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Abstract

We give an exposition of the result that there is no closed exact Lagrangian submanifold
L of (Cn, ω0) where ω0 is the standard symplectic structure. We show that the assertion is
equivalent to the statement that the perturbed Cauchy-Riemann equation ∂̄J0

u = g for maps
u from the unit disc D to Cn which map the boundary circle ∂D to L has no solution for some
function g0. To do this, we follow [1] and consider the universal moduli spaceM = {(u, g) :
∂̄J0

u = g} and show that if we assume L to be exact, the projection (u, g) 7→ g is surjective in
suitable spaces. To obtain surjectivity, it is necessary to show that this projection is proper,
a property which follows from Gromov’s theorem of compactness for pseudoholomorphic
curves. We provide a proof of this compactness theorem, following arguments in [12], by
obtaining a subsequence which converges modulo bubbling and removing the bubble point
singularities. A proof is given in the case of interior singularities and we give suggestions
for how to modify the method for singularities on the boundary.
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Introduction

The purpose of this essay is to provide an exposition of the proof of the statement that there
are no closed exact Lagrangian submanifolds of Cn with respect to the standard symplectic
structure. The original proof of this result is due to Gromov (in [5]) and involves a (much
celebrated) theorem on the compactness of the moduli space of so called pseudoholomorphic
curves. These objects, also introduced by Gromov in the same paper, have since sparked much
interest in symplectic topology, most notably being responsible for the development of areas
such as Floer theory and Gromov-Witten theory.

This essay is split into two main parts. Sections 1, 2, and 3 comprise the first part, and
are concerned with obtaining a statement of this theorem in the context of pseudoholomorphic
curves as well as proving the theorem under the assumption of the above-mentioned compactness
theorem. In Section 1, we start by providing a short introduction to symplectic topology and
introducing the concepts necessary in understanding the statement of the theorem. In Section 2,
we introduce almost complex manifolds and Gromov’s pseudoholomorphic curves, with a focus
on the generalized Cauchy-Riemann equation describing these curves. Section 3 is concerned
with the Fredholm setup of the problem and proving the result up to compactness.

Section 4 constitutes the second part of this essay, which is concerned with proving this
compactness theorem. The main references used throughout the essay are [1] and [12].

1 Preliminaries

We provide a short introduction to symplectic topology, carefully defining symplectic manifolds
and their Lagrangian submanifolds, as well as notions of exactness and weak exactness in these
manifolds. As symplectic topology itself is not really the focus of this essay, only the mini-
mum required to understand the statement of the main theorem (Theorem 1.2.3) is presented.
References for the relevant symplectic topology include [11] and the early chapters of [1].

1.1 Some symplectic topology

Definition 1.1.1. A skew symmetric bilinear form λ : V ×V → R on a vector space V is called
a symplectic form if the map Λ : V → V ∗ defined ∀v, w ∈ V by Λ(v)(w) = λ(v, w) is an
isomorphism.
The pair (V, λ) is then called a symplectic vector space.

Consider a symplectic vector space (V, λ) and let U ⊆ V be a subspace of V . The subspace
U is Lagrangian if U = U⊥, where U⊥ = {v ∈ V : λ(v, u) = 0 ∀u ∈ U} denotes the orthogonal
complement of U .

Definition 1.1.2. A symplectic structure on a C∞-smooth manifold M is a closed 2-form
ω ∈ Ω2(M) which is nondegenerate.
The pair (M,ω) is then called a symplectic manifold.

The requirement for ω to be nondegenerate means that for each p ∈ M the tangent space
(TpM,ωp) is a symplectic vector space. Equivalently, ω is nondegenerate if the wedge product

ωn = ω ∧ . . . ∧ ω

is nowhere vanishing.
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Example 1.1.3. R2n with the 2-form

ω0 =
n∑
i=1

dxi ∧ dyi

is a symplectic manifold of dimension 2n. Indeed dω0 = 0 and the n-form

ω0 ∧ . . . ∧ ω0 = n! (dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn)

is just a multiple of the standard volume form on R2n. Also note that ω0 is exact, i.e. ω0 = dλ
where

λ = −
n∑
i=1

yidxi .

By identifying Cn with Rn in the usual way, we see that (Cn, ω0) is a symplectic manifold.

1.2 Lagrangian submanifolds

Consider a smooth map f : L→M from a smooth manifold L to a symplectic manifold (M,ω).
The map f is Lagrangian if for each p ∈ L the vector space (df)p(TpL) is a Lagrangian subspace
of the symplectic vector space (Tf(p)M,ωf(p)).

Definition 1.2.1. A submanifold L of a symplectic manifold (M,ω) is called a Lagrangian
submanifold if the corresponding embedding f : L ↪→M is Lagrangian. (Note that this implies
the form f∗ω on L is zero.)

Example 1.2.2. Lagrangian submanifolds in Cn

i. The circle S1 is Lagrangian under the inclusion map ι : S1 ↪→ C where C carries the
standard symplectic form ω0.
The tangent space at any point p ∈ S1 is the real line R which is a Lagrangian subspace
of C.

ii. The torus Tn is Lagrangian under the inclusion Tn ↪→ Cn.
By expressing Tn as the product Tn = S1 × . . . × S1, it follows that at any point p =
(p1, . . . , pn) ∈ Tn,

TpT
n = Tp1S

1 × . . .× TpnS1 ∼= Rn

which is a Lagrangian subspace of Cn.

A symplectic manifold (M,ω) is said to be exact if ω is exact. (Example 1.1.3 shows that Cn is
exact.) Now if we consider a Lagrangian submanifold L of an exact symplectic manifold (M,ω),
then L is said to be exact if λ|L is exact for each 1-form λ such that dλ = ω. We are now ready
to state the main theorem, conjectured by Arnold in the 60’s and proved in 1985 by Gromov in
[5]. The rest of this essay will be concerned with its proof.

Theorem 1.2.3. If L ↪→ (Cn, ω0) is a closed Lagrangian submanifold, then L is not exact.1

1It is in fact possible to find closed exact Lagrangian manifolds of (Cn, ω) under certain circumstances, namely
only when ω is a so called exotic symplectic structure. This means that (Cn, ω) does not embed into Cn with
the standard form ω0 as above. Gromov showed the existence of such a structure in [5]. Also see [11].
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1.3 Weakly exact symplectic manifolds

Definition 1.3.1. A symplectic manifold (M,ω) is said to be weakly exact if the map∫
ω : π2(M)→ R

is identically zero. (The second homotopy group π2(M) is defined by π2(M) = {homotopy
classes of maps f : S2 →M}.)
A Lagrangian submanifold L of a symplectic manifold (M,ω) is weakly exact if the map∫

ω : π2(M,L)→ R

is zero, where the relative homotopy group π2(M,L) = {homotopy classes of maps f : (D, ∂D)→
(M,L) sending the unit disc D to M and the boundary circle ∂D to L}.

Proposition 1.3.2. An exact Lagrangian submanifold L of an exact symplectic manifold (M,ω)
is weakly exact.

Proof. We need to show that the map∫
ω : π2(M,L)→ R

is zero. So consider any map f : (D, ∂D)→ (M,L) sending the disc D to M and the boundary
∂D to L. Then the integral ∫

f(D)
ω =

∫
D
f∗ω =

∫
D
f∗dλ .

Then using the fact that f∗dλ = d(f∗λ) and Stokes’ theorem, we have∫
f(D)

ω =

∫
∂D

f∗λ .

Since by assumption f(∂D) ⊆ L and λ|L is exact, another application of Stokes’ gives the
result.

2 Pseudoholomorphic Curves

To prove Theorem 1.2.3, we will need to look at Gromov’s theory of pseudoholomorphic (or J-
holomorphic) curves, introduced in [5]. Since their introduction, they have been widely studied
and there are therefore many good references on the subject, such as [12], [1], and [7]. We
begin by introducing almost complex manifolds and defining pseudoholomorphic curves. Then,
in Section 2.2, we show how the standard Cauchy Riemann equations can be adapted to the
more general setting of almost complex structures and describe some important properties of
the resulting generalized Cauchy Riemann operator. Next, in Section 2.3, we encounter the
perturbed Cauchy-Riemann equation and show how this can actually be reduced to the non-
perturbed case. In the final section, we discuss the notion of the energy of a holomorphic curve
and how this is a conformally invariant quantity. We also prove a “mean value estimate” for
the energy which will be very useful in the proof of compactness in Section 4. Reference [1] is
used as a guide for this most of this section, until the discussion on energy, where [12] is used.
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2.1 Almost complex structures

An almost complex structure J on a symplectic manifold (M,ω) is an automorphism of
the tangent bundle TM of M which satisfies J2 = −Id. The pair (M,J) is called an almost
complex manifold.

Remark 2.1.1. In the case where M is a complex manifold then the structure J is equivalent
to multiplication by i and will be denoted by J0. Locally, in a holomorphic coordinate chart with
zk = xk + iyk we have that

J0

(
∂

∂xk

)
=

∂

∂yk
and J0

(
∂

∂yk

)
= − ∂

∂xk
.

If the following is satisfied
ω(X, JX) > 0 ∀X ∈ TM\{0}

then ω is said to tame J .

Example 2.1.2. It is not hard to show that the standard complex structure J0 on Cn is tame.
In fact for all X,Y ∈ Cn, the following are satisfied:

1. ω0(X, J0X) = ‖X‖2

2. ω0(X,Y ) ≤ ‖X‖‖Y ‖

Consider two manifolds M , N with almost complex structures J , J ′ respectively and let f :
M → N be a smooth map. Then f is said to be (J, J ′) holomorphic if for each x in the domain
of f , the differential map (df)x : TxM → Tf(x)N is complex linear, i.e.

dfx ◦ J = J ′ ◦ dfx . (1)

We will restrict our attention to the case where M is a Riemann surface (a one-dimensional
complex manifold).

Definition 2.1.3. A J-holomorphic (or pseudoholomorphic) curve is an (jΣ, J)-holomorphic
map f : Σ→M from a Riemann surface (Σ, jΣ) to an almost complex manifold (M,J).

For convenience, pseudoholomorphic curves from, for example, the open/closed disc or the
sphere will be referred to as “holomorphic discs” and “holomorphic spheres.”

Remark 2.1.4. Our strategy to prove Theorem 1.2.3 will be to show that any closed Lagrangian
submanifold L in (Cn, ω0) admits a non-constant holomorphic disc u : (D, ∂D)→ (Cn, L) which
sends the boundary circle ∂D to L. Thus∫

u(D)
ω0 6= 0

so L is not weakly exact. Proposition 1.3.2 then shows that L is not exact.
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2.2 The equation ∂̄Ju = 0

Throughout this section we will consider maps from the unit disc D to C. Everything then gen-
eralizes to maps from the unit disc to Cn by repeating the process for each of the n components
of the map. For a differentiable function f : U → C on a domain U ⊆ C we define the operators
∂, ∂̄ by

∂f =
1

2

(
∂f

∂x
− i∂f

∂y

)
∂̄f =

1

2

(
∂f

∂x
+ i

∂f

∂y

)
The operator ∂̄ is the Cauchy-Riemann operator which determines holomorphic f via the equa-
tion ∂̄f = 0.

Having defined the notion of an almost complex structure J , we now want to generalize the ∂̄
operator to J-holomorphic curves. Let (M,J, ω) be an almost complex symplectic manifold, and
(Σ, jΣ) a Riemann surface. From the definition of a J-holomorphic curve u : (Σ, jΣ) → (M,J)
and using the expression (1), we have that u is J-holomorphic if

du ◦ jΣ = J ◦ du . (2)

Using the property that for an almost complex structure J , we have J2 = −Id, we see that u is
J-holomorphic if and only if u satisfies the equation

∂̄Ju = 0 (3)

where

∂̄Ju :=
1

2
(du+ J ◦ du ◦ jΣ) (4)

Choosing a local coordinate chart on M and a holomorphic coordinate chart on Σ and using
Remark 2.1.1, it can be shown that u satisfies (3) if and only if

∂u

∂y
= J(u)

∂u

∂x

for coordinates z = x+ iy. We can write this in terms of the ∂, ∂̄ operators as

i

2

(
∂u− ∂̄u

)
= J(u)

1

2

(
∂u+ ∂̄u

)
so that

∂̄u+ L(u)∂u = 0

where L is defined by
L(u) = (i+ J(u))−1(i− J(u)) .

This equation shows that locally ∂̄J is a nonlinear partial differential operator of order 1. We
want to study the linearized operator Du which formally is defined as the differential of the ∂̄J
operator at u. In our local formulation, we can write it as

Du(v) = ∂̄v + Lu(z)∂v

where Lu = L(u). It turns out that this is a first order elliptic operator.

7



Definition 2.2.1. An elliptic operator L of order m on a domain Ω ⊆ Rn is of the form

Lu =
∑
|α|≤m

aα(x)∂αu

where the functions aα(x) satisfy ∑
|α|=m

aα(x)yα 6= 0

for all x = (x1, . . . , xn) ∈ Ω and all non-zero y = (y1, . . . , yn) ∈ Rn. (Here α = (α1, . . . , αn) is
a multi-index. See Note A.2 in the Appendix.)

For example, the standard Cauchy-Riemann ∂̄ operator is easily shown to be elliptic on the unit
disc in C = R2. Here ∂̄u = ax∂u/∂x + ay∂u/∂y with ax = 1 and ay = i. So we have that for
any non-zero z = (zx, zy) ∈ R2

axzx + ayzy = zx + izy 6= 0 .

Another way to express the ellipticity of an operator is through various estimates which it
satisfies. It can be shown that the linearized Du operator above satisfies the following elliptic
estimate for functions v belonging to the Sobolev space2 W 1,p

‖v‖1,p ≤ c (‖Duv‖p + ‖v‖p)

which is derived from the Calderon-Zygmund inequality for the Laplace operator. Since the
inclusion W 1,p ↪→ Lp is compact, it is straightforward to show that the operator Du satisfies the
conditions of Theorem A.5 and so has finite dimensional kernel and closed image. It can then be
shown that the formal adjoint D∗u of Du is also a first order elliptic operator satisfying a similar
inequality and so also has finite dimensional kernel. To get the result that Du is Fredholm, the
kernel of D∗u is shown to be isomorphic to the cokernel of Du. The details of the derivation of
the above elliptic estimate as well as proving this Fredholm property of Du can be found in [10],
for instance.

We also have the following useful theorem on regularity from the theory of elliptic partial
differential equations.

Theorem 2.2.2. (Elliptic Regularity)

1. (for Sobolev spaces) Let u ∈ W 1,p (p > 2) be a J-holomorphic map from a Riemann
surface (Σ, jΣ) to an almost complex manifold (M,J) such that u(∂Σ) is contained in a
Lagrangian submanifold L of M . If J is of class C l for l ≥ 2, then u is in W l,p. If J is
smooth, then so is u.

2. (for Hölder spaces3) Let u ∈ C1 be a J-holomorphic map4 from a Riemann surface (Σ, jΣ)
to an almost complex manifold (M,J) such that u(∂Σ) is contained in a Lagrangian sub-
manifold L of M . If J is of class Ck+µ, then u is of class Ck+1+µ. If J is smooth, then
so is u.

2See Appendix for discussion of the Sobolev spaces W k,p

3See Appendix for discussion of the Hölder spaces Ck+µ

4In fact the C1 condition on u is automatically satisfied if u is differentiable and J-holomorphic except on
a discrete subset and continuous everywhere. This fact is shown, for instance, in [1] and [18] and will be very
useful in the proof of Theorem 4.1.2 on removal of singularities.
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The proof employs a “bootstrapping” argument, which involves a repeated use of the elliptic
estimates to obtain bounds on higher derivatives of u, under the assumption that it already
belongs to some class of differentiability or integrability (i.e. it belongs to the given Sobolev or
Hölder space). The details for the Sobolev case can be found in [12] and in [1] for the Hölder
case. As this is primarily a result of the theory of elliptic PDE, better places to find a full
treatment of these topics would be in a reference on that subject, for instance in [6] or [2].

2.3 The equation ∂̄Ju = g

As in the last section we are considering a map u : (Σ, jΣ) → (M,J) where Σ is a Riemann
surface. We drop the requirement that u is J-holomorphic and instead consider when u satisfies

∂̄Ju = g

for some function g where as before

∂̄Ju =
1

2
(du+ J ◦ du ◦ jΣ) .

Formally, ∂̄Ju is a section of the bundle u∗(TM) on Σ. If we instead consider the map
Id×u : Σ → Σ ×M and the projection P : Σ ×M → M , then ∂̄Ju can also be viewed as a
section of the bundle P ∗(TM) over Σ×M defined over graph(u) where

graph(u) = {(s, u(s)) : s ∈ Σ} .

So regarding g as a global section of this bundle, we have that

∂̄Ju = g|graph(u)

Now we note that

∂̄Ju ◦ jΣ =
1

2
(du ◦ jΣ + J ◦ du ◦ (−Id))

= −J ◦ 1

2
(J ◦ du ◦ jΣ − du ◦ (−Id))

= −J ◦ 1

2
(J ◦ du ◦ jΣ − du)

= −J ◦ ∂̄Ju

which implies that ∂̄Ju = g|graph(u) is anti-complex. This means we can define a complex
structure Jg on Σ×M by

Jg(X,Y ) = (jΣ(X), J(Y ) + 2g ◦ jΣ(X)) (5)

since

J2
g (X,Y ) = (j2

ΣX, J
2(Y ) + 2J ◦ g ◦ jΣ(X) + 2g ◦ j2

Σ(X))

= (−X,−Y + 2(J ◦ g ◦ jΣ − g)(X))

= −(X,Y )
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where in the second line we used the fact that J2 = j2
Σ = −Id and in the third we used the

anti-complexity of g. We now note that Id×u is Jg-holomorphic if

0 = ∂̄Jg(Id× u) =
1

2
(d(Id, u) + Jg ◦ d(Id, u) ◦ jΣ)

=
1

2
((Id, du) + Jg ◦ (jΣ, du ◦ jΣ))

=
1

2
((Id, du) + (−Id, J ◦ du ◦ jΣ − 2g))

= (0, ∂̄Ju− g) .

i.e. if u satisfies the equation ∂̄Ju = g.

2.4 Energy

Here we introduce the idea of energy, which turns out to be a topological invariant for holomor-
phic curves.

Definition 2.4.1. Let Σ be a compact Riemann surface with volume form dvolΣ and (M,ω, J)
almost complex symplectic manifold such that ω tames J . The energy of a differentiable map
u : Σ→M is defined by

E(u) =
1

2

∫
Σ
|du|2J dvolΣ

where the norm |du|2J = gJ(du, du) is taken with respect to the metric gJ given by

gJ(X,Y ) :=
1

2
(ω(X,JY ) + ω(Y, JX)) ∀X,Y ∈ TM .

We will denote the energy of u restricted to B for some B ⊆ Σ by

E(u,B) =
1

2

∫
B
|du|2J dvolΣ .

Let Σ,M, J , and ω be as above; then we have the following proposition:

Proposition 2.4.2. If u : Σ→M is J-holomorphic then

E(u) =

∫
Σ
u∗ω

Proof. By choosing coordinates z = x+ iy, we can write the integrand of E(u) as

|du|2J dvolΣ =

(∣∣∣∣∂u∂x
∣∣∣∣2
J

+

∣∣∣∣∂u∂y
∣∣∣∣2
J

)
dx ∧ dy

=

(
ω

(
∂u

∂x
, J
∂u

∂x

)
+ ω

(
∂u

∂y
, J
∂u

∂y

))
dx ∧ dy

= 2 · ω
(
∂u

∂x
,
∂u

∂y

)
dx ∧ dy
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since ∂xu+ J∂yu = 0 for J-holomorphic u. It follows that

E(u) =
1

2

∫
B

2 · ω
(
∂u

∂x
,
∂u

∂y

)
dx ∧ dy

=

∫
Σ
u∗ω

as required.

This identity demonstrates the “conformal invariance” of the energy. The expression derived
for E(u) above is a topological quantity which does not depend on a reparameterization or
rescaling of coordinates. This idea will be useful when we come to bubbling (Section 4.6).

3 The Fredholm alternative

Throughout this section, we follow the setup given in [1] which comes from Gromov’s original
work in [5]. We will also call on results from [12].

3.1 The Fredholm setup

We now return to the setting of a closed Lagrangian submanifold L of Cn where we are trying
to deduce the existence of a non-constant holomorphic disc u : (D, ∂D)→ (Cn, L) which sends
the boundary circle ∂D to L. The goal here is to show that if we assume no such disc exists
then for any g the equation

∂̄J0u = g .

has a solution u. It will then be shown that for L closed, we can find g such that there is no
solution and achieve a contradiction. To do this, we will have to place the problem in a Banach
manifold setting (see Appendix). So for non-negative integer k and 0 < µ < 1, let r = k + µ
and define the spaces

U r+1 = {u : (D, ∂D)→ (Cn, L) | u ∈ Ck+1+µ(D), u(∂D) ⊆ L,
and u is homotopic to a point}

Gr = {g | g ∈ Ck+µ(D)}
Mr+1 = {(u, g) ∈ U r+1 ×Gr | ∂̄J0u = g}

and the projection map
πr :Mr+1 → Gr, πr(u, g) = g .

It will also be useful to define for each g ∈ Gr the moduli space

Mr+1
g = {(u, g) ∈ U r+1 × {g} | ∂̄J0u = g} = (πr)−1(g)

(Mr+1 is sometimes referred to as the universal moduli space.) By construction the spaces
U r+1 and Gr are Banach manifolds. However, we will need to prove the following

Theorem 3.1.1. The universal moduli spaceMr+1 is a smooth Banach submanifold of U r+1×
Gr.
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Sketch proof. 5 We return to the formalism of Section 2.3 where now M = Cn and Gr is viewed
as the space of Ck+µ sections of the bundle P ∗TM → D2 ×M . Take a point u0 ∈ U r+1 and
a small neighborhood B(u0) of u0, and for u ∈ B(u0), let Γr(u) be the set of Ck+µ sections of
P ∗TM defined over graph(u). We then consider the parallel transport

Πu0(u) : Γr(u)→ Γr(u0)

induced by the flat connection on M = Cn which defines an isomorphism for u ∈ B(u0). We
now want to construct a map whose zero set isMr+1∩(B(u0)∪Gr) and use the implicit function
theorem to show that this is a smooth manifold. So we define Φ : B(u0) ∪Gr → Γr(u0) by

Φ(u, g) = Πu0(u)
(
∂̄J0u− g|graph(u)

)
and for u ∈ B(u0) the map Φu : Gr → Γr(u0) is defined by Φu(g) = Φ(u, g). The map Φ
is smooth as it is the composition of parallel transport with a first order linear differential
operator and a restriction map. The fact that for each u ∈ B(u0), Φu defines a surjective affine
transformation means that Φ is regular at 0. The linearized operator LΦu has kernel given by
Ker(LΦu) = {g : g|graph(u) = 0} and for each u the complement of Ker(LΦu) is closed. Thus
the implicit function theorem (Theorem A.10) applies and we have thatMr+1∩ (B(u0)∪Gr) =
Φ−1(0) is a smooth submanifold of U r+1×Gr. Patching together these neighborhoods gives the
final result.

We note that due to elliptic regularity (Theorem 2.2.2 (ii)), if u satisfies ∂̄J0u = g for g ∈ Gr,
then we must have u ∈ U r+1, so that (u, g) ∈Mr+1. This means that to show that the equation
has a solution for any g ∈ Gr amounts to showing that the projection πr is onto.

From the discussion in the last section, we can see that πr is an elliptic operator and therefore
Fredholm. The differential (or linearization) (dπr)u of πr at u is essentially the operator Du

which was discussed previously and so ellipticity of (dπr)u follows (and therefore (dπr)u is
Fredholm for each u). So πr is a Fredholm map and the following is now a direct application of
the implicit function theorem (Theorem A.10).

Theorem 3.1.2. Let grreg ⊆ Gr denote the set of regular values of πr. Then for g ∈ grreg, we
have that (πr)−1(g) =Mr+1

g is a manifold of dimension equal to the index6 of πr.

In particular, since by assumption the curves u ∈ U r+1 are homotopic to a point and there
are no holomorphic discs, we have that (πr)−1(0) is just the set of constant maps defined by
u(z) = z0 for some z0 ∈ L. So the space of curves given by the zero set of πr has dimension n
since dim(L)= 1/2 dim(Cn)= n. Since this matches the index of πr we have that πr has 0 as a
regular value (see [5]).

It is unclear how the manifoldsMr+1
g depend on the choice of regular value g. The following

result gives an idea of what this dependence is. For the result to be meaningful, we must assume
that the projection πr is proper, which will be proven afterwards (Proposition 3.2.1).

5This argument comes from [1], though a more thorough discussion can be found in [12] or [9]. The argument
in [12] is particularly good as it can be more easily generalized to prove Theorem 3.1.3.

6The index of πr in this case happens to be n. This can be deduced from the Reimann-Roch theorem or the
Atiyah-Singer index theorem. The index calculation using the Riemann-Roch theorem as well as a proof of this
theorem can be found in [12]. Index calculations are also carried out in [5].
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Theorem 3.1.3. For a regular value g of πr, letMr+1
g (gλ) = {(u, λ) ∈ U r+1×[0, 1]| ∂̄J0u = gλ}

where λ 7→ gλ is a smooth homotopy of functions from g0 = 0 to g1 = g. Then Mr+1
g (gλ) is

a compact manifold of dimension ind(πr)+1 whose boundary is Mr+1
0 ∪Mr+1

g = (πr)−1(0) ∪
(πr)−1(g).

Idea of proof. The idea here is similar to that of Theorem 3.1.1 and more details on the proof
can be found in [12]. We consider the space Gr(0, g) of homotopies [0, 1]→ Gr defined by λ 7→ gλ
from g0 = 0 to g1 = g and the universal moduli space Wr+1(g) = {(u, λ, gλ)|(u, λ) ∈ Mr+1

g (gλ)

for a homotopy gλ ∈ Gr(0, g)}. It can be shown that this universal moduli space is a Ck Banach
manifold and the projection map onto Gr(0, g) is Fredholm. Thus the inverse images of the
regular values of this map are manifolds. By the Sard-Smale theorem (Theorem A.9), this set
of regular values is dense in Gr(0, g).

The above theorem shows that for each regular value g of πr, (πr)−1(g) is in the same cobor-
dism class as (πr)−1(0), i.e. their disjoint union is the boundary of a higher dimensional mani-
fold. The fact that πr is proper (which in turn means the manifoldMr+1

g (gλ) ∼= (πr)−1{g | gλ =
g for some λ ∈ [0, 1]} is compact) is crucial because, for example, every manifold is cobordant
to the empty set via the cobordism M× [0, 1) (which is of course non compact). Because of this,
the fact that (πr)−1(0) is non-empty means that (πr)−1(g) must also be non-empty for each
regular g since they are related via a compact cobordism. This means that all regular values of
πr are in its image. Therefore, (πr) is onto (see Note A.7 in Appendix A).

3.2 The projection πr is proper

The goal here is to show the following:

Proposition 3.2.1. πr is proper

Proof. We will argue by contradiction. Suppose that πr is not proper, i.e. there exists a
sequence {un, gn} ⊆ Mr+1 which has no convergent subsequence such that the sequence of
projections {gn = πr(un, gn)} has a subsequence converging to an element g ∈ Gr. Passing to
this subsequence, we thus have a convergent sequence gn −→ g in Gr and a sequence un in U r+1

with no convergent subsequence such that

∂̄J0un = gn ∀n .

From the discussion in Section 2.3, it is clear that this is equivalent to the maps Id×un : D →
D×Cn being Jgn-holomorphic for the almost complex structure Jgn on D×Cn induced by gn,
i.e.

∂̄Jgnun = 0 ∀n .

In this formalism, we have a sequence of almost complex structures Jgn which converge
to the structure Jg and a sequence of Jgn-holomorphic maps Id×un which have no convergent
subsequence. We now look to the following compactness theorem which will be proved in Section
4.7, which states that the only way in which the above convergence can fail is if there exists a
holomorphic sphere or holomorphic disc which “bubbles” off in the limit. (This will discussed
more explicitly in Sections 4.6 and 4.7.)
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Theorem 3.2.2. Let (M,ω) be a symplectic manifold with Lagrangian submanifold L̃ and Σ a
Riemann surface. Let Jn be a sequence of almost complex structures of (M,ω) which are tamed
by ω such that Jn C

k+µ-converges to some almost complex structure J for integer k ≥ 1 and
µ ∈ (0, 1). Consider a sequence un : (Σ, ∂Σ)→ (M, L̃) of Jn-holomorphic curves with uniformly
bounded energy. Then there exists a subsequence (which will also be denoted by un) such that
un converges to a J-holomorphic curve u : (Σ, ∂Σ)→ (M, L̃) uniformly in all derivatives up to
order k + 1 on compact subsets of Σ \ F where F = {z1, . . . , zk} ⊂ Σ is a finite set of points
where bubbles occur. The limit map can then be extended to a Ck+1+µ map u : Σ → M with
u(∂Σ ⊆ L̃). (If the convergence of the Jn is C∞ then u converges uniformly with all derivatives
on compact subsets and can be extended to a smooth map over all of Σ.)

There are of course no holomorphic spheres in Cn, and by assumption there are no discs
either. Providing we can show that the above theorem applies in this scenario, the contradiction
is complete and we can conclude that πr must be proper.

We set M = D×Cn, L̃ = ∂D×L, and ω = αωD⊕ωCn for come constant α to be determined.
(Here ωD and ωCn denote the standard symplectic structure ω0 on D and Cn respectively.) To
satisfy the conditions of the theorem, we need to show that each Jgn is tamed by ω and that
the energies of Id×un are uniformly bounded. Also, there is a difficulty in applying the theorem
directly because as it stands M is not compact. Fortunately, there is a way around this: a
bound can be placed on the areas of the images of the maps un in Cn, and we show that it will
actually be sufficient to instead consider the manifold M̃ = D ×K where K ⊆ Cn is compact.

We begin by showing the tameness property of the structures Jgn . Since the sequence gn
converges in Gr, we can place a bound on ‖gn‖∞. Define

β = sup
n
‖gn‖∞ .

Then for X = XD ⊕XCn ∈ T (D × Cn),

ω(X, JgnX) = αωD ⊕ ωCn(XD ⊕XCn , J0XD ⊕ (J0XCn + 2gn(J0XD)))

where we have used the formula (5) for Jgn . Thus

ω(X, JgnX) = α‖XD‖2 + ‖XCn‖2 + 2ωCn(XCn , gn(J0XD))

≥ α‖XD‖2 + ‖XCn‖2 − 2β‖XD‖‖XCn‖

If we take α = 2β2 + 1/2, then using the identities in Example 2.1.2, we have

ω(X, JgnX) ≥ 1

2
(‖XD‖2 + ‖XCn‖2) + 2β2‖XD‖2 +

1

2
‖XCn‖2 − 2β‖XD‖‖XCn‖

=
1

2
(‖XD ⊕XCn‖2) +

(√
2β‖XD‖ −

1√
2
‖XCn‖

)2

≥ 1

2
‖X‖2

so ω tames {Jgn}n∈N.
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We now place a bound on the energies of fn =Id×un. We have that

E(fn) =
1

2

∫
D
|dfn|2J0

dxdy

=
1

2

∫
D

(
|∂xfn|2J0

+ |∂yfn|2J0

)
dxdy

=
1

2

∫
D

(∥∥∥∥∂fn∂x
∥∥∥∥2

+

∥∥∥∥∂fn∂y
∥∥∥∥2
)
dxdy

≤ 1

2

∫
D

2

(
ω

(
∂fn
∂x

, Jgn
∂fn
∂x

)
+ ω

(
∂fn
∂y

, Jgn
∂fn
∂y

))
dxdy

≤
∫
D

(
ω

(
∂fn
∂x

,
∂fn
∂y

)
+ ω

(
∂fn
∂y

,−∂fn
∂x

))
dxdy

≤ 2

∫
D

(
ω

(
∂fn
∂x

,
∂fn
∂y

))
dxdy

= 2

∫
D
f∗nω

where in the fourth line we used the taming property of ω and in the fifth line we used the fact
that Id×un is Jgn-holomorphic. Now since by assumption all the un are contractible to a point,
we have that ∫

D
f∗nω = α

∫
D
ωD +

∫
D
u∗nωCn

= απ + 0

so that the energies of the functions fn are uniformly bounded by the constant 2απ. We also
note that the areas of fn are uniformly bounded, i.e.

Area(fn) =

∫
D

∣∣∣∣∂fn∂x ∧ ∂fn∂y
∣∣∣∣
J0

dxdy

≤ 1

2

∫
D

∣∣∣∣∂fn∂x
∣∣∣∣2
J0

+

∣∣∣∣∂fn∂x
∣∣∣∣2
J0

dxdy

= E(fn) ≤ 2απ .

So we now have a sequence of discs fn with uniformly bounded areas in D ×Cn and whose
boundaries are contained in the compact subset S1 × L. Since the maps are continuous, it
follows that the discs un themselves must all lie inside a ball of sufficiently large size in Cn. If
we denote the closure of such a ball by K, then the subset K is compact and we can therefore
apply the compactness theorem using the manifold M̃ = D×K. We therefore have a convergent
subsequence and can conclude that πr is proper.

3.3 The Fredholm alternative

We have shown that under the assumption that there are no holomorphic discs with boundary
in L, the map πr is onto, i.e. for each g ∈ Gr, there exists a solution u to the equation ∂̄J0u = g.
We can sum up the discussion of the past two sections as a theorem:
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Theorem 3.3.1. Let L be a closed Lagrangian submanifold of Cn. If there exists non-integral
r > 1 and g0 ∈ Gr such that the equation ∂̄J0u = g0 has no solution u : D → Cn homotopic to
a point with u(∂D) ⊆ L, then there exists a non-constant holomorphic disc with boundary in L.

This is the Fredholm alternative: either the equation has a solution for every function g or
there exists a non-constant holomorphic disc with boundary in L. Theorem 1.2.3 thus follows
if we can find such a g0.

Proof of Theorem 1.2.3. We write the equation ∂̄J0u = g in local coordinates

∂u

∂x
+ J0

∂u

∂y
= g .

The following proposition shows that we can’t always get a solution to this equation which
satisfies our constraints. The proof rests on the fact that we require u(∂D) to lie in L for any
solution u. As L ⊆ Cn is closed and therefore compact, we can place a bound on its elements,
namely there exists a constant C such that supz∈L|z| ≤ C.

Proposition 3.3.2. Let g0 be a constant vector in Cn (then clearly g0 ∈ Ck+µ for any k, µ). If
u : D → Cn satisfies

∂u

∂x
+ J0

∂u

∂y
= g0 .

with u(∂D) ⊆ L, then |g0| ≤ 4C.

Proof. Integrating the above equation over D and taking the modulus, we have that

π|g0| =
∣∣∣∣∫
D

∂u

∂x
+ J0

∂u

∂y
dydx

∣∣∣∣
=

∣∣∣∣∫ 2π

0
(cos(θ) + J0sin(θ)) u(eiθ) dθ

∣∣∣∣
≤ 2

∫ 2π

0

∣∣∣u(eiθ)
∣∣∣ dθ

≤ 4πC

where in the second line the divergence theorem was used, and in the last line we appealed to
the fact that u(∂D) ⊆ L.

Thus the equation has no solution if we take g0 to be a constant vector with large enough
modulus. By Theorem 3.3.1, there exists a non-constant holomorphic disc with boundary in L.
Therefore by Remark 2.1.4 and Proposition 1.3.2, L is not exact. This completes the proof.

4 Compactness

The goal of this last section is to provide a proof of the compactness theorem from the previous
section. We begin in Section 4.1 with a brief overview of the method as well as the statement of
the main results. In Section 4.2, we justify the existence of a convergent subsequence when the
first derivatives of the sequence are uniformly bounded. The next two sections are concerned
with the proof of a theorem on removing singularities in the interior; Section 4.3 provides some
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preliminary results and the theorem is then proved in Section 4.4. In Section 4.5 we discuss
the problem of singularities on the boundary and some ideas for how to modify the interior
proof for this case. In Section 4.6, we introduce the concept of bubbling in the limit sequence.
Finally, in Section 4.7, we aim to tie together the results of the previous sections to obtain the
desired compactness theorem. For the most part, we follow [12] and [17], drawing on results
from other authors where needed.

Ideally, we would give a complete proof of compactness, providing full details on the type of
convergence and properties of the limit map. However, this is a very long and difficult problem,
and is beyond the scope of this essay. It should also be made clear that for our purposes, these
details are really beside the point. To achieve the argument by contradiction in Section 3, we
really just need to show the existence of any disc. Whether this disc has attached bubbles
or whether energy is lost in the limiting process is really not important here. We do however
include a short discussion of these ideas in Section 4.8.

4.1 Overview

Throughout, we assume (M,ω) is a compact symplectic manifold, L is a compact Lagrangian
submanifold of M , and Σ is a Riemann surface (with boundary) with fixed complex structure
jΣ. The goal is to prove Theorem 3.2.2 which we restate here for convenience.

Theorem 3.2.2. Let (M,ω) be a symplectic manifold with Lagrangian submanifold L and Σ a
Riemann surface. Let Jn be a sequence of almost complex structures of (M,ω) which are tamed
by ω such that Jn C

k+µ-converges to some almost complex structure J for integer k ≥ 1 and
µ ∈ (0, 1). Consider a sequence un : (Σ, ∂Σ)→ (M,L) of Jn-holomorphic curves with uniformly
bounded energy. Then there exists a subsequence (which will also be denoted by un) such that
un converges to a J-holomorphic curve u : (Σ, ∂Σ)→ (M,L) uniformly in all derivatives up to
order k + 1 on compact subsets of Σ \ F where F = {z1, . . . , zk} ⊂ Σ is a finite set of points
where bubbles occur. The limit map can then be extended to a Ck+1+µ map u : Σ → M with
u(∂Σ ⊆ L). (If the convergence of the Jn is C∞ then u converges uniformly with all derivatives
on compact subsets and can be extended to a smooth map over all of Σ.)

The proof of this theorem, given in Section 4.7, is quite technical and relies heavily on the
two theorems given below. The first states that when the first derivatives of the curves are
uniformly bounded, we get compactness (without too much trouble) on compact subsets of Σ.

Theorem 4.1.1. Let Jn be a sequence of Ck+µ almost complex structures of (M,ω) which are
tamed by ω such that Jn converges in Ck+µ to some almost complex structure J . Consider a
sequence un : (Un, Un ∩ ∂Σ)→ (M,L) of Jn-holomorphic curves with uniformly bounded energy
defined on increasing open sets Un ⊆ Σ whose union7 is Σ. Suppose also that

sup
n
‖dun‖L∞(K) <∞

for all compact subsets K of Σ. Then there exists a subsequence (which will also be denoted by
un) such that un converges uniformly with all derivatives up to order k + 1 to a J-holomorphic
curve u : (Σ, ∂Σ)→ (M,L) on compact subsets of Σ. If the convergence of the Jn is C∞, then
un −→ u uniformly with all derivatives on compact subsets of Σ.

7Equivalently: the sets Un exhaust Σ
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It turns out that due to the uniform energy bound, the first derivatives of the un can only
blow up at a finite number of points, and at each of these points, a holomorphic sphere or disc
“bubbles” off in the limit. This process is described in more detail in Section 4.6 as well as in
the proof of Theorem 3.2.2. We thus get convergence on all compact subsets of Σ which do not
include these “bubble points” (singularities).

Now the idea is to extend the limit map over these points to a holomorphic curve defined
on all of Σ. To do this we need the following theorem on removable singularities, whose proof is
again quite technical and involves numerous steps. Since we need compactness for the case when
Σ has boundary, these singularities can occur either in the interior or on the boundary. The
easier case of singularities in the interior is discussed at length. The boundary case is essentially
a repeat of the interior case, but includes a few additional tricky concepts. In Section 4.5, there
will be a brief discussion about how to go about getting the result for boundary singularities.

Theorem 4.1.2 (Removal of singularities). Let L be a compact Lagrangian submanifold of an
almost complex compact symplectic manifold (M,J, ω) where ω tames J and J is of class Ck+µ

for some non-negative integer k and 0 < µ < 1. Then

1. If u : D \ {0} → M is J-holomorphic with E(u) < ∞, then u extends to a Ck+1+µ map
from D to M .

2. If u : D ∩H \ {0} → (M,L) is J-holomorphic with E(u) <∞ and u(D ∩ R) ⊆ L, then u
extends to a Ck+1+µ map from D ∩H to M .

(If J is smooth, then u extends to a smooth map)

Notation: Throughout, D will denote the unit disc in C. The disc of radius r about a point
z ∈ C will be denoted by Dr(z). If z = 0, the disc will be denoted by Dr.

4.2 Compactness for curves with bounded first derivatives

In this section we provide a proof of Theorem 4.1.1 in the case M = K ⊂ Cn where K is
compact.

Proof. We give a proof in this simpler case (which is really the one we care about). The
result does hold in general, and though the general argument is considerably harder and more
involved, it is based on the same ideas. In the simpler case we first note that the uniform bound
on the first derivatives of the un immediately gives us a uniformly convergent (C0 convergent)
subsequence by the Arzelà-Ascoli theorem (Theorem A.11).
We also know that having a sequence un of Jn-holomorphic curves with Jn −→ J in the Ck+µ

topology is equivalent to having a sequence of curves un satisfying

∂̄J0un = gn

where the functions gn tend to a limit function g in the Ck+µ topology.
The method is as follows. If we consider the equation in local coordinates, we have that

∂xun + J0∂yun = gn

and we note that the derivative ∂xun satisfies
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∂2
xun + J0∂y∂xun = ∂x (∂xun + J0∂yun) = ∂xgn (6)

with a similar equation

∂x∂yun + J0∂
2
yun = ∂ygn

holding for ∂yun. So we see that the first derivatives of un satisfy the perturbed Cauchy-Riemann
equation but now with the first derivatives of gn on the right hand side. As the gn converge
in Ck+µ, the first derivatives converge in Ck−1+µ. We now refer to the following theorem, one
of many so called interior Schauder estimates, from the theory of elliptic partial differential
equations8.

Theorem 4.2.1. Let L be an elliptic partial differential operator of order m whose coefficients
are of class Cµ(U) for some µ ∈ (0, 1) and some domain U . Let u be a function in Cm+µ(U0)
for a bounded domain U0 with U0 ⊆ U and suppose u satisfies the equation Lu = g for some
function g. Then for every compact subset K ⊂ U0, we have the following estimate

‖u‖Cm+µ(K) ≤ const ·
(
‖g‖Cµ(U0) + ‖u‖C0(U0)

)
where the constant is independent of u.

We can apply this theorem to the current problem as follows. The above local equations
imply that in an open subset U0 of C, the first derivatives of un satisfy a first order elliptic
differential equation with the elliptic operator ∂̄J0 . Now the coefficients of the Cauchy-Riemann
operator are constant and so are certainly of class Cµ in this coordinate chart. By elliptic
regularity un ∈ Ck+1+µ and so its derivatives are in Ck+µ ⊂ C1+µ and we can therefore obtain
the following bound for compact K ⊆ U0

‖dun‖C1+µ(K) ≤ c
(
‖dgn‖Cµ(U0) + ‖dun‖C0(U0)

)
≤ c′

(
‖dgn‖Ck−1+µ(U0) + ‖dun‖C0(U0)

)
where the constants c, c′ are independent of un. As the first derivatives of the un are uni-
formly bounded by assumption and the Ck−1+µ norms of the derivatives of the gn are uniformly
bounded (since gn converges in Ck+µ), we have that

‖dun‖C1+µ(K) ≤ C

for a constant C now independent of n. This uniform bound on the C1+µ norms of the derivatives
of the un now implies that the derivatives have a convergent subsequence in C1 by Arzelà-Ascoli.
Thus un converges in C2 by taking a subsequence of this subsequence. Since the sets Un are
increasing and exhaust Σ and K is compact, we have K ⊆ Un for all n ≥ N for some N . So
without loss of generality, we can assume un is defined over all of K for each n.

We can now differentiate the un again and repeat this argument gaining uniform bounds
on the higher derivatives of the un until we run out of differentiability in the gn. This process

8This particular estimate comes from [2], though there are many other good references on obtaining such
results, for example [8].
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is a form of “bootstrapping”. Thus we can get a subsequence whose derivatives up to order
k+ 1 converge uniformly on any given compact subset K of this coordinate chart. (In the case
where the gn are smooth, the bootstrap argument can continue indefinitely, and we thus get
uniform convergence in all derivatives of un.) Given any compact subset of Σ, we can extend
this argument by patching together charts and thus get a convergent subsequence on a given
compact subset of Σ.

To get a subsequence which converges on all compact subsets of Σ, we consider an exhausting
sequence of (increasing) compact subsets. We can find a convergent subsequence for each of
these, so by taking a diagonal subsequence of these convergent subsequences, we can then get
a sequence converging on all compact subsets of Σ as required.

In the general case, the bootstrapping argument is more complicated, mostly because the
partial differential equations solved by the un and their derivatives do not have constant coef-
ficients and so when commuting the derivatives as in (6), we pick up extra terms.

4.3 Energy estimates and quantization

We first note the following a priori energy estimate.

Lemma 4.3.1 (Mean value estimate). Consider a compact almost complex manifold (M,J).
Then there exists a constant δ > 0 such that for any ε > 0 and any J-holomorphic curve
u : Dε(0)→M satisfying ∫

Dε(0)
|du|2 < δ

we have the estimate

|du(0)|2 ≤ 8

πε2

∫
Dε(0)

|du|2 .

This important result is a consequence of the following estimate which is derived from properties
of the Laplace operator ∆ := ∂2

x + ∂2
y on R2.

Lemma 4.3.2. Suppose we have a non-negative C2 function φ : Dr → R which satisfies

∆φ ≥ −cφ2 and

∫
Dr

φ <
π

8a

for constants ε > 0 and a ≥ 0. Then

φ(0) ≤ 8

πε2

∫
Dr

φ .

The proof of this lemma can be found in [16]. The mean value estimate then follows by setting
φ = 1

2 |du|
2 and checking that the conditions are satisfied. The details are in [12].

We also have a corresponding boundary energy estimate.

Lemma 4.3.3. (Boundary mean value estimate) Let L be a compact Lagrangian submanifold
of a compact almost complex manifold (M,J). Then there exists a constant δ > 0 such that for
any ε > 0 and any J-holomorphic curve u : D2ε(0) ∩H→M satisfying u(D2ε(0) ∩ R) ⊆ L and∫

D2ε(0)∩H
|du|2 < δ
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we have the estimate9

sup
Dε(0)∩H

|du(0)|2 ≤ 8

πε2

∫
D2ε(0)∩H

|du|2 .

From these estimates, we can now prove the following lemma on quantization of energy. It
states that the energy of any (non-constant) holomorphic sphere or disc is bounded below. This
will be useful when we discuss bubbling in Section 4.6: we cannot have bubbles with arbitrarily
small energy!

Lemma 4.3.4. Let L be a Lagrangian submanifold of an almost complex manifold (M,J). Then
there exists h > 0 such that for any non constant J-holomorphic sphere u : S2 → M or disc
u : (D, ∂D)→ (M,L)

E(u) ≥ h .

Proof. For a holomorphic sphere u : S2 →M , since S2 ∼= C∪{∞}, we have that u is holomorphic
on Bε(z) ⊂ C for each ε > 0 and z ∈ C. Lemma 4.3.1 then states that there exists δ such that

|du(z)|2 ≤ 8

πε2

∫
Dε(z)

|du|2 whenever

∫
Dε(z)

|du|2 < δ .

Similarly, for a holomorphic disc u : (D, ∂D) → (M,L), since D ∼= H ∪ {∞}, u is holomorphic
on D2ε(z) ∩H for each ε and Lemma 4.3.3 says

sup
Dε(z)∩H

|du(z)|2 ≤ 8

πε2

∫
D2ε(z)∩H

|du|2 whenever

∫
D2ε(z)∩H

|du|2 < δ .

If E(u) < δ then the above inequalities hold for any ε > 0. Letting ε −→ ∞ we get in both
cases that |du(z)| = 0 for each z ∈ C(or H for discs), contradicting the assumption that u is
non constant. Taking h to be the value of δ above gives the result.

4.4 Removal of interior singularities

We start by stating the following “isoperimetric inequality” which will be essential to the proof
regarding removal of singularities. A sketch proof of this inequality is included at the end of
the section.

Lemma 4.4.1. (Isoperimetric inequality) Let J be an almost complex structure tamed by ω
on a compact symplectic manifold (M,ω), and let u : D \ {0} → M be J-holomorphic on the
punctured disc with energy E(u) ≤ CE <∞. Let γr(θ) = u(reiθ) and let Dr denote the disc of
radius r about zero. Then there exist cI > 0 and r0 > 0 such that for 0 < r < r0

E(u,Dr) ≤ cI l(γr)2

where l(γr) is the length of the loop γr defined by

l(γ) :=

∫ 2π

0
|γ̇(θ)|J dθ

9There is a caveat: more work is needed before we can apply Lemma 4.3.2 to obtain this estimate (see Section
4.5).
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Proof of Theorem 4.1.2. We first note that |γ̇(θ)| = |ireiθdu(reiθ| = r|du(reiθ|. Then for 0 <
r < r0 (as in Lemma 4.4.1), define

Eu(r) := E(u,Dr) =

∫
Dr

|du|2 .

Lemma 4.4.1 then implies

Eu(r) ≤ cI l(γr)2

= cI

∫ 2π

0
|γ̇r(θ)| dθ

= cI

(∫ 2π

0
r|du(reiθ)| dθ

)2

We can then use Cauchy-Schwarz so that

Eu(r) ≤ cIr2

(
2π

∫ 2π

0
|du(reiθ)|2 dθ

)
= 2πcIr

d

dr

(∫ r

0
r′
∫ 2π

0
|du(reiθ)|2 dθdr′

)
= 2πcIr

d

dr

(∫
Dr

|du|2
)
.

Rearranging gives the following equation

dr

2πcIr
≤ dEu(r)

Eu(r)

which we can integrate from r to ρ for some ρ0 < r0 to obtain(ρ0

r

)µ
≤ Eu(ρ0)

Eu(r)

where µ = 1
2πcI

(we can assume µ is less than 1). Thus

Eu(r) ≤
(
r

ρ0

)µ
Eu(ρ0) .

For r small enough, we can now use Lemma 4.3.1 to obtain the following estimate

|du(reiθ)|2 ≤ 8

πr2

∫
Dr(reiθ)

|du|2

≤ 8

πr2
Eu(2r)

≤ K 1

r2−µ , with K =

(
2

ρ0

)µ
Eu(ρ0) . (7)
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We can use this estimate to show that u is Hölder continuous with exponent µ/2 in a neighbor-
hood Dr of 0. We need to find a constant cH such that

dist(u(z), u(w)) ≤ cH |z − w|µ ∀z, w ∈ Dr .

We take arbitrary z, w ∈ Dr where r is small enough for the estimate (7) to hold. Then say
z = r1e

iθ1 and w = r2e
iθ2 and assume without loss of generality that r2 ≥ r1. In the case where

θ1 = θ2 we have that |z − w| = r2 − r1 and

dist(u(z), u(w)) ≤
∫ r2

r1

|du(reiθ1)eiθ1 | dr

≤
∫ r2

r1

K
1

r1−µ/2 dr

≤ 2K

µ
(r
µ/2
2 − rµ/21 )

≤ 2K

µ
(r2 − r1)µ/2

where in the last line we used the fact that for x, y ∈ (0, 1) and α ∈ (0, 1), (x− y)α ≥ (xα− yα)
whenever x > y.

In the general case, assume without loss of generality that θ1 = 0 and r2 > r1 (the case
where r2 = r1 is similar and a bit simpler), then we can parameterize a path from u(z) to u(w)
by u(r(θ)eiθ) where

r(θ) = r1 +
θ

θ2
(r2 − r1) .

Then

dist(u(z), u(w)) ≤
∫ θ2

0
|du(r(θ)eiθ)||ṙ(θ + ir(θ)| dθ

≤
∫ θ2

0
K

1

r(θ)1−µ/2

(
r2 − r1

θ2
+ r(θ)

)
dθ

≤
∫ r2

r1

K
1

r1−µ/2

(
r2 − r1

θ2
+ r

)
θ2

r2 − r1
dr

<
2K

µ
(r2 − r1)µ/2

≤ 2K

µ
|z − w|µ/2 .

We conclude that u is Hölder continuous and so can be continuously extended across 0. The fact
that u can then be extended across 0 to a Ck+1+µ J-holomorphic map follows10 from elliptic
regularity (Theorem 2.2.2). In the case where J is smooth, then smoothness of u also follows
from elliptic regularity.

10To get that u ∈ C1, see [18] for example.

23



Proof of isoperimetric inequality (Lemma 4.4.1). We start by noting the most common isoperi-
metric iequality, that of a closed curve in R2. We have that

a ≤ 1

4π
l

where a is the area of the curve and l is its length. Equality holds when the curve is a circle.
We aim to prove a corresponding result in our current setting. We take r0 small enough so

that l(γr) is less than the injectivity radius of M for 0 < r < r0. This means that we can then
use the exponential map to define what is called a “unique local extension” uγr : D → M for
each r. We construct this as follows: define

uγr(ρe
iθ) := expγr(0)(ρXr(θ))

where Xr(θ) ∈ Tγr(0)M satisfies

expγr(0)(Xr(θ)) = γr(θ) .

We thus have a “geodesic disc” on which we can define a chart using the exponential map.
When mapped to Euclidean space, the curve γr satisfies the isoperimetric inequality in R2 and
without directly calculating the constant, we can translate this back into M where we can now
assume that

a(γr) ≤ cI l(γr)2

where a(γr) is the area

a(γr) =

∫
Dr

u∗γrω

and cI is a constant which depends on the metric. This area is sometimes referred to as the
local symplectic action.

Next take 0 < ρ < r < r0 and consider the cylinder u|Dr\Dρ . We are going to “cap” the
top and bottom of this cylinder with the geodesic discs (local extensions) uγr and uγρ obtained
as above for the boundary circles γr and γρ. This forms a sphere which is the boundary of the
union of the discs uγs for ρ ≤ s ≤ r and is therefore contractible. Hence the energy (or area) of
the cylinder (without caps) is given by the difference between the area of the top cap and the
bottom cap, i.e.

E(u,Dr \Dρ) =

∫
D
u∗γrω −

∫
D
u∗γρω

Letting ρ −→ 0 gives the isoperimetric inequality as claimed.

4.5 Removal of boundary singularities

In this section, we give a brief discussion of the problem of singularities on the boundary. These
can be removed in a similar fashion to those in the interior, but with a few modifications.

Firstly, we recall the boundary mean value estimate (Lemma 4.3.3). Unfortunately, this
estimate does not directly follow from Lemma 4.3.2 about the Laplace operator as in the interior
case. In fact, some more work must be done; the idea is to extend the map u to the whole
disc by reflection over the boundary, also known as “doubling”. This then reduces the problem
to the interior case. The problem is that this process does not work for general metrics, so a
suitable one must be constructed. Specifically, a metric g is needed which makes the Lagrangian
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submanifold L totally geodesic11 in M with respect to g, so that the normal derivative of u
vanishes across the boundary. In turns out this (with a few other conditions) is sufficient for
the reflection argument. The proof of existence of a metric g with the necessary conditions for
reflection is given in [4].

Once we have the mean value inequality, we can then prove an isoperimetric inequality for
the boundary in the following form

Lemma 4.5.1 (Boundary isoperimetric inequality). Let J be an almost complex structure tamed
by ω on a compact symplectic manifold (M,ω), and let u : D ∩H \ {0} →M be J-holomorphic
on the punctured half-disc such that u(D ∩ R) ⊆ L for a Lagrangian submanifold L of (M,ω).
Suppose the energy of u is bounded: E(u) ≤ CE < ∞. Let γr : [0, π] → M be defined by
γr(θ) = u(reiθ) and let Dr denote the disc of radius r about zero. Then there exist cI > 0 and
r0 > 0 such that for 0 < r < r0

E(u,Dr ∩H) ≤ cI l(γr)2

where l(γr) is the length of the arc γr defined by

l(γ) :=

∫ π

0
|γ̇(θ)|J dθ

The proof of this inequality is similar to the interior case. In the interior case, we constructed
geodesic discs via the loops γr and proved the inequality by considering the local symplectic
action of these loops. In the boundary case the process can be repeated, but instead geodesic
half discs uγr are constructed from the arcs γr (whose boundary points lie in L) and we define

a(γr) =

∫
Dr∩H

u∗γrω

to be local symplectic action for an arc γr.
With the above results, the proof of part (i) of Theorem 4.1.2 can be adapted to accommo-

date the boundary case by instead defining

Eu(r) := E(u,Dr ∩H) =

∫
Dr∩H

|du|2

and then repeating the calculations with this new definition of Eu(r).

The removable singularities theorem for points on the boundary can also be proved using
a different method due to Oh in [13]. He deliberately avoids the doubling argument in the
aims of simplifying the proof. He achieves the result through a series of estimates, resting on
results such as the Courant-Lebesgue Lemma (Lemma 4.2 in [13]) from minimal surface theory
as well as a theorem which states that the image of a holomorphic curve is contained in a
Darboux neighborhood12. The result is a Lp bound on the derivatives of u for p > 2 which he
then bootstraps to get smoothness. The drawback to his argument is that it only works for

11This means all geodesics in L are also geodesics in M .
12An open set U with L ⊆ U on which the symplectic form ω = −dλ where λ = 0 identically on the Lagrangian

submanifold L.
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suitable calibrations which are triples (M,ω, J) such that the almost complex structure J on
M is ω-calibrated13.

Yet another method of proof is given by Ye in [18], which does not have the calibration
restriction.

4.6 Bubbling

In this section, bubbling is introduced, a concept first discovered in [15]. The treatment here
comes from [12]. We know that when the first derivatives of un are uniformly bounded, we can
find a subsequence, so we are interested in cases where dun is unbounded where it is possible
for compactness to fail. Here we will restrict our attention to maps u : Σ → M where Σ is a
closed Riemann surface. So let Jn be a sequence of almost complex structures converging in
Ck+µ to an almost complex structure J . Consider a sequence of Jn-holomorphic curves un with
uniformly bounded energy and unbounded first derivatives, i.e.

sup
n
‖dun‖∞ =∞

and there exists CE > 0 such that

sup
n
E(un) ≤ CE <∞ .

We then consider the points of Σ where |dun| attains its maximum. Denoting these by zn and
the values |dun(zn)| = ‖dun‖∞ by an, we can assume without loss of generality that

zn −→ z∞ for some z∞ ∈ Σ

and
an −→∞ as n −→∞ .

We now switch to local holomorphic coordinates and choose a coordinate chart φ : W → φ(W ) ⊂
Σ where W ⊂ C is open and constants C1, C2 > 0 such that

1. for some ε > 0, Dε(0) ⊆W and φ(0) = z∞

2. the pullback volume form on W is given by φ∗dvolΣ = λ2dx ∧ dy where λ : W → R is
bounded by C1, C2, i.e.

C1 ≤ λ(w) ≤ C2 ∀w ∈ φ(W ) .

We therefore have that zn ∈ φ(W ) for n ≥ N for some N , so after removing a finite number of
elements, we can assume the entire sequence {zn} is contained in φ(W ). We can now consider
the sequence locally in this chart

ũn := un ◦ φ : W →M, wn := φ−1(zn) ∈W

Then

an = |dun(zn)| = |dũn(wn)|
λ(wn)

= sup
w∈W

|dũn(w)|
λ(w)

13An almost complex structure J is ω-compatible (or ω-calibrated) on a symplectic manifold (M,ω) if g(·, ·) :=
ω(·, J ·) defines a Riemannian metric on M .
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so that
C1an ≤ ‖dũn(w)‖L∞(W ) ≤ C2an . (8)

Also, we have
wn −→ 0 = φ−1(z∞) as n −→∞ .

Now since the sequence wn → 0 is contained in the open set V we can find δ > 0 such that
Dδ(wn) ⊆ W for all n. If we define δn = δan and pass to a subsequence such that an is
monotonic increasing, then the sets Dδn are increasing with Dδn exhausting C as n −→∞.
Now consider the sequence vn : Dδn →M where

vn(w) = ũn

(
wn +

w

an

)
.

With this new sequence we have by (8)

‖dvn‖L∞(Dδn ) =
‖dũn‖L∞(Dδn )

an
≤ C2

and

|dvn(0)| = |dũn(0)|
an

≥ C1 .

We also have a bound on the energy of vn

E(vn) = E(ũn, Dδ(wn)) ≤ E(un) .

By Theorem 4.1.1, vn has a subsequence which converges uniformly with all derivatives up to
order k + 1 on compact sets to a limit function v : C→M which satisfies

|dv(0)| ≥ C1 .

Also, the energy of v is bounded by
E(v) ≤ CE .

The conformal invariance of the energy implies that the energy of the map from C \ {0} to M
given by

z 7→ v(1/z)

also has bounded energy and so by Theorem 4.1.2 the singularity at 0 can be removed and the
map extends to a Ck+1+µ J-holomorphic map C → M which means v extends to a Ck+1+µ

J-holomorphic map from the sphere C∪ {∞} = S2 to M. The map v constructed here is called
a bubble.

4.7 Proof of Theorem 3.2.2

We assume for this section that (M,ω), L, Jn, and J are as in the statement of Theorem 3.2.2.
(The method below can be trivially extended to the case where Jn, J are smooth.)The proof of
the theorem can be deduced from the following theorem which states that near each point at
which the first derivatives are unbounded, there is a small concentration of energy. At each of
these points, we get either a sphere or disc bubble.
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Theorem 4.7.1. We consider an open set W of the upper half plane H and a sequence of
Jn-holomorphic functions un : (W,W ∩ R)→ (M,L) with bounded energy

sup
n
E(u,W ) ≤ C <∞ for some C > 0

Suppose there is a sequence {zn} ⊂ W with zn −→ z∞ ∈ W and |dun(zn)| unbounded as
n −→∞. Then for any ε > 0, we have that

lim inf
n−→∞

E(un, Dε(z∞) ∩W ) ≥ h (9)

and either a non-constant holomorphic sphere v : S2 → M or non-constant holomorphic disc
v : (D, ∂D)→ (M,L) bubbles off in the limit.

From this theorem, Theorem 3.2.2 follows easily.

Proof of Theorem 3.2.2. We denote the singular set of the sequence un by

Z = {z ∈ Σ : there exists a sequence zn −→ z such that |dun(zn)| −→ ∞ } .

We show that Z is finite and that un converges uniformly with all derivatives up to order k+ 1
on compact subsets of Σ\Z. Let Z0 = ∅ and let V0 = Σ\Z0 = Σ. Then if supn ‖dun‖L∞(K) <∞
for all compact K ⊂ V0, we are done by Theorem 4.1.1. Otherwise take a compact set K and
a sequence {z1

n} ⊂ K with

|dun(z1
n)| = sup

z∈K
|dun(z)| = ‖dun‖L∞(K) .

We can assume without loss of generality that z1
n −→ z1 ∈ V0 and |dun(z1

n)| −→ ∞ so that
Z1 = {z1} ⊆ Z. Continuing in this way, we get sets Zk = {z1, . . . , zk} and Vk = Σ\Zk such that
Zk is contained in the singular set Z of un. However, this process cannot continue forever. By
Lemma 4.7.1, at each point in Zk, a disc or sphere of energy greater than or equal to h bubbles
off in the limit. As the energy of un is bounded by CE , only a finite number of these bubbles can
exist (namely at most CE

h of them). Therefore Z = Zk for some k and supn ‖dun‖L∞(K) < ∞
for all compact K ⊂ Vk = Σ \ Zk.

Now by Theorem 4.1.1, there is a subsequence converging on all compact subsets of Σ \ Z
to a J-holomorphic curve u : (Σ \ Z, ∂Σ \ Z)→ (M,L). By Theorem 4.1.2, u can be extended
to a Ck+1+µ J-holomorphic curve u from all of Σ to M with u(∂Σ) ⊆ L by removing each
singularity.

We now need to prove Theorem 4.7.1. The following lemma will be useful (see [12] for a
proof):

Lemma 4.7.2. Let f : X → [0,∞) be a continuous function on a metric space X with metric
d. For z ∈ X and δ > 0, if the closed ball B2δ(z) is complete, then there exists ε ≤ δ and
w ∈ B2δ(z) (here Br(x) denotes the open ball of radius r about x) such that

sup
x∈Bε(w)

f(x) ≤ 2f(w) and εf(w) ≥ δf(z) .
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Proof of Theorem 4.7.1. Fix ε > 0 such that Dε(z∞) ⊆W and let δn := (|dun(zn)|)−
1
2 .

Step 1 :
We claim the following: There exists a sequence wn ∈ C and εn > 0 such that wn −→ z∞,
εn −→ 0 with

sup
z∈Dεn (wn)

|dun(z)| ≤ 2an and εnan −→∞ (10)

where an := |dun(wn)|.
To do this, fix n and consider the function fn : Dε(z∞) ∩H→ R defined by

fn(z) = |dun(z)| .

Then by Lemma 4.7.2 there exists a point wn ∈ D2δn(zn) and a constant 0 < εn ≤ δn such that

sup
z∈Dεn (wn)

fn(z) ≤ 2fn(wn) and εnfn(wn) ≥ δnfn(zn) . (11)

If we do this for each n, we obtain sequences wn and εn. As 0 < εn ≤ δn and δn −→ 0, we have
that ε −→ 0 as well. Also, since wn ∈ D2δn(zn), and δn −→ 0, zn −→ z∞, we also have that
wn −→ z∞. Since δnan = |dun(zn)|1/2 −→ ∞, the desired conditions (10) follow directly from
(11).

We now turn to the sequence anIm(wn). This sequence is either bounded or unbounded.
These two cases are discussed in Steps 2 and 3, respectively.

Step 2 :
We claim the following:

If the sequence anIm(wn) is bounded, a holomorphic disc bubbles off.

As an diverges, we must have that Im(wn)−→ 0 which means that z∞ lies in the boundary
W ∩ R. As anIm(wn) is bounded, passing to a subsequence if necessary, we can assume that

l = lim
n−→∞

anIm(wn)

exists. Also, since εn −→ 0 and |Re(wn)−z∞| −→ 0, by considering the sequence for large
enough n we can assume without loss of generality that

εn + |Re(wn)− z∞| < ε .

We now consider the sequence vn : Dεnan(0) ∩H→M defined by

vn(z) = un

(
Re(wn) +

z

an

)
.

We have that

sup
z∈Dεnan (0)∩H

|dvn(z)| ≤ sup
z∈Dεn (wn)∩H

|dun(z)|
an

≤ 2

and

|dvn(ianIm(wn))| = |dun(wn)|
an

= 1 .
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The energy of vn is bounded as follows:

E(vn, Dεnan(0) ∩H) ≤ E(un, Dε(z∞) ∩H) ≤ C . (12)

As vn has uniformly bounded first derivatives on increasingly large half discs Dεnan(0) ∩ H in
H, Theorem 4.1.1 implies that vn converges uniformly with all derivatives up to order k + 1 on
compact subsets of H to a holomorphic curve v : H→M such that v(R) ⊆ L. Since

|dvn(ianIm(wn))| = 1 ∀n

we have that |dv(il)| = 1 and so v is non constant. There is also an energy bound on v from
12. So by the conformal invariance of the energy, we can define the map ṽ : D \ {−1} →M by

ṽ(z) = v

(
i(1− z)

1 + z

)
which has bounded energy E(ṽ) = E(v). By Theorem 4.1.2, this map can be extended to a
Ck+1+µ map over all of D. Noticing that for z ∈ ∂D(

i(1− z)
1 + z

)
+

(
i(1− z)

1 + z

)
= 0

so that i(1−z)
1+z ∈ R. So ṽ(∂D) ⊆ v(R) ⊆ L. Thus we have shown that an appropriate disc ṽ

bubbles off as claimed.
We still need to show in this case that (9) is satisfied. To do this, we note that by Lemma

4.3.4,
E(v) = E(ṽ) ≥ h

since ṽ is a holomorphic disc. Then for any 0 < δ < 1 we can find a constant r such that

δh < E(v,Dr(0) ∩H) = lim
n→∞

E(vn, Dr(0) ∩H) .

Since

E(vn, Dr(0) ∩H) = E(un, Dr/an(Re(wn)) ∩H)

≤ E(un, Dε(Re(z∞)) ∩H) for large n,

it follows that for all δ < 1
δh < E(un, Dε(Re(z∞)) ∩H) .

From this we can deduce (9).

Step 3 :
We claim the following:

If the sequence anIm(wn) is unbounded, a holomorphic sphere bubbles off.

Here we assume that anIm(wn) −→ ∞. There are now two possibilities: we either have that
z∞ lies on the boundary W ∩ R or in the interior of W . If z∞ lies in the interior, we can place
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a ball around z∞ and follow the procedure of Section 4.6 to see that a sphere bubbles off as
claimed.

When z∞ lies on the boundary, we follow a similar argument to the one above. The key
here is that Im(wn)−→ 0 so we can take εn ≤Im(wn) but still ensure that εnan −→ ∞ since
anIm(wn) diverges. We can therefore ensure that Dεn(wn) ⊆ W . Again, as εn −→ 0 and
|wn − z∞| −→ 0, we can take the sequence for large enough n and assume that

εn + |wn − z∞| < ε .

Now the sequence vn : Dεnan(0)→M defined by

vn(z) = un

(
wn +

z

an

)
satisfies

sup
z∈Dεnan (0)

|dvn(z)| ≤ sup
z∈Dεn (wn)

|dun(z)|
an

≤ 2

and

|dvn(0)| = |dun(wn)|
an

= 1 .

Again we have bounded energy

E(vn, Dεnan(0)) ≤ E(un, Dε(z∞)) ≤ C . (13)

Since the radii of the discs Dεnan tend to infinity as n −→ ∞, by Theorem 4.1.1, vn converges
uniformly with all derivatives up to order k + 1 to a holomorphic curve v : C→ M . The limit
curve v is non constant as

|dvn(0)| = 1 ∀n =⇒ |dv(0)| = 1

and has bounded energy by (13). So by conformal invariance of energy, the map from C \ {0}
to M defined by

z 7→ v(1/z)

also has bounded energy and so extends to a Ck+1+µ map over all of C by Theorem 4.1.2. This
means that v extends to a Ck+1+µ map from the sphere C ∪ {∞} = S2 to M as claimed.

Again, we need to show in this case that (9) is satisfied. By a similar argument to the first
case, since E(v) ≥ h by 4.3.4, for 0 < δ < 1 there exists r such that

δh < E(v,Dr(0)) = lim
n→∞

E(vn, Dr(0)) ≤ lim
n→∞

E(un, Dr/ε(z∞))

since
E(vn, Dr(0)) = E(un, Dr/an(wn)) ≤ E(un, Dε(z∞)) for large n .

The result (9) follows since the above holds for any δ < 1.
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4.8 Concluding remarks

This “convergence modulo bubbling” argument is sufficient for the purposes of this essay, namely
in being able to prove Theorem 1.2.3. In the proof from [12] given above, we ignored the
bubbles which developed in the limiting process and extended the limit map over the bubble
point singularities to a smooth map on the whole disc. However, this is not exactly the same as
the compactness theorem originally proved by Gromov in [5]. His result was of a more general
nature, and he was able to describe the limit map in more detail with the concept of cusp-curves.

In fact it is possible to obtain the limit map as a cusp-curve, crudely: a disc with bubbles
attached at each of the singularities. In this approach it is possible to gain some information
on the exact nature of the convergence in terms of the number of bubbles which develop, how
bubbles may form on top of bubbles (e.g. bubble towers or trees, see [14]), and how much energy
is lost through bubbling in the limiting process. A discussion of these cusp-curves is carried out
briefly in Gromov’s original work [5] and in more detail in [1] and [7].

This is still not, however, the most careful description of the nature of the convergence.
In [12], the notion of stable maps, a carefully and precisely defined description of Gromov’s
cusp-curves are considered. Existence and uniqueness of limits of these so called stable maps
are obtained through an equally precise definition of how the convergence should be defined,
so-called Gromov convergence. The case for spheres is proved in [12], and the case for discs is
tackled in [4]. These proofs are very technical (and very hard). There are many other proofs of
compactness which use different methods, for example in [3] or Ye’s proof in [18].

A Appendix: Analysis Background

There are a number of concepts in analysis which are essential to the discussions in Sections 2
and 3, namely those of Banach manifolds and Fredholm maps. The notion of a smooth Banach
manifold generalizes the standard notion of a manifold, the most important consequence of
which is that infinite dimensional structures can then be considered. The definition of a smooth
Banach manifold differs only from that of a smooth manifold in that charts on a Banach mani-
fold map to open sets in some real or complex (possibly infinite dimensional) Banach space X,
rather than Rn or Cn. If the transition maps on a Banach manifold M are only Ck rather than
C∞, then M is said to be a Ck Banach manifold.

The Banach spaces considered in the essay are the Sobolev spaces W k,p and the Hölder
spaces Ck+α. The reason that we need to resort to working in these spaces is because the space
C∞ of smooth functions is not complete. To get useful analytic results, we thus need to move
to the Sobolev and Hölder spaces which are completions of C∞ with respect to the Sobolev and
Hölder norms respectively. To define Sobolev spaces, we first need the following definition

Definition A.1. Suppose u : Ω→ R is a function defined on an open subset Ω ⊂ Rn which is
locally integrable. and let α = (α1, . . . , αn) be a multi-index. Then a locally integrable function
uα is called a weak derivative of u corresponding to α if the following is satisfied∫

Ω
u(x)∂αφ(x)dx = (−1)|α|

∫
Ω
uα(x)φ(x)dx

for every φ ∈ C∞0 (Ω) = {f : Ω → R | f is smooth with compact support} . The order of the
weak derivative is |α|.
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Note A.2. Here the multi-index α = (α1, . . . , αn) for non-negative integers αi with |α| =∑n
i=1 αi satisfies

xα = xα1
1 . . . xαnn and ∂α =

∂α1

∂xα1
1

. . .
∂αn

∂xαnn
.

For a non-negative integer k and 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) is defined to be
the space of all equivalence classes (under the relation f ∼ g if f = g almost everywhere) of
functions whose weak derivatives exist up to order k and are in Lp(Ω). For 1 ≤ p < ∞ the
norm for a function u ∈W k,p(Ω) is denoted14 by

‖u‖k,p :=

∫
Ω

∑
|α|≤k

|∂αu(x)|p dx

 1
p

.

For the case p = ∞ the norm for a function u ∈ W k,∞(Ω) is defined as the maximum of the
L∞ norms of the weak derivatives ∂αu for any |α| ≤ k. Note that when k = 0, the Sobolev
space W 0,p is just the space Lp. Under the above norms, the W k,p spaces are complete and
therefore Banach spaces. These spaces can easily be generalized to functions u from Rn to Rm
by summing the norms of each of the m components of u. When this is the case we still refer
to these spaces as W k,p(Ω) if it is clear what the target space is.

We now introduce the notion of Hölder continuity. A function u : Ω→ R is Hölder continuous
of exponent µ ∈ (0, 1) if there exists a constant C such that

sup
x,y∈Ω

|u(x)− u(y)|
|x− y|µ

≤ C .

For 0 < µ < 1 and non-negative integer k, we define the norms15

‖u‖µ = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|µ

+ sup
x∈Ω
|u(x)|

and
‖u‖k+µ =

∑
|α|≤k

‖∂αu‖µ .

A function u : Ω→ R is an element of the Hölder space Ck+µ(Ω) if u is a Ck functions with finite
norm ‖u‖k+µ. Equivalently Ck+µ(Ω) is the space of all functions u : Ω → R whose derivatives
exist up to order k and whose k-th order derivatives are Hölder continuous. These spaces are
complete and so are Banach spaces and, by the same argument as with Sobolev spaces, the
definition can be generalized to spaces of functions from Rn to Rm.

The argument in Section 3 also relies on some Fredholm theory, so it will be useful to include
the relevant results here.

Definition A.3. A bounded linear operator T : X → Y between Banach spaces X,Y is a
Fredholm operator if Ker(T ) and Coker(T ) are finite dimensional. The index of a Fredholm
operator is defined as

index(T ) = dim Ker(T )− dim Coker(T ) .

14When it is ambiguous over which set Ω the norm is taken, it will be denoted by ‖u‖Wk,p(Ω)
15When it is ambiguous over which set Ω the norm is taken, it will be denoted by ‖u‖Ck+µ(Ω)
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From the above definition, we can immediately deduce the following useful property of Fredholm
operators.

Proposition A.4. Let T : X → Y be Fredholm, then Ker(T ) has closed complement C =
X\Ker(T).

Proof. As Ker(T ) finite dimensional, pick a basis {vi}, then we can find a dual basis {v∗i } of
X∗. We then have that C = ∩Ker(v∗i ) is the intersection of finitely many closed sets.

Lemma A.5. Let L : X → Y be a bounded linear operator and K : X → Z be a compact
operator between Banach spaces U, V,W . If there exists a positive constant C such that

‖u‖U ≤ C (‖Lu‖V + ‖Ku‖W )

for all u ∈ U , then Im(L) is closed and Ker(L) is finite dimensional.

Definition A.6. A map f : M → N between Banach manifolds M,N is a Fredholm map if
dxf : TpM → Tf(x)N is a Fredholm operator for each x ∈M .

Consider a map f : M → N between manifolds M,N . The points in the domain of f can
be divided into regular and critical points. We say that f is regular at a point p ∈ M if the
differential map dxf : TpM → Tf(x)N is surjective and is critical at p otherwise. Points in N
can similarly be divided into regular and critical values of f as follows. A point q ∈ N is a
regular value of f if f is regular at p for all p ∈M such that f(p) = q and is a critical value of
f if q = f(p) where p ∈M is a critical point of f .

Note A.7. It is important to note what is contained in the image of f . By definition, all
critical values of f are in Im(f). However, not all regular values of f are necessarily contained
in Im(f). It is easy to see then that a map f : M → N is onto if f−1(q) 6= ∅ for all regular
values q ∈ N of f .

Definition A.8. A set V is a Baire set (or generic set) if V a countable intersection of open
dense sets.

The Baire category theorem states that a Baire set in a complete metric space is dense. We
now state a few (powerful) theorems of analysis.

Theorem A.9. (Sard-Smale) If f : M → N is a smooth Fredholm map between Banach
manifolds M,N , then the set V ⊆ N of regular values of f is a Baire set.

Theorem A.10. (Implicit function theorem) Let f : M → N be a Ck Fredholm16 map between
Banach manifolds and let q ∈ N be a regular value of f. Then

(i). P = f−1(q) is a Ck submanifold of M of dimension index(f) (so P is finite dimensional)

(ii). TpP =Ker(dxf) for all p ∈ P

We also have the classical Arzelà-Ascoli theorem:

16The requirement on f being Fredholm is a bit strong; in fact, the necessary condition is that f has closed
kernel which is satisfied by Fredholm maps (Proposition A.4).
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Theorem A.11. (Arzelà-Ascoli) A sequence of functions fk : K ⊂ Rm → Rn for a compact set
K is called equicontinuous if for every ε > 0, there exists δ > 0 such that whenever x, y ∈ K
satisfy |x − y| < δ, we have |f(x)− f(y)| < ε. Suppose fk is a sequence of equicontinuous
functions which are also uniformly bounded, i.e. supn ‖fn‖∞ ≤M for some constant M . Then
fk has a uniformly convergent subsequence.

Note that if the sequence of functions fk are differentiable on K with uniformly bounded
first derivatives, the conditions of the Arzelà-Ascoli theorem are satisfied.
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