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Abstract

A class of two-fast, one-slow multiple timescale dynamical systems is considered that contains the system

of ordinary differential equations obtained from seeking travelling-wave solutions to the FitzHugh-Nagumo

equations in one space dimension. The question addressed is the mechanism by which a small-amplitude

periodic orbit, created in a Hopf bifurcation, undergoes rapid amplitude growth in a small parameter interval,

akin to a canard explosion. The presence of a saddle-focus structure around the slow manifold implies that a

single periodic orbit undergoes a sequence of folds as the amplitude grows. An analysis is performed under

some general hypotheses using a combination ideas from the theory of canard explosion and Shilnikov analysis.

An asymptotic formula is obtained for the dependence of the parameter location of the folds on the singular

parameter and parameters that control the saddle focus eigenvalues. The analysis is shown to agree with

numerical results both for a synthetic normal-form example and the FitzHugh-Nagumo system.

1 Introduction

Singularly perturbed systems of reaction-diffusion partial differential equations (PDEs) have shown remarkable

success in modelling a wide variety of biological wave propagation phenomena, including neuronal pulses, cardiac

tissue activation and calcium cell signalling. See, for example [22, 13]. Many of these problems naturally lead,

when posed in a traveling wave frame, to systems of slow-fast ordinary differential equations (ODEs). One

of the most studied canonical models of this class is that introduced by FitzHugh and Nagumo [14, 29] as a

simplification of the Hodgkin-Huxley model of nerve signal propagation along the axon of the giant squid.

Individual pulse-solutions of the PDE typically represent homoclinic solution of the travelling wave ODEs. The

bifurcation structure of homoclinic orbits in the 3-dimensional travelling wave FitzHugh-Nagumo ODE system

has been studied by a number of authors both numerically [8, 18, 17, 27] and analytically [4, 5, 19, 20, 21, 23].

Within appropriate parameter regions these orbits connect to an equilibrium solution that is of saddle-focus

type. That is the linearization is of the form

ẋ = −αx− ωy
ẏ = ωx− αy
ż = βz

with α, β, ω > 0. Such homoclinic orbits are often said to be of Shilnikov type, following the pioneering work of

L.P. Shilnikov [32]. Defining δ = α/β then under the condition δ < 1 the dynamics in the neighbourhood of the
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homoclinic orbit are known to be chaotic, featuring dynamics that is conjugate to shift dynamics on arbitrary

many symbols. (This condition δ < 1 is typically written in the Russian literature as σ > 0, where σ = β + α is

the so-called saddle index.)

Also, as first shown by Glendinning and Sparrow [16], in the case δ < 1 the homoclinic orbit is approached by

family of periodic orbits of increasing period that lie on a single wiggly curve in parameter versus period (see

e.g. Fig. 10 below for a topologically equivalent figure, albeit with vertical axis having a different meaning). The

asymptotic calculations in [16] (see also [15]) reveal the asymptotics of the wiggly curve. Specifically, if λi is

the difference in parameter value of the ith fold from that of the homoclinic orbit and Ti is the period of the

corresponding periodic orbit then

lim
i→∞

(Ti+1 − Ti) = π/ω, lim
i→∞

(λi+1 − λi) = − exp(πα/ω). (1.1)

This theory then shows how a travelling pulse solution is approached by a family of periodic wave trains as period

tends to infinity. In the slow-fast ODE systems, such wavetrains are represented by relaxation oscillations. Also

of interest, and the main topic of this paper, is the mechanism of birth of such relaxation oscillations. We shall

see that, under certain mild hypotheses, the growth in amplitude (rather than period) of such orbits follows a

kind of wiggly curve that is reminiscent of the Shilnikov wiggle and obeys asymptotic scalings that are analogous

to (1.1) in the case δ < 1, under a suitable re-definition of the parameters α, β, ω and T .

This paper specifically concerns three-dimensional systems like the FitzHugh-Nagumo travelling-wave equation

that are of two-fast, one-slow type, although the results are likely to apply to high-dimensional systems under

appropriate centre manifold reduction, for example the various models for calcium waves considered in [8]. Such

systems with parameter regions where an equilibrium is globally stable are often said to feature excitability if

there is a threshold to the size of perturbation that can elicit large-amplitude transient behaviour before the

trajectory settles back to quiescence. As parameters are varied, the equilibrium can undergo a Hopf bifurcation,

leading to a small amplitude limit cycle. Such a limit cycle is usually short-lived though and a rapid expansion

in its amplitude occurs leading to characteristic large-amplitude relaxations oscillations. Such amplitude growth

typically occurs in a parameter region that is exponentially thin as a function of the singular parameter ε.

Such behavior can be understood using geometric singular perturbation theory (see [26] and references therein),

in particular the existence of canard trajectories [1, 12]. Setting ε = 0 to freeze slow variables yields the fast

subsystem (also referred to as layer problem). Similarly, the ε = 0 limit of the slow-time dynamics gives the slow

subsystem (also referred to as reduced system) which applies on the critical manifold C0 which is both the set

of equilibria of the layer problem and the phase space of the slow subsystem. The classical canard phenomenon

can occur in planar systems such as the unforced van der Pol oscillator, for which the one-dimensional C0 has a

characteristic cubic shape. The canard represents a trajectory that passes very close to the unstable part of C0
and leads to the birth of large-amplitude relaxation oscillations from a small amplitude limit cycle.

Subsets of C0 that are not normally hyperbolic provide a challenge and typically represent points at which solution

trajectories can separate from the perturbed slow manifold Cε for small ε > 0. One way to resolve such problems

is to introduce an auxiliary system obtained by rescaling time so that the fold points of C0 become singularities

of the slow flow. Folded singularities give a way to analyse canard solutions, which flow through successively

through the attracting and repelling parts of C0, by passing close to one of these singularities, see e.g. [25, 34].

Such folded singularities in three-dimensional systems with two slow and one fast variable can lead to additional

oscillations in the large amplitude limit cycles through either so-called folded nodes or folded saddle nodes. Then

a folded node singularity that connects a region of oscillatory dynamics to a canard trajectory can lead to the

onset of so-called mixed-mode periodic orbits [9, 36].

The mechanism to be addressed in the present study is rather different, and concerns three-dimensional systems

with two fast variables and one slow. Motivated by what has been observed in the FitzHugh-Nagumo model

[5], and in other systems [7, 8], we consider where the growth in amplitude of a limit cycle coincides with the
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addition of additional folds around the slow manifold. In so doing, we find wiggly curves in amplitude of limit

cycles against parameter.

The rest of this paper is outlined as follows. Section 2 introduces the FitzHugh–Nagumo equation and its

underlying dynamics in the parameter region of concern here. We present numerical evidence for a wiggly

canard explosion. Motivated by this, in §3, we consider a general three-dimensional slow-fast system which

admits the geometry necessary to produce this behavior and describe how canard orbits arise in this general

system. This construction is used as the basis in §4 for a formal asymptotic analysis of the folds in the bifurcation

diagram associated with the canard explosion. Then §5 presents detailed numerical evidence for the predictions

of the theory on two examples: a specifically constructed “normal form” example, and the previously studied

FitzHugh-Nagumo system. Finally §6 draws conclusions and suggests avenues for future work, in particular

connections to bifurcation theories for complex mixed-mode wavetrains.

2 The FitzHugh-Nagumo equations

The analysis in this paper is motivated by travelling-waves in the classical FitzHugh-Nagumo PDE, given by

vt = Dvxx + f(v;λ)− w + p

wt = ε (v − γw)
(2.1)

where the cubic nonlinearity is given by f(v;λ) = v(1− v)(v − λ), 0 < λ < 1/2, and the parameters 0 < ε� 1,

p ≥ 0 and γ ≥ 0 taken so that (v, w) ≡ 0 is the only homogeneous equilibrium of (2.1). The equation (2.1) was

originally proposed as a simplification of the Hodgkin Huxley equations describing propagation of impulses along

nerve fibers; its variants have been studied in depth the past several decades. In this context, v is a voltage-like

variable, while w is a combined recovery variable which acts on a slower timescale. The parameter λ represents

an excitation threshold, while p ≥ 0 is an applied current.

Of particular interest are traveling wave solutions (v, w)(x, t) = (v, w)(x+ st) which represent profiles with fixed

shape that travel through the domain with constant speed. Such solutions satisfy the associated traveling wave

ordinary differential equation

v̇ = d

ḋ =
1

D
(sd− f(v;λ) + w − p)

ẇ =
ε

s
(v − γw)

(2.2)

where (̇) =
d

dξ
, and ξ = x + st. The system (2.2) exhibits remarkably rich dynamics and has since become a

prototype model in the study of slow-fast dynamical systems. System (2.2) is a two-fast-one-slow ODE with a

one-dimensional cubic critical manifold C0 = {d = 0, w = f(v;λ) − p}, consisting of two normally hyperbolic

saddle-type outer branches and a repelling middle branch meeting at two nonhyperbolic fold points. Traveling

waves are constructed using geometric singular perturbation theory by perturbing from singular orbits composed

of portions of these branches of the critical manifold concatenated with fast jumps between the branches, which

are solutions of the corresponding layer problem

v̇ = d

ḋ =
1

D
(sd− f(v;λ) + w − p)

(2.3)

for fixed values of w.

It has been shown, for instance, that (2.2) admits families of homoclinic orbits, amounting to traveling pulse

solutions of (2.1). The dynamics and properties of these pulse solutions have garnered much interest and have
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Figure 1: Traveling wave trains obtained in the FitzHugh–Nagumo equation (2.1) for ε = 0.005, γ = p = 0 with

wave speed s = 0.65: small amplitude canard cycle (left), and a large amplitude relaxation oscillation (right),

corresponding to the blue and green orbits, respectively, depicted in Figure 2.

been studied in detail. The current work is concerned with traveling wave-train solutions, or spatially periodic

pulse patterns, of (2.1), in particular those which arise from canard dynamics. Such solutions amount to periodic

orbits of the traveling wave equation (2.2). These periodic waves can either be constructed from orbits which

traverse only normally hyperbolic portions of C0 [33], or can contain orbit segments which pass near one or both

of the non hyperbolic fold points. Both families of orbits represent periodic pulse patterns of (2.1), and have

been shown to organize invading pattern-forming fronts in (2.1) [6].

Here, we are concerned with orbits associated with canard dynamics in (2.2). These originate in a singular

Hopf bifurcation which occurs at the origin for a suitable value of λ = λH(ε) and grow into large-amplitude

wave trains along a canard explosion; see Figures 1 and 2. This transformation resembles the classical planar

canard explosion [25], though with some subtle differences arising due to the three-dimensional nature of the

traveling wave equation (2.2). In particular, the bifurcation branch exhibits a series of folds, which are especially

pronounced near the upper part of the bifurcation branch.

Remark 2.1. While the bifurcation branch in the classical planar canard explosion can exhibit a finite number of

folds (as ε→ 0) which arise due to zeros in the so-called way-in-way-out function [25], we will see that the folds

appearing in Figure 2 appear due to oscillatory dynamics in the fast subsystem, and the number of folds grows

like O(1/ε) as ε → 0. We remark that similar behavior has been observed in the context of traveling wavetrain

solutions in other systems, such as the Oregonator model [31]. In the context of traveling pulse solutions in the

FitzHugh–Nagumo system, a similar (and closely related) sequence of folds, growing in number as ε→ 0, has been

found along a pulse-replicating bifurcation branch in which a single pulse transforms into a double pulse along

a canard transition [5]; the folds are linked to the accumulation of eigenvalues on the so-called “slow absolute

spectrum” of the traveling pulses [3].

We note that for p = 0, s > 0 and γ ≥ 0 taken small enough, there is a single equilibrium for the full system (2.2)

which occurs at the origin (v, d, w) = (0, 0, 0). In the limit ε→ 0, this equilibrium lies precisely on the lower left

fold point of the critical manifold C0 when λ = 0. For sufficiently small ε > 0, the canard explosion in Figure 2

originates in a Hopf bifurcation occurring at this equilibrium at a value λ = λH(ε) = O(ε).

To understand the geometry of the canard explosion in Figure 2, we consider the slow/fast geometry of (2.2).

Setting ε = 0 in (2.2), we obtain the layer problem (2.3), in which w acts as a parameter. The set of equilibria

of this system is given by the critical manifold C0. Rescaling the traveling wave coordinate via τ = εξ, we obtain
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Figure 2: Plotted is the traveling canard explosion which emerges from the Hopf bifurcation at the equilibrium

(v, d, w) = (0, 0, 0) at the parameter values p = 0, s = 0.65, γ = 0, and ε = 0.005, when continuing in the

parameter λ. The left panel shows the bifurcation diagram obtained by plotting the L2-norm of the periodic

orbits along the explosion vs. the parameter λ; a zoomed in portion of this bifurcation diagram showing the folds

along the canard explosion is shown in the inset. The colored circles in the bifurcation diagram correspond to the

periodic orbits in the right panel plotted in (v, d, w) phase space along with the cubic critical manifold (shown

in red). The explosion encompasses the transition from small amplitude oscillations (blue) born locally at the

Hopf bifurcation, to canards “without head” (yellow) and “with head” (purple), to large amplitude “relaxation

oscillation”-type orbits (green).

the corresponding slow system

εv′ = d

εd′ =
1

D
(sd− f(v;λ) + w − p)

w′ =
1

s
(v − γw)

(2.4)

where ′ =
d

dτ
. We note that the flow of (2.4) is identical to that of (2.2) for any ε > 0, but upon setting ε = 0,

we obtain the reduced problem

0 = d

0 =
1

D
(sd− f(v;λ) + w − p)

w′ =
1

s
(v − γw)

(2.5)

for which the flow is restricted to the critical manifold C0. It is possible to build singular ε = 0 periodic orbits

for (2.2) by concatenating solutions of the reduced problem (on the slow manifold C0) and the layer problem,

which describes the fast dynamics away from C0.

We now examine the linear stability of the layer problem along the set of equilibria C0 = {d = 0, w = f(v;λ)−p},
which can be naturally parameterized by v. At a point (v, d, w) = (v, 0, f(v;λ)−p) ∈ C0, the linearization of (2.3)

is given by

J(v, 0) =




0 1

−f
′(v;λ)

D

s

D


 (2.6)
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Figure 3: Shown the singular slow-fast geometry for the FitzHugh–Nagumo system (2.2) for λ = ε = 0.

The eigenvalues are then given by the following expression

ν± =
1

2

(
s

D
±
√

s2

D2
− 4

f ′(v;λ)

D

)
(2.7)

so that C0 is normally hyperbolic for any s > 0 except at two fold points v = vf
± where

0 = f ′(v;λ) = −3v2
f + 2(1 + λ)vf − λ (2.8)

that is,

vf
± =

1

3

(
(1 + λ)±

√
(1− λ)2 − 3λ

)
. (2.9)

This splits the manifold C0 into three normally hyperbolic branches

C1
0 = C0 ∩ {v < vf

−}, C2
0 = C0 ∩ {vf

− < v < vf
+}, C3

0 = C0 ∩ {v > vf
+} (2.10)

where the two outer branches C1
0 and C3

0 are of saddle type, and the middle branch C2
0 is normally repelling.

Depending on the values of the parameters λ, s,D, for values of w ∈ (f(vf
−;λ), f(vf

−;λ)), between the fold

points, there exists a family of heteroclinic orbits φ21(ξ;w) = (v21, d21)(ξ;w) and φ23(ξ;w) = (v23, d23)(ξ;w)

which connect the repelling middle branch C2
0 with the outer saddle branches C1

0 and C3
0 , respectively. For certain

values of w, there are potentially also heteroclinic orbits φ13(ξ;w) = (v13, d13)(ξ;w) or φ31(ξ;w) = (v31, d31)(ξ;w)

which connect the outer branches C1
0 and C3

0 , or vice versa. We refer to [6, Figure 2] for a qualitative description

of the possible phase portraits of (2.3) in the case D = 1, p = 0 for different values of λ and s.

Examining the reduced flow (2.5) restricted to the critical manifold C0, we note that the direction of flow is

determined by the nullcline v = γw; see Figure 3. When λ = 0, the equilibrium (v, d, w) = (0, 0, 0) sits at the

lower left fold point, which in the singular limit ε→ 0 takes the form of a canard point. Singular periodic orbits

can be formed by concatenating canard orbits which follow the saddle critical manifold C1
0 then the repelling

middle branch C2
0 , followed by one of the fast heteroclinic orbits φ21(·;w) or φ23(·;w). Following one of the orbits

φ21(·;w) back to the saddle branch C1
0 results in a singular canard “without head”; however, if following φ21(·;w),

the orbit jumps to the right saddle branch C3
0 and continues to the upper right fold point before returning to the

left saddle branch C1
0 , forming a singular canard “with head”.

In the forthcoming analysis, we will show that the sequence of folds in the bifurcation branch that undergoes a

canard explosion in Figure 2 is related to the small amplitude oscillations made by the canard orbits about the
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middle branch C2
0 of the critical manifold; these can be seen along the canard orbits in phase space in Figure 2.

These oscillations arise along a portion of the repelling middle branch C2
0 in which the associated equilibria of

the fast subsystem transition from repelling nodes to foci in the layer problem. From (2.7), the condition to have

foci is

s2

D2
− 4

f ′(v;λ)

D
< 0 (2.11)

or equivalently,

3v2 − 2(λ+ 1)v + λ+
s2

4D
< 0 (2.12)

The equality in equation (2.12) gives a quadratic equation whose roots are

v± =
1

3

(
1 + λ±

√
(1 + λ)2 − 3

(
λ+

s2

4D

))
, (2.13)

Then, provided

(1 + λ)2 − 3

(
λ+

s2

4D

)
> 0 (2.14)

equation (2.12) has solutions on v ∈ (v−, v+), and we refer to the points (v±, w±) = (v±, f(v±;λ)) at which

the node-to-focus transition occurs as Airy points [5]. Comparing (2.13) and (2.9), we can conclude that, for

values of λ, s satisfying (2.14), the solutions to the inequality (2.12) lie on the middle (repelling) branch of the

cubic critical manifold, where the equilibria (of the fast subsystem) are then foci. In particular, for λ = 0 and

0 < s <
2D√

3
, there exists a portion of C2

0 with this focus structure, and any canard orbits passing near this

portion of slow manifold will exhibit small oscillations around C2
0 .

The aim of this paper is to show that, under suitable assumptions, these oscillations organize the folds in the

bifurcation curve in Figure 2, and we will obtain asymptotic estimates for the location and number of these folds

in the singular limit ε → 0. After construction of a general theory, we will return to the FitzHugh–Nagumo

system in §5.2 and show how it fits into this framework.

3 A normal form for wiggly canards

Motivated by the geometry of the FitzHugh–Nagumo system in the previous section, we consider a 2-fast-1-slow

system with fast variables (v, d), slow variable w, which we write in the form

v̇ = g1(v, d, w, λ, ε)

ḋ = g2(v, d, w, λ, ε)

ẇ = εh(v, d, w, λ, ε),

(3.1)

where ˙ =
d

dξ
, λ is a bifurcation parameter, ε > 0 is a small parameter and g1, g2, h are Cr+1 functions, r ≥ 3.

By rescaling τ = εt, we obtain the corresponding slow system

εv′ = g1(v, d, w, λ, ε)

εd′ = g2(v, d, w, λ, ε)

w′ = h(v, d, w, λ, ε),

(3.2)

where ′ =
d

dτ
. We outline hypotheses with respect to the slow/fast limits in §3.1. Also see Figure 4.
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Figure 4: The global setup of the slow-fast system (3.1) according to Hypotheses 1-4. For convenience the origin

is taken to coincide with the fold point F = (vf , df , wf).

3.1 Fast and slow limits

Setting ε = 0 in (3.1) results in the layer problem

v̇ = g1(v, d, w, λ, 0)

ḋ = g2(v, d, w, λ, 0)

ẇ = 0,

(3.3)

which we consider for λ ∈ [−λ0, λ0] for some λ0 > 0. The dynamics are restricted to planes w =const, and this

system admits a critical manifold of equilibria

C0 := {(v, d, w) : F (v, d, w, λ, 0) = 0}, F (v, d, w, λ, ε) :=



g1(v, d, w, λ, ε)

g2v, d, w, λ, ε)


 (3.4)

We assume that for w > wf , (3.3) admits two hyperbolic fixed points: p`(w), and pr(w), and these collide at a

saddle-node bifurcation at w = wf . In other words, we assume that the critical manifold is folded, or U -shaped

with two normally hyperbolic branches C`0, Cr0 and single fold point at

F = (vf , df , wf). (3.5)

so that

C0 = C`0 ∪ F ∪ Cr0 . (3.6)

Regarding the stability of the hyperbolic branches of the critical manifold, we have

Hypothesis 1. The left and right branches of the critical manifold C0 satisfy the following.

(i) The left branch C`0 is normally attracting, that is, D(v,d)F |C`0 has two eigenvalues with negative real part.

There exists w0 > wf such that for wf < w < w0, these two eigenvalues are real and denoted by ν±` (w),

where ν−` < ν+
` < 0, while for w > w0, the eigenvalues are complex with ν±` (w) = −α(w) ± iω(w), where

α(w), ω(w) > 0 for w > w0. The double root ν+
` (w0) = ν−` (w0) is geometrically simple.
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Figure 5: The assumed heteroclinic orbits in the layer problem according to Hypothesis 2 in the case w < w0

(left) and w > w0 (right).

(ii) The right branch Cr0 is of saddle type, so that D(v,d)F |Cr0 has one positive and one negative eigenvalue,

denoted ν±r (w).

We refer to the equilibrium p`(w0) at which the fast dynamics transitions from node to focus as an Airy point.

The next hypothesis concerns the existence of heteroclinic orbits connecting the right branch Cr0 to the left branch

C`0. See Figure 5.

Hypothesis 2. (Behavior of Wu(Cr0)) For each value of w > wf , the saddle equilibrium pr(w) has a one

dimensional unstable manifold Wu(pr(w)) which is composed of two orbits W r
−,W

r
+. For each w > wf , W

r
− is

given by a heteroclinic orbit φ(w) which crosses the set {v = vf} transversely and limits onto the stable equilibrium

p`(w) on the left branch C`0.

Taking ε = 0 in (3.2) results in the associated reduced problem

0 = g1(v, d, w, λ, 0)

0 = g2(v, d, w, λ, 0)

w′ = h(v, d, w, λ, 0),

(3.7)

which we assume satisfies the following.

Hypothesis 3. (Slow flow). The function h0(v, d, w) = h(v, d, w, 0, 0) satisfies

h0|C`0 < 0, h0|Cr0 > 0, h0(vf , df , wf) = 0. (3.8)

Finally we discuss the dynamics near the nonhyperbolic fold point F . We have the following (see Figure 4).

Hypothesis 4. (Normally attracting canard point) The point F is a normally attracting canard point, that is,

D(v,d)F (vf , df , wf , λ, 0) (3.9)

has one negative eigenvalue for λ ∈ [−λ0, λ0]. Therefore (3.1) admits a two-dimensional local center manifold

Wc(F), on which we assume the point F is a nondegenerate canard point with unfolding parameter λ in the

sense of [24, §3.1].

Hypothesis 4 implies the existence of a local invariant manifoldWc(F), foliated by one-dimensional strong stable

fibers. In a local coordinate system (x, y, z), where (x, y) parameterize the center manifold, and z parameterizes

the transverse direction (see Figure 6), after a suitable coordinate transformation, we arrive at the following

normal form for a canard point [24]

ẋ = −yh1(x, y, λ, ε) + x2h2(x, y, λ, ε) + εh3(x, y, λ, ε)

ẏ = ε (xh4(x, y, λ, ε)− λh5(x, y, λ, ε) + yh6(x, y, λ, ε))

ż = z (−k(λ) +O(x, y, z, ε))

(3.10)
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Figure 6: Shown is the setup for Hypothesis 4 in the local coordinates (x, y, z) for the normal form (3.10) for

ε = 0.

where k(λ) > 0, and the functions hj , j = 1, . . . , 6 are Cr and satisfy

h3(x, y, λ, ε) = O(x, y, λ, ε)

hj(x, y, λ, ε) = 1 +O(x, y, λ, ε), j = 1, 2, 4, 5.
(3.11)

By standard planar canard theory [25], this system admits a Hopf bifurcation at

λ = λH(
√
ε) = −1

2
KHε+O(ε3/2), (3.12)

where KH := ∂xh3(0, 0, 0, 0)+h6(0, 0, 0, 0), which can be either sub- or supercritical, depending on certain higher

order coefficients in (3.10); see [25, Theorem 3.1]. From this Hopf curve bifurcates a family of periodic orbits,

given by small amplitude canard cycles, which grow to small, but O(1) with respect to ε, size within the center

manifold Wc(F); this constitutes the so-called “local canard explosion” phenomenon. In particular, by taking

∆ > 0 sufficiently small, one can guarantee that for all sufficiently small ε > 0, this family of canard cycles leaves

a ∆-neighborhood of the fold point (v, d, w) = (vf , df , wf). However, this local result is restricted to those orbits

which are entirely contained in the center manifold Wc(F), and in particular does not extend to the region of

interest w > w0. To understand orbits which interact with the fast foci on C`0, we must understand the structure

of global canard orbits which leave Wc(F).

3.2 “Global” canard cycles

To construct global canard cycles, which are not fully contained in the center manifoldWc(F), we must examine

the flow away from the fold point, and in particular, the full three-dimensional nature of the flow becomes

important. We follow the procedure used in [2] for constructing such global canard orbits.

For w1, w2 > wf , we use the notation C∗0 [w1, w2], ∗ = `, r to denote the intersection

C∗0 [w1, w2] := C∗0 ∩ {w1 ≤ w ≤ w2}. (3.13)

For each w = w̄ > wf , we can construct a periodic orbit as a perturbation of the singular ε = 0 orbit γ0(w̄)

obtained by traversing the left critical manifold C`0[wf , w̄], continuing up the right critical manifold Cr0 [wf , w̄],

then jumping back across the heteroclinic orbit φ(w̄), completing a cycle; a corresponding canard orbit γ(w̄; ε)

for 0 < ε� 1 can be constructed by perturbing from this singular cycle and adjusting the parameter λ = λ(w̄; ε)

appropriately. We have the following.

10
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Figure 7: (a) Geometric setup for the construction of global canard orbits as in Theorem 3.1. (b) Setup for

matching conditions in the section Σ.

Theorem 3.1. ([2, §3]) Consider (3.1) under Hypotheses 1-4. Fix w̄m > wf and ∆ > 0 sufficiently small. There

exists ε0, η > 0, µ 6= 0, and a family of locally unique periodic orbits

{(γ(w̄; ε), λ(w̄; ε)) : w̄ ∈ (wf + ∆, w̄m), ε ∈ (0, ε0)} (3.14)

which is C1 in (w̄,
√
ε). The function λ(w̄; ε) satisfies

λ(w̄; ε) = λmc(ε) +O
(
e−η/ε

)
(3.15)

uniformly in w̄ ∈ (wf + ∆, w̄m) and ε ∈ (0, ε0) where

λmc(ε) = µε+O
(
ε3/2

)
. (3.16)

The orbit γ(w̄; ε) intersects the section {v = vf} at w = w̄ and is O(
√
ε)-close to the singular orbit γ0(w̄).

Remark 3.2. Due to local uniqueness, by taking ∆ > 0 sufficiently small, we can guarantee that for w̄ ≈
wf + ∆, the orbits γ(w̄; ε) coincide with those arising from the local canard explosion as in §3.1, forming a single

continuous branch originating at the Hopf bifurcation (3.12).

Remark 3.3. The function λmc(ε) which appears in the estimate (3.14) represents the location of the so-called

maximal canard orbit. All of the periodic orbits of Theorem 3.1 lie within an exponentially thin interval of this

value in parameter space.

The existence of the periodic orbits of Theorem 3.1 follows from the analysis in [2, §3.5]. However, below we

include a self-contained proof of Theorem 3.1 in order to explain the origin and geometry of the leading order

bifurcation equations, which will be essential in obtaining the formal asymptotic predictions in §4.

3.2.1 Setup for constructing global orbits

From standard results of geometric singular perturbation theory, away from the fold point, the normally hy-

perbolic branches Cr/`0 of the critical manifold perturb to one-dimensional slow manifolds Cr/`ε for sufficiently

11



small ε > 0. Furthermore, the three-dimensional stable manifold Ws(C`0) of the left branch perturbs to a locally

invariant three dimensional stable manifold Ws(C`ε) of the slow manifold C`ε. Similarly the two-dimensional sta-

ble/unstable manifolds Ws/u(Cr0) of the saddle manifold Cr0 perturb for small ε > 0 to two-dimensional locally

invariant stable/unstable manifolds Ws/u(Crε ) of the saddle slow manifold Crε .

Due to the existence of the heteroclinic orbits φ(w) ⊂ Ws(C`0) ∩Wu(Cr0) for ε = 0, away from the fold point F ,

tracking the unstable manifold Wu(Crε ) forwards, we note that Wu(Crε ) ⊂ Ws(C`ε).
To construct the orbits of Theorem 3.1, we consider a small one-dimensional manifold Γ0(w̄) lying entirely in

the plane w = w̄ which transversely intersects the heteroclinic orbit φ(w̄); see Figure 7a. This one dimensional

manifold therefore transversely intersectsWu(Crε ). To construct a periodic orbit which reaches w = w̄, we evolve

Γ0(w̄) under the forwards and backwards flow of (3.1), and search for intersections near the fold point F , through

a matching analysis using the local coordinates (x, y, z).

Under the forwards flow of (3.1), Γ0(w̄) is contracted exponentially close to the manifold C`ε, arriving in a small

neighborhood of the fold point. Under the reverse flow of (3.1), since Γ0(w̄) transversely intersects Wu(Crε ), by

the exchange lemma Γ0(w̄) traces out a two-dimensional manifold Γ̂0(w̄) which aligns O(e−η/ε)-close to Ws(Crε )

upon arriving in a neighborhood of the fold point, for some η > 0 fixed independently of ε.

3.2.2 Matching analysis near the canard point

We recall that the flow near the canard point is governed by (3.10) in the local (x, y, z)-coordinate system. We

fix a Poincaré section given by the set Σ := {x = 0} and proceed to define a suitable return map on this set in

order to construct canard cycles; see Figure 7b.

While the slow manifolds Cr/`ε themselves (in particular Crε ) cannot be tracked within a small neighborhood

of the fold point, due to the attracting direction transverse to the center manifold, the slow manifolds can be

tracked up to a small neighborhood of the fold, where they shadow basepoint solutions C`,base
ε and Cr,base

ε , which

lie on Wc(F). The behavior of these basepoint solutions can then be analyzed using standard planar canard

analysis [24, 25].

Within the center manifold, the shadowed slow-manifolds C`,base
ε and Cr,base

ε can be tracked down to the fold,

where they meet the section Σ within the subspace z = 0. The distance between these solutions can be measured

using blow-up analysis. In particular, via the blow-up transformation

x = r2x2, y = r2
2y2, λ = r2λ2, ε = r2

2. (3.17)

the manifolds C`,base
ε and Cr,base

ε reach Σ in the subspace z = 0 at y2 = y`2(λ2, r2) and y2 = yr2(λ2, r2), respectively;

further, we have that the distance between C`,base
ε and Cr,base

ε measured in the section Σ is given by the distance

function [24, Proposition 3.5]

y`2 − yr2 = D0(λ2, r2) = m1λ2 +m2r2 +O(r2
2 + λ2

2) , (3.18)

where the coefficients m1,m2 are constants, bounded away from zero independently of λ2, r2. Hence we can solve

for the existence of a maximal canard trajectory within Wc(F), corresponding to a zero of the distance function

D0(λ2, r2), which occurs when

λ2 = λmc
2 = µr2 +O(r2

2), (3.19)

where µ = −m2

m1
6= 0, and the corresponding λ value of λmc = r2λ

mc
2 ; see Figure 8.

Using these blow up coordinates, we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. In order to construct the desired family of periodic orbits, we determine appropriate

estimates on the return map Π : Σ → Σ applied to Γ(w̄). We first note that by the discussion above, the

12
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Figure 8: Splitting of the manifolds C`,base
ε and C`,base

ε in the center manifold Wc(F).

manifolds C`,base
ε and Cr,base

ε intersect Σ at

C`,base
ε : (y, z) = (y`2, 0)

Cr,base
ε : (y, z) = (yr2, 0).

(3.20)

Next, we consider the backwards evolution of the set Γ0(w̄). As already mentioned, because Γ0(w̄) transversely

intersects Wu(Crε ), by the exchange lemma Γ0(w̄) traces out a two dimensional manifold Γ̂0(w̄) which aligns

exponentially close to Ws(Crε ), and hence transversely intersects the center manifold Wc(F). Thus in backwards

time, Γ̂0(w̄) aligns exponentially close to the strong stable fibers of a basepoint solution on Wc(F) which is

exponentially close to Cr,base
ε upon arrival in the section Σ.

Hence Γ̂0(w̄) intersects Σ in a curve Γ(w̄) which can be represented as a graph over z for |z| ≤ ∆, for some ∆ > 0

Γ(w̄) : y2 = yΓ(z; w̄), |z| ≤ ∆ (3.21)

where

yΓ(0; w̄) = yr2 +O(e−η/ε), (yΓ)′(0; w̄) = O(e−η/ε). (3.22)

We now consider the image of Γ(w̄) under the return map Π. In forwards time, Γ(w̄) is contracted exponentially,

occupying an exponentially thin interval within the original manifold Γ0(w̄), which is then itself exponentially

contracted to C`ε, and hence arrives back in Σ in a curve Π(Γ(w̄)) which is contracted exponentially close to

C`,base
ε . We parameterize this curve by |s| ≤ ∆ where s denotes the initial z-coordinate of a point on Γ(w̄) within

the section Σ before applying the map Π. Hence Π(Γ(w̄)) is given by

Π(Γ(w̄)) : (y2, z) = (yΠ(s; w̄), zΠ(s; w̄)) |s| ≤ ∆ (3.23)

where

yΠ(s; w̄) = y`2 +O(e−η/ε), zΠ(s; w̄) = O(e−η/ε) (3.24)

uniformly in s, w, λ2, and the derivatives of these functions with respect to s, w, λ2 satisfy the same estimates.

To find a periodic orbit, we search for a fixed point of Π on the set Γ(w̄), that is, we search for a value of |s| ≤ ∆

such that

yΓ(zΠ(s; w̄); w̄) = yΠ(s; w̄). (3.25)

Using the estimates (3.22) and (3.24), we can write this as

0 = yΠ(s; w̄)− yΓ(zΠ(s; w̄); w̄)

= y`2 +O(e−η/ε)− yr2 +O(e−η/ε)

= D0(λ2, r2) +O(e−η/ε),
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where D0 is as in (3.18) which can be solved for

λ2 = λ2(r2; w̄) = λmc
2 +O(e−η/ε) = µr2 +O(r2

2), (3.26)

by the implicit function theorem, where we recall that λ = r2λ2, where r2 = ε1/2. This gives the value of

λ(w̄; ε) = r2λ2(r2; w̄) for which there exists a canard cycle, which we call γ(w̄; ε), which reaches w = w̄.

Remark 3.4. We note that the above procedure for constructing O(1) canard orbits can be employed for more

general situations, beyond the case in which the critical manifold has the parabolic shape as depicted in Figure 4.

For instance, in the case of a cubic critical manifold, as in the FitzHugh–Nagumo system (2.2), Theorem 3.1

applies directly to the construction of the so-called canard orbits “without head”, but does not include the canard

orbits “with head”, which traverse the right saddle branch and upper right fold point before returning to the

canard point along the left saddle branch. These can, however, be constructed similarly by choosing an appropriate

interval of initial conditions, and showing that any exponential expansion along the right slow manifold is balanced

by contraction along the left slow manifold; see [5, §4] for a similar construction.

4 Wiggly canard explosion and asymptotic predictions

In this section, we use the analysis in §3.2 to make predictions about the appearance of wiggles, or folds, in

the continuation of canard orbits from Theorem 3.1 in the bifurcation parameter λ. We begin with a discussion

in §4.1 of the asymptotics of the parameter λ itself as well as a condition which predicts the appearance of folds.

We then consider the asymptotics of the distance between successive folds in §4.2–4.3.

4.1 λ-aymptotics

In §3.2, for sufficiently small ε > 0, we showed that for each w̄ > wf , there exists a locally unique λ = λ(w̄; ε)

and corresponding periodic orbit γ(w̄; ε) which reaches w = w̄. We now aim to determine the asymptotics of

λ(w̄; ε) as ε→ 0, in particular with respect to wiggling.

To do this, we consider the intersection of γ(w̄; ε) with the set {v = 0} for a range of w̄ > wf ; this forms a curve,

which we call Λ; see Figure 9. We now consider the backward evolution of Λ, which meets the section Σ in a

curve Λstart, as well as its forward evolution, which meets the section Σ in a curve Λend. When λ = λ(w̄; ε), we

have a fixed point along the orbit γ(w̄; ε) which lies on the intersection of Λstart and Λend within the section Σ.

As λ(w̄; ε) adjusts for increasing w̄, this fixed point travels deeper into the spiral; see Figure 9.

We now recall the local coordinates (y2, z) used for matching in §3.2.2. In these coordinates, we have that the

curves Λstart,Λend can be parameterized by w̄:

Λstart : (y2, z) = (ystart, zstart)(w̄)

Λend : (y2, z) = (yend, zend)(w̄),
(4.1)

and when λ = λ(w), we have that ystart(w̄) = yend(w̄), which means

0 = ystart(w̄)− yend(w̄)

= y`2 + (ystart − y`2)− yr2 + (yr2 − yend)

= D0(λ2, r2) + (ystart − y`2) + (yr2 − yend).

We recall that that D0(λ2, r2) = 0 (i.e. the maximal canard occurs) when λ2 = λmc
2 . We now set λ2 = λmc

2 + λ̃,

and expand

D0(λmc
2 + λ̃, r2) = m1λ̃+O(λ̃2, r2λ̃) (4.2)
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Figure 9: Shown is the forward/backward evolution of the curve Λ along the manifolds C`,rε . The right panel

shows the forward and backwards intersections Λstart,Λend of Λ with the section Σ. The rotation along the left

branch is accumulated in the region w > w0 where the fast dynamics along C`ε are oscillatory.

From this, we deduce that the orbit γ(w̄; ε) occurs for the value of λ̃ = λ̃(w̄) satisfying

0 = m1λ̃+O(λ̃2, r2λ̃) + (ystart − y`2) + (yr2 − yend), (4.3)

with λ(w) = r2(λmc
2 + λ̃(w̄)). In this sense λ̃(w̄) captures the deviation from the maximal canard value which is

required to attain the periodic orbit γ(w̄; ε). In order to satisfy (4.3), we see we must have

λ̃(w̄) ∼ (y`2 − ystart)︸ ︷︷ ︸
I`

+ (yend − yr2)︸ ︷︷ ︸
Ir

, (4.4)

and we would like to understand the dependence of this expression on w̄.

We note that the first term I` captures the distance from C`,base
ε , while the second term Ir measures the distance

from Cr,base
ε . Furthermore, the second term, which represents the contraction along Crε in backwards time, is

monotone in w̄. The first term, representing the contraction along C`ε is similarly monotone for small values

of w̄, but then transitions to oscillatory behavior for values of w̄ > w0 due to the accumulated rotation along

C`ε. Depending on which of these terms is dominant, we either expect to see oscillatory (wiggly) or monotone

bifurcation diagrams for the associated canards.

To see this, we note that each branch of the critical manifolds C`/r0 has an associated reduced flow, obtained by

implicitly solving for (v, d) as functions of w and plugging into the reduced equation (3.7), resulting in reduced

equations which we denote by

w′ = h`(w, λ) (4.5)

along C`0, and by

w′ = hr(w, λ) (4.6)
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along Cr0 . We define for w > wf the quantities

R`(w) =

∫ w

wf

Re ν+
` (s)

h`(s, λ)
ds

Rr(w) =

∫ w

wf

ν+
r (s)

hr(s, λ)
ds

(4.7)

where ν+
` , ν

+
r are as in Hypothesis 1. For the term Ir, the contraction along Crε in backwards time is approximately

(yend − yr2) ∼ exp

(
−Rr(w̄)

ε

)
(4.8)

while for I`, ignoring any rotation, the contraction along C`ε in forwards time is approximately

(y`2 − ystart) ∼ exp

(
−R`(w̄)

ε

)
. (4.9)

We make the following assumption

Hypothesis 5. There exists w2 > w1 ≥ w0 such that Rr(w̄) > R`(w̄) for w̄ ∈ (w1, w2), where Rr(w̄), R`(w̄) are

given by (4.7).

Remark 4.1. If the term Ir dominates, that is R`(w̄) > Rr(w̄), so that

λ̃(w̄) ∼ (yend − yr2), (4.10)

then λ̃(w̄) is to leading order monotone and exponentially decaying. In particular, we do not expect to see

sequences of folds in the associated bifurcation diagram.

Under Hypothesis 5, for values of w̄ ∈ (w1, w2), the term I` dominates, so that

λ̃(w̄) ∼ (y`2 − ystart). (4.11)

This separation function oscillates for values of w̄ > w0, and we anticipate the appearance of folds as λ̃(w̄) snakes

back and forth, with an exponentially decaying “fold envelope” (see Figure 10), which is given to leading order

by

|λ(w̄; ε)− λmc| = |ε1/2λ̃(w̄)| ∼ ε1/2 exp

(
−R`(w̄)

ε

)
. (4.12)

To determine the amount of rotation which occurs, we consider in more detail the passage near the slow manifold

C`ε, and in particular we assume that w̄ > w0, since any rotation that occurs must occur in the region w > w0;

see Figure 9. We recall from Hypothesis 1 that for w > w0, ν+
` (w) = −α(w) + iω(w), and hence after a linear

change of coordinates, at the linear level the flow near C`ε takes the form

ẋ1 = −αx1 + ωx2

ẋ2 = −ωx1 − αx2

ẇ = εh`(w, λ)

(4.13)

or, in polar coordinates

ṙ = −αr
θ̇ = ω

ẇ = εh`(w, λ).

(4.14)
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Figure 10: Schematic wiggly canard bifurcation diagram of fast jump height w̄ versus λ. The fold envelope and

distance between successive folds are given by (4.12) and (4.20), respectively.

The change in θ over the interval w ∈ (w0, w̄) is given by

|∆θ| ∼ 1

ε

∣∣∣∣
∫ w̄

w0

ω(s)

h`(s, λmc)
ds

∣∣∣∣ . (4.15)

We expect a fold, or wiggle, to occur whenever θ crosses kπ for k ∈ N, and hence the number of folds Nwiggle is

asymptotically

Nwiggle ∼
1

πε

∣∣∣∣
∫ w̄

w0

ω(s)

h`(s, λmc)
ds

∣∣∣∣ . (4.16)

4.2 Fold asymptotics for N ∼ O(1/ε)

Based on the analysis in the previous section, we expect that the Nth fold occurs at the value w = wN defined

implicitly by the relation

N =
1

πε

∣∣∣∣
∫ wN

w0

ω(s)

h`(s, λmc)
ds

∣∣∣∣ , (4.17)

with the λ-value determined via the scaling

|λ(wN )− λmc| ∼ ε1/2 exp

(
−R`(wN )

ε

)
. (4.18)

It’s important here that N ∼ O(1/ε), in order for the first relation (4.17) to hold. In particular, this implies

that wN > w0 + ∆w for some ∆w > 0 fixed independent of ε, and that the distance between consecutive folds

satisfies wN+1 − wN ∼ O(ε). In fact we can compute this quantity to leading order by solving

(N + 1)−N = − 1

πε

∫ wN+1

wN

ω(s)

h`(s, λmc)
ds, (4.19)

from which we obtain

wN+1 − wN = −πh`(wN , 0)

ω(wN )
ε+O(ε2). (4.20)
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To determine the scaling ratio of λ between consecutive folds as ε→ 0, we compute the quantity

log

( |λ(wN+1)− λmc|
|λ(wN )− λmc|

)
∼ R`(wN )−R`(wN+1)

ε

=
1

ε

∫ wN+1

wN

α(s)

h`(s, λmc)
ds

=
(wN+1 − wN )

ε

(
α(wN )

h`(wN , 0)
+O(ε)

)

= −πα(wN )

ω(wN )
+O(ε)

(4.21)

where we used (4.20) in the last equality.

4.3 Fold asymptotics for N ∼ O(1)

If we instead let ε→ 0 for fixed N , all of the oscillations around the slow manifold C`ε occur nearby the critical

node-to-focus transition at w = w0. Here the frequency of oscillation around C`ε is small, i.e. not O(1) in ε, so

the distance between wiggles cannot be computed to leading order using the integral of the frequency ω(w) as

in the previous subsection, and we must analyze the more delicate dynamics in a neighborhood of the so-called

Airy point.

Near the critical node-to-focus transition in the fast dynamics along the slow manifold C`0 at (v, d, w) = (v0, d0, w0),

without loss of generality the system can be transformed to the system [3, 5]

˙̃v = d̃+ h.o.t.

˙̃
d = w̃ṽ + h.o.t.

˙̃w = εκh`(w0, 0) + h.o.t.

(4.22)

where

e
trA
2 t



ṽ

d̃


 =




1

a12
0

a11 − a22

2
1






v − v0

d− d0


+ h.o.t.

w̃ = κ(w − w0) + h.o.t.

(4.23)

and

κ =
∂

∂w

(
(trA)

4

2

− detA

)∣∣∣∣∣
w=w0

(4.24)

where the matrix A is the linearization of the fast subsystem

A =



a11 a12

a21 a22


 = D(v,d)F (v, d, w, 0, 0)

∣∣
(v,d)=(v0,d0)

. (4.25)

Ignoring higher order terms, and solving for w̃ in terms of t, we obtain the leading order equation for ṽ

¨̃v = εκh`(w0, 0)tṽ (4.26)

which admits two linearly independent solutions in terms of Airy functions Ai,Bi, which can be re-expressed in

terms of the variable w̃ (note h` < 0) as

ṽ1(w̃) = Ai

(
− w̃

(εκh`(w0, 0))
2/3

)

ṽ2(w̃) = Bi

(
− w̃

(εκh`(w0, 0))
2/3

)
.

(4.27)
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Based on the analysis in [5], one expects that turning points of λ corresponding to wiggles are related to zeros

of the Airy function Ai. In particular, noting (4.21), the distance between successive wiggles is related to the

difference wN+1 − wN between the w-coordinates of the corresponding fast jump traversed by the canard orbit

in question. For those orbits whose fast jump occurs near w = w0, that is, near the Airy point, the difference

wN+1 − wN should be given in terms of the distance between successive zeros of Ai.

Letting Jk < 0 denote the zeros of Ai with |J1| < |J2| < . . .. Using the scaled variable in (4.27), zeros occur

whenever

w̃ = − (εκh`(w0, 0))
2/3

Jk (4.28)

for some k. Using the fact that w̃ = κ(w − w0) + h.o.t. , we can express the difference

wN+1 − wN =
(εh`(w0, 0))

2/3

κ1/3
(JN − JN+1) + h.o.t. (4.29)

We can see from this expression that the distance between the jump heights of successive folds scales to leading

order as ε2/3, in contrast to the O(ε)-scaling from (4.20). Proceeding similarly as in §4.2, we substitute (4.29)

into (4.21) and find that

log

( |λ(wN+1)− λmc|
|λ(wN )− λmc|

)
∼ R`(wN )−R`(wN+1)

ε

=
(wN+1 − wN )

ε

(
α(w0)

h`(w0, 0)
+O(ε)

)

= − α(w0)

(εκh`(w0, 0))
1/3

(JN+1 − JN ) + h.o.t.

(4.30)

5 Numerical examples

The first numerical example is a synthetic one that is designed to mirror the analysis in the preceding two

sections, where the C`,r0 extend to infinity. The second example is the FitzHugh-Nagumo travelling wave system

that was our original motivating example. All numerical computations are carried out in Auto [11].

5.1 A synthetic example system

We consider the following two fast / one slow system inspired by the previous analysis

v̇ = A(v; ε, ϕ, δ, ) + s−ε (v;ϕ)d− w
ḋ = −d+ s−ε (v;ϕ)νB(v;ϕ,ψ)

ẇ = ε(v + λ)

(5.1)

where

A(v; ε, ϕ, δ) = v2[−s−ε (v, ϕ)− s+
ε (v, ϕ)]− s−ε (v;ϕ)[v + ϕ− ϕ2] + s+

ε (v;ϕ)[δv + ϕ2 − δϕ],

B(v;ϕ,ψ) =
v2

2
+ (1 + ψ)v +

1

2
(1 + 2ψ)ϕ2

and s±ε (v;ϕ) are smoothed out versions of cut-off functions that switch for on for |x| > ϕ, for a positive parameter

ϕ:

s+
ε (v;ϕ) =

1

2

[
1− tanh

(
v + ϕ

ε

)]
, s−ε (v;ϕ) =

1

2

[
1 + tanh

(
v − ϕ
ε

)]
,

for a small parameter 0 < ε� 1. The other parameters ψ, ε, δ, λ and ν are all assumed to be positive. Here ε

and λ play the same role as in the analysis. The model is constructed in such a way that it is of the form (3.10)
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Figure 11: (Left) Results of one-parameter continuation in λ of periodic orbits of the synthetic example (5.1) for

δ = 2 and ε = 0.1. (Right) orbits at each of the fold points in the left-hand panel.

Figure 12: Similar to Fig. 12 but for δ = 0.5 and ε = 0.02. The orbits in the right-hand plot are depicted for

even increments in period between 60 and 120.

for small (d, v, w) = (x, z, y) and that the critical manifold is analytic for all ε > 0 and is continuous for ε = 0.

Specifically, for ε = 0, then for x > ϕ, the left and right-hand portions of the critical manifold are such that w is

a linear function of v and of slopes −1 and δ, respectively and the linearisation of the fast flow about them has

eigenvalues that are precisely

C` : −1±√ν
√

(1 + ψ)ϕ+ v Cr : −1, δ.

Thus, for δ > 1 we should expect folds on the branch of periodic orbits born at the Hopf bifurcation point, as it

approaches the canard cycle, and for δ < 1 we should not expect any. This is precisely what we see.

The numerical experiments are carried out for

ψ = 0.2, ε = 0.01, ϕ = 0.1, ν = 50, (5.2)

and δ = 2 or δ = 0.5 with λ and ε as bifurcation parameters.

Note that in the notion of (4.14) we have for v < −(1 + ψ)ϕ that

α = 1, ω = ν
√
−v − (1 + ψ)ϕ =

√
−50v − 6, h` = (v + λ),

and that Airy point occurs for v = −(1 + ψ)ϕ = −0.12, for the parameter values chosen.
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N wN+1 − wN −επh`/ω abs. error log

( |λ(wN+1)− λmc|
|λ(wN )− λmc|

)
theory

2 0.007800 0.009120 0.297041 -3.134495 -3.312145

3 0.007810 0.008331 0.143856 -2.766146 -2.914168

4 0.007659 0.007844 0.088228 -0.752243 -2.656183

Table 1: Computation versus asymptotic prediction for wN+1−wN for the explicitly constructed model for δ = 2

and ε = 0.02.

N wN+1 − wN −επh`/ω abs. error log

( |λ(wN+1)− λmc|
|λ(wN )− λmc|

)
theory

2 0.010474 0.013585 0.229015 -2.670591 -3.312145

3 0.010851 0.012412 0.125764 -2.500844 -2.914168

4 0.010742 0.011690 0.081075 -1.963004 -2.656183

5 0.010570 0.011208 0.056862 -2.607696 -2.474712

6 0.010398 0.010861 0.042625 0.821494 -2.338275

Table 2: Computation versus asymptotic prediction for wN+1−wN for the explicitly constructed model for δ = 2

and ε = 0.03.

Now, on C` we can express w = −v − ϕ+ ϕ2 + νB(v;ϕ,ψ), which can be inverted to give

v = −(ψ + 1)ϕ−

√
1 + ψ2ϕ2ν2 + (2w − 2ϕ(1 + ψ))ν

ν
= − 1

10
−
√

100w − 1

50

for the parameter values (5.2).

Therefore we have

ω(w) =

√
−1 +

√
100w − 1, and

h`(w, λ)

ω(w)
=

50λ−
√

100w − 1− 5

50
√
−1 +

√
100w − 1

(5.3)

Using these values we have used Auto to compute curves of folds along the path of periodic orbits emanating

from the Hopf bifurcation. The results are plotted in Figs. 11–13. Specifically, Fig. 11 is consistent with the

theory that there should be a finite number of folds along the periodic orbit branch for δ > 1, whose λ-values

converge to that of the canard cycle as the amplitude of the cycle grows in amplitude. In contrast, Fig. 12, which

is for δ < 1, suggests an eventually monotonic convergence in parameter to the canard value.

Figure 13 shows the result of continuing the first seven folds depicted in Fig. 11 in ε and λ. The left-hand end

of each branch for small ε is where that fold can no longer be reliably computed owing to it being exponentially

close to λmc. Note that the chosen values of ε are not particularly small, O(10−2), but there is a compromise in

the numerical computations between choosing an ε-value that is small enough for the theory to apply, but large

enough that sufficiently many folds can be accurately computed. Note from the three zooms of the curves in the

(ε, λ)-plane just how rapid this convergence is, even for these moderate ε-values.

For each of ε = 0.02 and 0.03 we use the maximum value of w along the orbit at the Nth fold as a proxy for wN

and compute the theoretical limit in the case N ∼ O(1/ε) (4.20) for wN+1−wN for small ε using the computed

value of λ and (wN + wN+1)/2 in (5.3). The results are shown in the first four columns of Tables 1 and 2 for
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Figure 13: (Top) 2-parameter continuation of folds of solutions in Fig. 11. (Bottom) two successive zooms of the

data in the top right plot
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Figure 14: Computed differences in w-values of successive folds as a function of ε, plot on a log-log scale. Also

plotted for reference are straight lines with slopes 1 (dashed line) and 2/3 (dotted lines).

ε = 0.02 and 0.03, respectively. In both cases we see that there is a good agreement with the theoretical result,

even for these moderate values of ε and N . We note too that the agreement gets better as N increases.

Next we consider numerical evidence for the exponential convergence of the λ-values of the folds according to

(4.21) under the assumption that N = O(1/ε). Here we compute an estimate for λmc by computing the vertical

asymptote of the numerically computed branch of periodic orbits. Note from the final two columns of Tables 1

and 2 that the computed logarithm is close to that predicted in theory, except for the largest N for which we

have computed a fold. This final discrepancy due to the difference between the fold and the maximal canard

parameter values being close to the order of the numerical precision.

Finally, we deal with the distinction between the two asymptotic estimates in ε, (4.20) and (4.29), for the values

wN in the two cases N ∼ O(1) and N ∼ O(1/ε), respectively. Figure 14 shows the computed difference between

successive w-values of

∆N = wN+1 − wN
as a function of ε for the first few computed folds along the wiggly canard.

While the evidence is far from definitive, as one would expect for the moderate values of ε we were reliably able

to compute folds for, Figure 14 provides persuasive numerical evidence that the asymptotic estimates (4.20) and

(4.29) are obeyed for this example. In particular the theory would predict that the first ’few’ values of ∆N —

say, for N < N0 for some N0 > 0 — should scale like ε2/3 as ε → 0, with the remaining ones scaling like ε.

Moreover the number N0 increases approximately linearly with ε. Thus, each curve of ∆N versus ε should have

slope that approaches 1 on a log-log scale for large ε and approaches 2/3 on a log-log scale as ε→ 0. Moreover,

the transition between the two scaling laws should occur for lower ε with each higher N . A comparison with lines

of slopes 1 and 2/3 in the figure, strongly suggest that such a transition between the two asymptotic estimates

indeed occurs in this example.

5.2 The FitzHugh–Nagumo equations

We now return to the FitzHugh–Nagumo equations (2.2). Based on the discussion in §2, it is not difficult to

see that for λ = p = 0, and 0 < s <
2D√

3
, the system (2.2) satisfies Hypotheses 1–4 under the reversal ξ → −ξ;

see, for instance [4] for details on the structure of the fast layer problem (2.3) and the canard dynamics near the
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Figure 15: Results of continuation of folds in the FitzHugh–Nagumo system (2.2) for γ = 0, s = 0.65. Top left:

Plot of L2-norm versus the parameter λ for the canard explosion of traveling wavetrains in (2.2) for ε = 0.005.

Shown in the inset is a zoom of the location of the first (highest) six folds. Top right: Plotted is the jump height

w̄ of the first six folds for decreasing ε. Bottom panels: Plotted are the differences between the jump heights of

successive folds for decreasing ε as a standard plot (left) and log-log plot (right).

equilibrium (v, d, w) = (0, 0, 0). Here C1
0 and C2

0 play the roles of the manifolds Cr0 and C`0, respectively (note that

the left/right orientation of C1
0 and C2

0 in Figure 3 is flipped compared to that of Cr0 and C`0 in Figure 4).

As described in §2, and by the theory in §3, the local canard explosion in (2.2) originates at a singular Hopf

bifurcation, after which the canard orbits grow to O(1) size, and then continue to grow in an exponentially thin

interval in the parameter λ. The upper part of the bifurcation branch (corresponding to the canard cycles “with

head”) exhibits several folds, and the six uppermost folds are labelled in the upper left panel of Figure 15. There

is in fact one additional fold “higher up” visible along the canard explosion branch; however this fold appears

in the regime of relaxation oscillations and does not arise from the same mechanism which produces each of the

others, so we ignore it for the purposes of the current discussion.

The number of such folds associated with canards-with-head grows in ε, but folds cannot be reliably continued

along the lower part of the branch, in the region of canards-without-head. We offer an explanation for this

discrepancy, based on the theory in §4. In particular, we show that Hypothesis 5 is satisfied along the portion

of the branch corresponding to canards-with-head, but not for the canards-without-head.

To see this, we briefly describe the difference in geometry of each of these orbits. The canards without head, are

formed by traversing the left branch C1
0 of the critical manifold, followed by the middle branch C2

0 , then traversing

a fast jump back to C1
0 to complete a closed orbit, much like the geometry of the general system in Sec. 3.2.

However, the canards-with-head have a different geometry, in that the orbit first traverses the left branch C1
0 ,

followed by the middle branch C2
0 , then a fast jump to the rightmost branch C3

0 , and finally a second jump back
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to C1
0 near the upper right fold point.

In each case, one could anticipate the appearance of snaking canards with an increasing number of folds as ε→ 0,

as both the canards with head and those without each traverse an orbit segment connecting C1
0 to the middle

branch branch C2
0 , a portion of which satisfies Hypothesis 1. In particular, based on the discussion in §2, we have

that any canard orbit which passes near the portion of C2
0 lying between v− < v < v+ will experience rotation

due to the focus structure of the layer equation, and the corresponding canard explosion branch may exhibit

snaking. It is clear that this is the case for the canards with or without head, provided that the jump height w̄

from the middle branch (to either C1
0 or C3

0), satisfies f(v−; 0) < w̄ < f(v+; 0).

In this setting, we expect snaking behavior to occur provided Hypothesis 5 is satisfied. However, this hypothesis

has a different meaning for the canards with versus without head. For those without head, this hypothesis can

be checked directly as in §4, i.e. we need to compare the relative contraction rates along the manifolds C1
0 and

C2
0 between w = 0 and the jump height w = w̄.

To compute the relevant quantities Rr(w̄) and R`(w̄), we recall the reduced equations for the FitzHugh–Nagumo

system (2.5), given by

w′ =
1

s
(v − γw) (5.4)

where f(v;λ) = w on the slow manifold. For values of w in between the two fold points, there are three solutions

of the equation f(v;λ) = w, given by vi(w), i = 1, 2, 3 corresponding to the three branches Ci0, i = 1, 2, 3 of the

critical manifold C0. In the limit ε → 0, we can evaluate Rr(w̄) and R`(w̄) more naturally parameterizing the

slow flow by the v coordinate, whence we obtain

v′ =
(v − γf(v; 0))

sf ′(v; 0)
. (5.5)

We note that in the case of FitzHugh–Nagumo system, the middle branch is repelling, so we must compare the

expansion along C2
0 , expressed by the real part of the eigenvalue ν+(v) given in (2.7), with the contraction along

C1
0 , expressed by the eigenvalue ν−(v) given in (2.7). We can then express the quantities Rr(w̄) and R`(w̄) as

R`(w̄) =

∫ v2(w̄)

0

sf ′(v; 0) Re ν+(v)

(v − γf(v; 0))
dv, Rr(w̄) =

∫ v1(w̄)

0

sf ′(v; 0)ν−(v)

(v − γf(v; 0))
dv (5.6)

Figure 16 depicts the difference R`(w̄)−Rr(w̄) (blue curve) as a function of w̄. It is apparent that this quantity

is briefly positive, then becomes negative at approximately w̄ ≈ 0.039, so that Hypothesis 5 is satisfied for values

of w̄ > 0.039.

However, in the case of canards with head, while the contraction along C2
0 is computed similarly as in the previous

case, the portion of the orbit spent near C1
0 is longer, and the relevant contraction rate must be computed between

w = 0 and w = w∗, where w∗ is the height of the second jump, back to C1
0 near the upper fold point. This means

that the contraction along C1
0 is “amplified” compared with the previous case, and we must replace Rr(w̄) with

Rr(w∗). In the limit ε→ 0, the height w∗ of this second jump can be found by searching for a heteroclinic orbit

φ31 the layer problem 2.3 for the parameter values D = 1, p = λ = 0, and s = 0.65 which connects the right

branch C3
0 of the critical manifold to the left branch C1

0 . A computation shows that this occurs when

w∗ := f

(
1

3
+

√
2

3
s; 0

)
≈ 0.147 (5.7)

Figure 16 depicts the difference R`(w∗)−Rr(w̄) (red curve) as a function of w̄, which is clearly negative on the

entire interval, so that Hypothesis 5 is satisfied for all w̄ < w∗. Furthermore, using the condition (2.11), we

compute that layer problem for D = 1, λ = 0, s = 0.65, the Airy point at which the fast dynamics in the layer
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Figure 16: Shown is the way-in-way-out function given by the difference R`(w∗)−Rr(w̄) (red) plotted versus w̄

for the case of canards with head, as well as the difference R`(w̄)−Rr(w̄) (blue) in the case of canards without

head. In the latter case, the quantity R`(w̄)−Rr(w̄) is briefly positive between w̄ = 0 and w̄ ≈ 0.039.

problem switches from node to focus along the middle branch C2
0 occurs for w ≈ 0.0031, so that oscillations (and

corresponding snaking) can occur for any orbits with jump height w̄ > 0.0031.

The effect of this discrepancy in the way-in-way-out computation for the canards with versus without head is

that for the canards without head, the potential snaking region only begins for orbits at a jump height w̄ > 0.039.

These orbits experience a much larger exponential contraction (in reverse time) along the branch C2
0 and thus

any oscillations (and the corresponding fold envelope (4.12)) which occur along this branch will be exponentially

“squeezed” compared to those in the case of the canards with head, which occur for orbits with jump height of

only w̄ > 0.0031. Figure 17 depicts the convergence of the jump heights as ε → 0 for the canards with head,

which approach the Airy point at w̄ ≈ 0.0031.

In summary, based on the formal computations in §4, for the parameter values s = 0.65, γ = 0, D = 1 and

sufficiently small ε > 0, we predict the appearance of snaking along the canard explosion in (2.2), although any

snaking along the portion of the branch corresponding to canards without head will be exponentially suppressed

(and thus much more difficult to detect numerically) than the snaking which occurs along the portion containing

canards with head.

This explains why the upper left panel of Figure 15 depicts visible snaking along the upper portion of the branch,

but not along the lower portion. Figure 15 also shows the results of continuing the six highest folds in AUTO

for decreasing ε. Due to the exponentially small variance in the location of the folds as ε→ 0, AUTO becomes

unreliable for small ε, particularly for folds of higher index (hence the different ending points of each branch).

Also depicted are the jump heights w̄ of the canard orbits associated with each fold, as well as the differences

between successive jump heights of neighboring folds, plotted in both a standard and log-log plot. We can see

convergence of the latter plot towards what appears to be a common curve, though it was difficult to resolve

the folds numerically for any smaller values of ε. Also plotted are lines of slope 1 (dashed) and 2/3 (dotted);

we observe that for smaller values of ε, the slope of the ∆1 curve dips noticeably below 1, as the jump height

approaches the critical height of the Airy point along C2
0 , where the results of §4.3 imply that the difference

between the jump heights of successive folds increases from O(ε) to O(ε2/3).
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Figure 17: Shown are orbits in (v, w)-space along the continuation of the fold LP1 for values of ε =

{0.005, 0.004, 0.003, 0.002, 0.001} (blue, red, yellow, purple, green). The dashed black line denotes the location

of the Airy transition at w ≈ 0.0031.

6 Conclusion

This paper has provided a generic analysis of canard growth in singularly perturbed systems of ODEs with two

fast variables and one slow when the linearization around one portion of the slow manifold is of focus type. We

show that under a sign condition on the relative closeness to the imaginary axis of the eigenvalues governing

the flow close to the attracting and repelling parts of the slow manifold, that the canard growth of a limit

cycle is accompanied by a sequence of fold bifurcations. The overall effect is to see a the wiggly bifurcation

curve of periodic orbits, which is reminiscent of that close to a Shilnikov homoclinic orbit under an analogous

sign condition. Here though, it is the amplitude rather than the period of the periodic orbit that grows as the

bifurcation curve traverses a sequence of folds. In the present context though, for each finite value of the singular

parameter ε, there are at most finitely many folds. Nevertheless the asymptotic scaling of the folds as the number

of folds become large is remarkably similar to that close to a Shilnikov homoclinic orbit (cf. (1.1) and (4.21)).

Our numerical explorations in §5.2 confirmed this qualitative behavior in the FitzHugh–Nagumo system (2.2),

demonstrating the appearance of this family of folds, and also providing an explanation for the observation that

the folds are more pronounced along the portion of the canard explosion corresponding to the canards “with

head”.

We believe our results go a long way to explaining previous results that showed a seemingly wiggly canard-like

growth in a number of systems, starting with the second author’s PhD thesis, which considered a fluid-forced

double pendulum system, see [7]. They also provide explanation for how a sequence of folds accompany the

canard-like growth exhibited along a branch of traveling pulses in (2.1), as studied in the PhD thesis of the first

author, some 20 years later, see [5]. In both these models, there is also numerical evidence that the same wiggly

canard process accounts for the mechanism by which mixed-mode periodic waves grow additional large-amplitude

pulses.

To point to possible future work that extends the results here to explaining such spike-adding, we briefly present

further numerical continuation results of the branch of wave-trains in the FitzHugh-Nagumo system, beyond the

initial canard explosion. By shrinking ε slightly to ε = 0.001, we find that the behavior of this branch depends

critically on the value of the wave speed s; see Figure 18 which depicts the canard explosion branch for ε = 0.001

for values of s = 0.72 and s = 0.65. In the former case, the canards grow into a family of relaxation oscillations

which continues indefinitely, while in the latter case, the branch folds back and undergoes successive canard
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Figure 18: Canard explosion in the FiztHugh–Nagumo equation (2.2) for ε = 0.001 in the case s = 0.72 (left) and

s = 0.65 (right). In the latter case, the canard explosion does not result in a family of relaxation oscillations, but

rather a continuous spike-adding sequence through which additional large amplitude oscillations are accumulated

via repeated canard explosions. The inset shows a zoom of this family of canard explosions along the upper

portion of the branch.
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Figure 19: Shown is a plot of period versus λ for the canard explosion in the case ε = 0.001, s = 0.65 as in

Figure 18. Five v-profiles with 1, 3, 5, 7, and 9 spikes, respectively, are plotted at various points along the spike

adding branch.
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explosions, each of which adds an additional large-amplitude spike to the wave train pattern. Figure 19 depicts

the profiles of the resulting wave trains.

To understand this discrepancy, we return to the layer problem (2.3). It can be shown [5, 6] that for λ = 0 the

front φ31 only exists for values of s < 1/
√

2 for a critical height w∗ = w∗(s) (and a similar statement holds for

φ13). On the other hand, for values of s ≥ 1/
√

2, the fronts φ21 and φ23 exist for all values of w between the two

fold points, and critical fronts φf3 and φf1 exist which connect the lower left fold (resp. upper right fold) to the

branch C3
0 (resp. C1

0).

Provided ε > 0 is taken sufficiently small, the result of this difference in the geometry of the associated wave

trains is that for values of s ≥ 1/
√

2, the canard explosion grows into the family of relaxation oscillations formed

by orbits which traverse C1
0 and C3

0 , jumping between these branches precisely at the fold points. However for

values of s slightly below 1/
√

2, because the fast jumps φ31 and φ13 do not exist precisely at the fold points,

the resulting gap allows the branch to fold back on itself and undergo an additional canard explosion, growing

a secondary large amplitude excursion. This process appears to repeat indefinitely; this in contrast to the pulse

replication behavior also observed in (2.2), in which a 1-pulse can grow into an 2-pulse, a 2-pulse into a 3-pulse,

and so on, but adjacent pulse replication branches are disconnected [3]. This behavior is also distinct from typical

spike-adding behavior analyzed in bursting models [10, 28, 30, 35], in that in the present case the entire initial

large-amplitude oscillation is replicated during each spike-adding event.

A precise explanation of this connection between wiggly canards, spike adding and the morphology of mixed-

mode travelling waves is left for future work, as is the development of a rigorous justification of the formal

asymptotic estimates that form the core of this paper.
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