

and obeys
O(Le +¢) = = d(¢) (5.18)
for £ € R. Clearly, provided 0 < ¢ < 1, the diagonal system

c
admits for each A € Ry 2(u, @, o) an exponential dichotomy on R with A- and e-independent constants by
Proposition 5.1. By roughness of exponential dichotomies, cf. [27, Proposition 5.1], it follows, provided
0 < ¢ < 1, that (5.17) has for each A € Ra2(u,w, ) an exponential dichotomy on R with A- and e-
independent constants. Combining the latter with (5.18) implies that ® must be identically 0. Therefore,
the eigenvalue problem (2.13)-(2.14) does not admit a nontrivial solution for each A € Ry 2(p, @, 0) and
p € R. By the exposition in §2.2 this implies that £. does not possess spectrum in Rg2(u, @, 0). O
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5.4 Proof of Proposition 2.5

Choosing ¢ as in Proposition 2.3 and p as in Proposition 2.4 and taking w sufficiently small, the result
follows from Propositions 5.2 and 5.3.

A The region R;.(0)

In this section, we prove Proposition 2.3 concerning spectrum in the region R3 (o).

Proof of Proposition 2.3. The principal part of L. is the diagonal diffusion-advection operator

_ 855 + Cag 0
LO o ( 0 C@g)

acting on Y := L?(R,C) x L?(R,C) with dense domain H?(R,C) x H*(R,C). The skew-adjoint operator
A, = adg on the Hilbert space L*(R) with domain H'(R) generates by Stone’s Theorem, cf. [41, Theo-
rem I1.3.24], a unitary group for any a € R\ {0}. Consequently, by [41, Corollary 11.4.9] and its proof, the
square Oge = A3: H?(R) C L*(R) — L?(R) is sectorial. In particular, there exists a constant Cy > 1 such
that any A € C\ {0} with R()\) > 0 lies in the resolvent set of A? and we have

1
< 1+ —1. Al
sz—%( +|A|> (A1)

On the other hand, by Sobolev interpolation there exists for any § > 0 a constant Cs > 0 such that
W' ||p2 < S||u”||z2 + Csllul|z2 for all w € H?(R). Hence, for any § > 0 the operator A. is A2-bounded
with A2-bound §. Therefore, using that A? is sectorial, the proof of [41, Theorem III1.2.10] yields constants
Cy,71 > 0 such that any A € C with R(\) > 0 and |A| > 7 lies in the resolvent set of A? + A, = J¢¢ + ¢
and we have

ot

Ch

2 —1
At =07 L=

(A.2)

Moreover, since A, generates a unitary group, [41, Corollary 11.3.7] implies that any A € C with R(\) > 0
lies in the resolvent set of A. and it holds

1

Jeae =7 <

(A.3)

The residual operator L. — Lg: Y — Y is bounded by an e-independent constant by Proposition 2.2.
Combining the latter and estimates (A.2) and (A.3) with [66, Theorem IV.1.16] yields an e-independent
constant p; > 0 such that £. — X is invertible for all A € C with R(\) > ;.

We now consider the eigenvalue problem

(Le—b—ikQ) <3}) =0 (A.4)

with b € [—%67, 01], k € {1}, and Q > 1. Inspired by the analysis in [8, Appendix A], we multiply (A.4)

from the left with the diagonal matrix diag(Q~',e~'Q~1/2) and introduce the rescaled spatial variables
X = \/ﬁf and W = e Lw. We arrive at

(El,e,,u + £2,5,,u) <Ij{/> = 07
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where we denote = Q~1/2 € (0,1) and the operators L1 . ,: H*(R)xH'(R) CY — Y and Lo ,,: H'(R)x
L*(R) CY — Y are given by

A2 —1 2 (¢ - )
’61757# = ( 1 G 0 > , E2 e = (AMC+IU’ (f ('LLE(,U,X)) b) el > ‘

0 Ac—(bt+eyu—4% 7 0

Using that b € [—2e, g1], it follows from (A.1) and (A.3) that £y, is invertible and we find a p- and
e-independent constant Cy > 0 such that

-1
Hﬁzzenuﬁl,a,ﬂ ’

< Cop

L2—L?

for 4 € (0,1). Hence, there exists an e-independent constant pg > 0 such that, if u € (0, o), then
the operator I + 5275,“51_7;7# may be inverted using Neumann series. Therefore, (I + Egygyuﬁi;#)ﬁl@u =
L1epu+ Loy is invertible for p € (0, 10). Udoing the rescaling, we infer that there exists an e-independent
constant g2 > 0 such that £. — b — ik is invertible for b € [—%5% o1], K € {£1}, and Q2 > g9, which
concludes the proof. ]

B Exponential di- and trichotomies

Exponential di- and trichotomies play a central role in the spectral analysis of linear differential operators
and can be used to characterize invertibility and Fredholm properties [27, 75, 76, 82].

A linear nonautonomous ordinary differential equation admits an exponential dichotomy when it has a
fundamental set of solutions that exhibit exponential decay in forward or backward time.

Definition B.1. Let n € Ny, J C R an interval, and A € C(J,C"*"). Denote by T(z,y) the evolution
operator of

¢z = A(z)0, peC". (B.1)

Equation (B.1) has an exponential dichotomy on J with constants K, > 0 and projections P(x) € C"*™
if for all z,y € J it holds

o P(x)T(x,y) =T(x,y)P(y);
o [|T(x,y)P(y)|| < Ke ¥ for z > y;
o |T(z,y)(In— P(y))|| < Ke=*W=) for y > .

Exponential trichotomies describe linear systems that, in addition to exhibiting exponential decay in
forward and backward time, possess a central subspace corresponding to bounded or neutral dynamics.

Definition B.2. Let n € N5y, J C R an interval, and A € C(J,C"*"™). Denote by T'(x,y) the evolution
operator of (B.1). Equation (B.1) has an exponential trichotomy on J with constants K,a > 0 and
projections P"(z), P%(x), P¢(x) € C™*™ if for all z,y € J it holds

PY(z) + PS(x) + P%(z) = I;
o PoUC()T(z,y) = T (z,y)P¥"(y);

IT (2, ) P* ()|, | T (y, 2) P*(x)|| < Ke™ ) for & > y;

1T (x,y)P(y)|| < K.
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C Properties of the Airy function Ai(s)

In this section, we collect several facts concerning the Airy function Ai(s). We begin with the following
result from [35, §9].

Lemma C.1. The Airy function Ai: R — R satisfies the properties:
(i) Ai"(s) = sAi(s) for seR

(ii) Ai(s) has an infinite number of zeros, all of which are negative, the largest of which is simple and
denoted by —Qy < 0.

(i1i) There exists a constant C' > 0 such that

|3/2

0 < Ai(s) < O I [AV(s)] < O (14 ]s]F) 730

for s € [, 00).
Using Lemma C.1, we arrive at the following result.
Proposition C.2. Consider the entire function Iy: C — C given by

z

0" A

/ e~ #(s+5%) (AY'(s)? — sAi(s)?) ds, (C.1)
—Q0
where —Qy < 0 is largest zero of the Airy function Ai(s). There exists a constant C > 0 such that the
following hold:

(i) In(z) = %z + O(|2|?) for z € C with |2] < 1.

(ii) Io(0) = 0,I}(z) > 0 for z € R, and In(2) =1+ O (z%) for z € R with z > 1.

1
AT(—Q)?

(w) |I}(2)] < C for all z € C with (=) > —1.

(iii) Ip(z) =1— / e~ #5T20) Aj(s)2ds for each z € C.
—Qo

Proof. Using integration by parts and Lemma C.1, we establish

/ Ai'(5)? — sAi(s)?ds = 2/ Ai(s)%ds = 28Ai'(s)2‘mQ — 4/ s2Ai'(s)Ai(s)ds
20

—QO —Q() _QO
= 200Ai' (—Q0)? + 4 / sAi(s)%ds = 20Q0A1' (— Q)% — 4 Ai(s)%ds
*QO 790
so that
1 % 20
S — A'(s)? — sAi(s)2ds = —2.
AT (002 /_QO i'(s)* — sAi(s)“ds 3

Together with Lemma C.1, this implies Ip(0) = 0 and I)(0) = 2€/3, which completes the proof of (i) and
the first statement in (ii). For the remaining claims, we use integration by parts to obtain

1 >~ d
T -__ - — e #(5+R0) | (AT(5)2 — sAi(s)?
0(®) =~ Cay)? /_QO ds [e } (AT(5)" — sAi(s)7) ds
1 [oe} 1 0
- —z(s+90) JrN2 RV - —2(s+0) A3 )2
Ai'(—QO)Ze (Ai'(s)? — sAi(s) )‘—Qo A2 /Qoe Ai(s)“ds (C.2)
1 [e.9]
=1 — _Z(SJ’_QO)A' 2
Ai/(—Qo)2 /_QO ¢ 1(8) ds
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for z € C, which establishes (iii). Differentiating (C.2) and using Lemma C.1, we have

1

o
/ - - —2z(s+0) s/ N2
Iy(2) AT(—0g)? /_QO e (s + Q) Ai(s)“ds

for z € C, implying I{j(z) > 0 for z € R. Taking absolute values, we find

1 R ]
KIOIE vimons [ e (s 00 aias
340

for all z € C with R(z) > —1, which yields (iv) by Lemma C.1. Finally, for z € R with z > 1, integrating
by parts and using Lemma C.1, from (C.2) we obtain

2
Ai/(—Qo>2Z

2 & 1
-1 = —z(s+0) N2 cr\2 _
1 AT(—0)522 /_QO e (Ai'(s)” + sAi(s)?)ds =1+ 0O <z2> ,

Io(z) =1— / eI Aj(5) AT (s)ds
—Qo

as claimed. 0

D Numerical continuation of spectra

In this section, we present some details on the numerical computation of spectra used to obtain the plots
in Figure 6. To verify the (negative) quadratic tangency of the critical spectral curve at the origin and its
asymptotic scaling, we compute the leading quadratic coefficient \?(0) numerically and compare this with
the predicted leading-order behavior (2.18). We follow [38, §4] to derive an expression for the coefficient
A/(0). We recall that the wave-train solution ¢.(§;¢) = (ue,w:)(§;¢) is an L.(c)-periodic solution of
the traveling wave ODE (1.8). As L. is a monotonically increasing function of ¢, we can equivalently
parameterize the solution ¢. and the wave speed c¢ as functions of the period L.. Defining the spatial
wavenumber ¢ = i—:, and setting w(l) = lc(f), we have that (u., ws)(0;0) = (ue,w:)(0/¢;¢(f)) is a 27-
periodic solution of the equation

0 = Pugg + f(u) — w + wug,

(D.1)
0=c(u—yw—a)+ wwy.

As the translation eigenvalue is simple by Theorem 1.2, the derivative (9pus, dgw,) thus spans the kernel
of the operator

o 0p + [ (w05 €))u + wdy -1
e € —eyw +wdy )
The adjoint operator
rad _ 62(‘9@9 + f’(u*(G; 0)u — wdy €
S -1 —eyw — wy

has a nontrivial solution, which we denote by (uaq, waq)(0;¥). Differentiating (D.1) with respect to ¢, we
find that (Opu., Opw,) satisfies the equation

Dous\ [ —200ggus — W' (£)Opux
= <8gu*> N < —w'(£)Dgw ’ (D2)
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where, upon taking the L? inner product of both sides with (uaq, waq)(6;¢), we find that

o ). ()
({3

Following the discussion in [38, §4.2], by shifting in 0, we can arrange for the solution (9yu., dyw,) of (D.2)

to satisfy
Oy Uad -
(o) (i) =0 ®3

Turning to the eigenvalue problem (1.10), the critical spectral curve \.(p) satisfies the reformulated eigen-

value problem
up\ Up
Lon (w) — A:(p) (w) (D.4)

for p € [—LLE, L%), where the operator

s <e2(ag+ig)2+w(ag+ifg) + [ (ua(6;0)) -1 )
pr¥ 5 w(dg+i5) —ev)’

and (up, w,) = (Opus, Ogwy) at p = 0. By differentiating (D.4) with respect to p, and following [38, §4.2],

we obtain
< <45898[U* + 289“*) <uad) >
0 "\ w,
N(0) = —oL
Opus Uad
<<89w*> ’ <wad>>

We compute (D.5) numerically in AUTO by solving for (Opu., Jpws) and (uaq, waq) as the solutions of

e ()0
ex(p)
w

respectively, up to normalization, and for (Jpus, Opws) as the solution of (D.2) subject to (D.3). The inner
products in (D.5) can then be evaluated numerically to determine A”(0). Figure 6 depicts the results of
numerical continuation of A\?(0) for decreasing ¢ for a wave-train solution of (1.1) for a = 0.2,y = 1, and
wave speed ¢ = 2. We see good agreement between the numerically computed expression (D.5) and the
leading-order coefficient —ke?/? obtained analytically in Proposition 2.4. A log-log plot of the difference
between these two expressions suggests that the error is indeed higher order: While we have not carried
out the higher order analysis in the proof of Proposition 2.4 necessary to capture the error, we conjecture
that this error scales approximately as ~ €loge. This would be in line with the fact that the next order
error term in the €2/3 bifurcation delay associated with slow passage through the fold is of order ¢ loge [69].
This scaling appears to be corroborated by Figure 6.

(D.5)

and
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E Direct numerical simulations

Direct simulations for Figures 2 and Figure 3 were implemented using a fourth order exponential time
differencing scheme [28] after spectral discretization, evaluating the linear part via fast Fourier transform.
Typical discretization parameters were dx = 0.1 and dt = 0.1. Domain sizes were chosen so that the
domain fit 20 repeat phase waves and 60 repeat trigger waves. The scheme was implemented in Matlab
and computations were carried out on an Nvidia Quadro GV100 GPU. We found wave trains by first
simulating in a fundamental period with a spatial relaxation type initial profile until changes in time were
small. The result was used to initialize a Newton method with the same spectral discretization and a
comoving frame derivative with speed approximately from direct simulations. The resulting wave train
was then repeated 20 times for phase waves or 60 times for trigger waves to yield an exact equilibrium in
the large domain. We simulated the system in the large domain in both steady and comoving frames with
initial perturbations random or localized in space (Figures 2 and 3, respectively). We found the size of the
perturbation upert in the first component of the solution u, by finding the closest perfect wave-train solution.
For this, we constructed the family of translates of wave trains uy: (- + &p) using spectral interpolation and
then finding the minimum location 5 = argming, fg [t (€, 1) — Ut (€ + &0)|%1dE. The exponent 0.1 used
for finding the minimum location effectively penalizes a distribution of the mismatch across the domain,
so that the error is localized in a region where it is actually large. The perturbation shown in Figure 3 and
used to compute the width of the region with amplitude larger than 1077 is u.(t, &) — uwt (€ + &o)-
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