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Abstract

We study invasion fronts in the FitzHugh–Nagumo equation in the oscillatory regime using singular pertur-

bation techniques. Phenomenologically, localized perturbations of the unstable steady-state grow and spread,

creating temporal oscillations whose phase is modulated spatially. The phase modulation appears to be se-

lected by an invasion front that describes the behavior in the leading edge of the spreading process. We

construct these invasion fronts for large regions of parameter space using singular perturbation techniques.

Key ingredients are the construction of periodic orbits, their unstable manifolds, and the analysis of pushed

and pulled fronts in the fast system. Our results predict the wavenumbers and frequencies of oscillations in

the wake of the front through a phase locking mechanism. We also identify a parameter regime where nonlin-

ear phase locked fronts are inaccessible in the singularly perturbed geometry of the traveling-wave equation.

Direct simulations confirm our predictions and point to interesting phase slip dynamics.

1 Introduction

Front propagation into unstable states has been the object of interest in both mathematics and the applied

sciences, starting with the work by Fisher and Kolmogorov–Petrovsky–Piscounov in genetics and population

dynamics [14, 26]. While there continues to be a tremendous amount of interest related to front propagation

and invasion in the context of ecology, front propagation has received a considerable amount of attention in the

physics community after connections with pattern formation [10] and plasma or fluid instabilities were successfully

established. We refer to [42] for an extensive recent review. Our interest here is, much in the spirit of [10], the

role of invasion in the selection of patterns. First, we provide existence results for pattern-forming fronts in

the example of the FitzHugh-Nagumo equation in the oscillatory regime. Second, we argue theoretically and

demonstrate numerically that the fronts found here are selected in the sense that compactly supported initial

conditions evolve towards suitable translates of the fronts found here with corresponding spreading speeds. Our

existence results rely on geometric singular perturbation theory. Our selection criterion is based on the notion of

steepest fronts, that is, fronts that possess a strongest rate of exponential decay among possible other invasion

fronts. Within this category, we discriminate between pushed and pulled fronts. For pushed fronts, the steepest

rate is due to the fact that a heteroclinic orbit enters along a strong stable direction in the traveling-wave equation

for a specific value of front speed. For pulled fronts the steepest decay is due to a minimum of the real part of

the leading eigenvalue in the stable subspace of the traveling-wave equation.

In the remainder of the introduction, we describe the system of interest here, state our main results, and provide

some context for our results.

The FitzHugh–Nagumo equation. We consider the FitzHugh–Nagumo equation on the real line,

ut = uxx + f(u)− w
wt = ε(u− γw − a),

(1.1)

with cubic nonlinearity f(u) = u(1−u)(u−a), 0 < a < 1/2, and γ sufficiently small such that u = a,w = 0 is the

unique equilibrium. Throughout, we are interested in 0 ≤ ε� 1. Note that the parameter a appears in both the

u- and the w-equation, simply making sure that the equilibrium u = a, w = 0 is explicitly given and controlled

by the parameter a. The FitzHugh–Nagumo equation is often thought of as an oversimplified model for signal
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propagation along a nerve axon, but has, in small variations, been used to model phenomena as disparate as

transitions to turbulence in fluids [3], CO-oxidation on platinum surfaces [2, 32], or heart arrhythmias [31]. One

often considers the excitable regime, a . 0 in our parameterization, when the unique equilibrium u = a, w = 0 is

stable, but finite-size, yet small perturbations lead to large excursions in phase space and long transients before

recovery. Spatial coupling can then sustain activity through excitation pulses or, in two-dimensional media,

spiral waves.

We are here concerned with the oscillatory regime, 0 < a < 1/2; that is, in the kinetics of (1.1), spatially

homogeneous perturbations of the equilibrium state (u,w) = (a, 0) result in large amplitude oscillations. In

particular, when searching for spatially constant solutions in (1.1), one can readily see that the unique equilibrium

is completely unstable, and one can construct invariant regions that guarantee boundedness of solutions for

positive times, thus ensuring existence of a limit cycle by Poincaré-Bendixson. The limit cycle can be described

in more detail when ε � 1. Indeed, the system is roughly equivalent to the van-der-Pol oscillator, with well

understood relaxation oscillations [29].

Traveling waves. In this general context, spatio-temporal dynamics of the FitzHugh–Nagumo equations have

been largely understood as being organized around traveling pulses and pulse trains, so-called trigger waves,

in the excitable regime, and around spatially homoegeneous oscillations, and their associated long-wavelength

periodic modulations in the oscillatory regime [33, 30, 4]. All of those can be found as solutions to an ordinary

differential equation. Traveling waves (u,w)(x, t) = (u,w)(x − ct) which travel to the right with positive wave

speed c > 0 solve the first-order system

u̇ = v

v̇ = −cv − f(u) + w

ẇ = −ε
c

(u− γw − a),

(1.2)

where ˙ =
d

dξ
denotes differentiation with respect to the traveling wave variable ξ = x − ct. For 0 < ε/c � 1,

this three dimensional ODE is a slow-fast system, with two fast variables, u and v, and one slow variable, w. We

refer to (1.2) as the fast system.

The slow-fast structure in the traveling-wave equation has been exploited extensively, in particular in the con-

struction of pulses and pulse trains [19, 25, 7]. Note that this system has a unique equilibrium (u, v, w) = (a, 0, 0)

which we denote by p ∈ R3. Of course, p corresponds to the spatially constant equilibrium in (1.1).

Periodic orbits. For each 0 < a < 1/2 and each sufficiently small ε > 0, the traveling-wave equation (1.2)

possesses a family of periodic orbits parameterized by the speed c > 0, which effectually represent wave train

solutions to the FitzHugh–Nagumo equation. The family of periodic orbits naturally breaks into two qualitatively

different pieces, the “trigger” and the “phase” piece. The trigger family had been constructed in [40]. We outline

that construction and add the construction of the phase family in §4.2. More precisely, we construct periodic

orbits for any given c > 0, with ε sufficiently small, which are

• trigger wave trains (u, v, w)h(ξ; c, a, ε) for 0 < c < c∗(a), and

• phase wave trains (u, v, w)nh(ξ; c, a, ε) for c∗(a) < c,

where

c∗(a) =

√
1− a+ a2

2
. (1.3)

Phase wave-trains are distinguished by the fact that their traveling-wave trajectory passes through the maximum

or minimum of the cubic nullcline w = f(u). As a consequence, the singular perturbation analysis is somewhat

2



more subtle, involving a non-hyperbolic piece of the slow manifold. More phenomenologically, these waves possess

very long wavelength and roughly resemble the relaxation oscillations in the pure kinetics. Their amplitude is

roughly independent of the period, that is they exhibit fully developed oscillations, as opposed to the somewhat

more narrowly spaced ‘trigger’ waves. Trigger waves are constructed out of heteroclinic orbits in the u-equation,

propagating roughly with the speed of propagation of these interfaces from the equation with frozen value of w.

We refer to [41] for a discussion of these two types of excitation waves.

We now state our main result on periodic orbits.

Theorem 1.1 (Periodic Orbits). Fix 0 < a < 1/2 and c > 0. Then for each sufficiently small 0 < ε � 1, the

system (1.2) admits a periodic orbit Γε(c) with wave speed c and period L(c; ε). Moreover, fix either 0 < c < c∗(a)

or c∗(a) < c; then for all sufficiently small ε,

L(c; ε) =

{
L0(c)ε−1 + O(log ε), 0 < c < c∗(a),

L0(c)ε−1 +O(ε−2/3), c∗(a) < c.

for some function L0(c) > 0. The error terms are understood in terms of ε for each fixed c. The functions L(c; ε)

and L0(c) are monotonically increasing in c.

As mentioned above, the new contribution here is the case c∗(a) < c, which is discussed in Proposition 4.3;

see §3.3 for the geometry of the periodic orbits in the context of the traveling wave equation (1.2).

Spreading speeds and steepest fronts. It turns out that traveling waves connecting the unstable equilibrium

to periodic orbits come in families parameterized by the wave speed. Rather than constructing this entire family,

we construct fronts that, among all traveling waves (and, in fact, among all traveling waves allowing for a time-

periodic modulation in a comoving frame) have the steepest possible decay. Supported by a wealth of examples

and by numerical evidence, these steepest fronts are selected by compactly (or sufficiently rapidly decaying)

initial data [42]. We encounter, matching the general classification in [42], two types of steepest fronts,

• pulled fronts possess steepest decay since the real part of leading eigenvalues in the relevant stable manifold

achieves a minimum as a function of wave speed for the selected pulled speed;

• pushed fronts possess steepest decay since the heteroclinic connects to a strong stable manifold for the

selected pushed speed.

The speed of pulled fronts is, by definition, determined by the linearization at the unstable state, only. The speed

of pushed fronts depends on the shape of the nonlinearity, as typical for codimension-one heteroclinic orbits. We

give more background on these concepts and a brief, cautious guide to the literature in §2, but we will state our

main results using this terminology below.

Invasion fronts — main results. We focus throughout on a < 1/2; the case a > 1/2 is obtained by reflection

u 7→ 1− u. Our main results will invoke several speeds in addition to the critical speed c∗(a) where wave trains

reach maximal amplitude, defined in (1.3), that we shall define now:

• clin = 2
√
a(1− a), the linear or pulled speed;

• cp =
1√
2

(1 + a), the pushed speed, defined for a < 1/3;

• cbs(a) =
1√
2

(1− 2a), the bistable speed for fronts between u = 0 and u = 1 for w = ε = 0.
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All those speeds are understood in the limit ε = 0 for fixed a. Note that clin > cbs for a > ab = (3 −
√

6)/6.

Our main results will include a construction of extensions of pulled and pushed speeds to finite ε > 0; we denote

those speeds by the same name slightly abusing notation.

Our main results concern the existence of both pulled and pushed fronts in (1.1) for sufficiently small ε > 0,

which are summarized in the following two theorems.

Theorem 1.2 (Pulled fronts). Fix ab < a < 1/2. There exists ε0 > 0 such that for all 0 < ε < ε0, there exists

a wave speed clin(a, ε) = clin + O(ε) such that (1.2) admits heteroclinic orbits F `ε (a), F rε (a) which are backward

asymptotic to the periodic orbit Γε(clin(a, ε)) and forward asymptotic to the equilibrium (a, 0, 0). The selected

periodic orbit is a trigger wave train when ab < a < (3 −
√

5)/6, and a phase wave train when (3 −
√

5)/6 <

a < 1/2. Moreover, all heteroclinic orbits in a vicinity of F ` or F r, for speeds close to clin(a, ε), possess weaker

exponential decay towards (a, 0, 0).

Theorem 1.3 (Pushed fronts). Fix 0 < a < 1/3. There exists ε0 > 0 such that for all 0 < ε < ε0, there exists a

wave speed cp(a, ε) = cp +O(ε) such that (1.2) admits a heteroclinic orbit P rε (a) which is backward asymptotic

to the periodic orbit Γε(cp(a, ε)) and decays exponentially as ξ →∞ to (a, 0, 0) at the strongest possible rate. In

particular, all heteroclinic orbits in a vicinity of P r, for speeds close to cp(a, ε), possess weaker exponential decay

towards (a, 0, 0).

We conclude this introduction with remarks that add explanation to the statements and put the results in a

broader context.

Remark 1.4 (Phase selection). The `, r–superscripts for the fronts F `ε (a), F rε (a) given by Theorem 1.2 correspond

to jumps in the fast subsystem of (1.2) which originate from the left/right branches of the critical manifold; see §3
for the relevant geometry. In particular, we have two distinct pulled front solutions: the u-profile of the front F `ε (a)

eventually increases monotonically as ξ → ∞, while that of the front F rε (a) eventually decreases monotonically

as ξ →∞ for a > 1/3. The difference between the two fronts can thus be viewed as roughly a phase-shift in the

wake of the leading edge by π. We expect the front F rε (a) to be unstable for a < 1/3.

Remark 1.5 (Obstruction to existence). We will see in §3.4 that a geometric obstruction restricts the construc-

tion of pulled fronts to the regime clin > cbs, which corresponds to a > ab = (3−
√

6)/6. Depending on the value

of a, the associated asymptotic wave train can be either a trigger or phase wave, and the boundary between these

two cases occurs when clin = c∗(a), which occurs when a = (3 −
√

5)/6. In the case of pushed fronts, we will

show in §3.4 that the associated asymptotic wave trains must always be phase waves.

Remark 1.6 (Fronts as wave-train sources). For all fronts constructed here, wave trains are generated by the

front in the following sense. Given a wave train, one can calculate a group velocity, that measures the speed of

propagation of distrubances by the linearized equation at the wave train; see [35] for background. One then says

that a wave train is “generated” at an front interface if the group velocity of the wave train, in a frame moving

with the speed of the interface, points away from the interface. A short calculation shows that the group velocity

is given through

cg =
dω

dk
= c− L dc

dL
,

where ω = ck and L = 2π/k. Since wave trains and front interface propagate with the same (phase) velocity,

ω/k = c, the group velocity in the comoving frame is simply

cg − c = −L dc

dL
,

and the sign equals the sign of −dL

dc
, which, according to Theorem 1.1 is always negative as claimed.

One can be slightly more precise in the case of phase waves, where L(c) ∼ cL̄/ε at leading order in ε, such that

−L(dc/dL) = −c, that is, at leading order in ε, the group velocity of phase wave trains vanishes in a steady

frame.
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Remark 1.7 (Pattern selection). As is clear from Theorem 1.1, there exists a one-parameter family of periodic

orbits for any fixed a, parameterized by wavenumber. Many of those solutions are in fact linearly stable. Our

results indicate that front invasion selects one particular member from this family. This selection is due to our

restriction to “steepest fronts”. Notably, the selected wave trains are not spatially homogeneous oscillations, that

one might presume to be the most typical representative in the family, often selected in simulations in finite

domains with, say, Neumann boundary conditions; see [27, 39] for cases where the difference between patterns

selected by invasion versus patterns selected from white noise is rather dramatic. Since there do not appear to be

any rigorous links between this selection criterion and the selection of fronts beyond systems obeying a comparison

principle, we provide a short summary of the literature on the selection of front speeds in §2.

Remark 1.8 (Pattern forming fronts). Our results can be viewed as existence results in the broader context of

coherent pattern-forming fronts [10, 42]. A typical difficulty associated with such pattern-formation contexts is the

absence of comparison principles. In addition, pattern-forming fronts tend to be periodic in time, hence solutions

to a boundary-value problem for parabolic problems rather than an ODE problem. In those contexts, there are few

examples where invasion fronts can be actually constructed; for some of the few examples see [9, 24] for fronts

near Turing-type instabilities and [37, 38] for topological constructions in phase separation problems. Our case is

simpler and interesting as the frequency of the invasion process is zero, amounting to a strong resonance between

the invasion process and the trailing pattern. This effect can be attributed to the singularly perturbed nature of

the equation, which is dominated by the scalar Nagumo equation at leading order in ε. As a result, invasion

fronts can be found as solutions to ODEs rather than PDEs.

Outline. The remainder of this paper is organized as follows. We discuss linear spreading speeds and front

selection criteria in §2. In §3, we consider the singular limit ε→ 0 of the traveling wave ODE (1.2) in the context

of geometric singular perturbation theory, and we construct singular periodic orbits and pushed/pulled front

solutions. The persistence of these solutions for 0 < ε� 1 and the proofs of Theorems 1.1, 1.2 and 1.3 are given

in §4. We present numerical simulations in §5 to visualize the above results, and we conclude with a discussion

in §6.

Acknowledgments. AS gratefully acknowledges support through NSF grant DMS–1311740.

2 Spreading speeds and front selection

We present a brief review of speed selection criteria for fronts and explain the connection with the selection

of steepest fronts in invasion processes, thus providing the main motivation for the construction of fronts with

specific speeds and properties. This section is largely irrelevant for the subsequent construction of fronts and

may therefore be skipped by the reader interested in the geometric arguments that follow.

Linear spreading speeds. Linearizing (1.1) at the constant state u = a,w = 0, we find after Fourier-Laplace

transform eν(x−ct)+λt, ν = ik ∈ iR,

(λ− cν)

(
u

v

)
=

(
ν2 + f ′(a) −1

ε −γε

)(
u

v

)
, (2.1)

which, taking determinants and writing α = f ′(a) = a(1− a) > 0, is equivalent to the dispersion relation,

d(λ, ν; ε) := (λ− cν − ν2 − α)(λ− cν + γε) + ε = 0. (2.2)
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Evaluating at λ = 0 gives the cubic equation for eigenvalues at the linearization of p. Following [23], we are

interested in double roots of d,

d(λ, ν; ε) = 0, ∂νd(λ, ν; ε) = 0. (2.3)

This pair of complex equations possesses a finite number of solutions. We are interested in particular solutions,

pinched double roots, which can be defined as follows. For each double root (λ∗, ν∗), there are (at least) two

distinct roots ν±(λ) such that ν±(λ∗) = ν∗. Since d is analytic, we can follow these two roots along a path where

Reλ↗ +∞. The pinching condition then assumes that Re ν+(λ) > 0 and −Re ν−(λ) > 0 for Reλ� 1; see [23]

for details.

It turns out [23, Lemma 4.4] that, generically and in our present situation, spatially localized initial conditions

to the linearized equation grow pointwise if and only if there exists a pinched double root with Reλ∗ > 0. In

order to understand spreading speeds, one therefore investigates pinched double roots, and thereby pointwise

stability, depending on the wave speed c. The linear spreading speed is then defined as the largest speed c such

that there exists a pinched double root with Reλ∗ ≥ 0. The resulting algebraic equations are usually difficult to

analyze analytically. In the case ε = 0, one can however readily compute spreading speeds. For this, notice that

roots of d are then explicitly given through

ν±(λ) = − c
2
±
√
c2

4
− α+ λ, ν0(λ) = λ/c.

Pinched double roots can therefore occur when either ν+(λ) = ν−(λ), or when ν−(λ) = ν0(λ). The latter is

excluded for λ > 0, such that one finds the following result.

Lemma 2.1 (Linear spreading speed). The linear spreading speed associated with the dispersion relation (2.2)

is given through

clin(ε; a) = 2
√
α+ O(ε),

for ε sufficiently small. Moreover, the associated roots λ∗ = 0, ν∗ < 0 are real and Re ν+(0) is minimal for

c = clin(ε; a).

Proof. The existence of clin follows from the implicit function theorem, continuing solutions to (2.3) from ε = 0.

The real part of ν+ is minimal at c = clin since we have a double root precisely at this point. A local expansion

shows that the double root splits into a pair of real roots for increasing c, such that the real part of Re ν+

increases with
√
c− clin in this case. For c < clin, the two roots become complex and an expansion shows that

the real part has asymptotics −(1/2 + O(ε))c, and is hence increasing when c decreases.

Nonlinear fronts whose speeds and frequencies are governed by the linear growth in this fashion are often referred

to as pulled fronts, whereas fronts that propagate faster than this predicted linear speed are referred to as pushed

fronts. We caution however that this simple classification misses subtleties in the linear growth [22, 23] and

possible other resonant interactions [13].

The fact that λ∗ associated with the pinched double root is real implies that, for the linear equation, the spatio-

temporal growth is stationary in the moving frame at the leading edge, and one can consequently hope for a

description of the growth process in terms of stationary solutions in a comoving frame. In order to to characterize

fronts with speeds not determined by the linearization, we next turn to a heuristic selection criterion, the selection

of the steepest front.

Steepest fronts. Suppose that we are interested in traveling fronts, that is, in equilibria in a comoving frame

ξ = x − ct, where c is not necessarily the linear spreading speed, which connect a stable state in the wake,

ξ = −∞, to p. It turns out that the unstable manifold of stable states is two-dimensional, a fact that we shall

establish below for the periodic orbits of interest here. The general argument is more widely applicable; see
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for instance [11, 17]. Motivated by the fact that we start from compactly supported initial data, we look for

traveling-wave solutions with the steepest possible decay. Note that, for λ = 0, the eigenvalues have Re ν± < 0,

Re ν0 = O(ε) . 0 for γα < 1 (when γα > 1, the system possesses three equilibria). Counting dimensions, we

expect robust intersections between the two-dimensional unstable manifold of the periodic orbit and the two-

dimensional strong stable manifold associated with ν±. Decay in this two-dimensional strong stable manifold

is steepest when Re ν+ is minimal, which occurs precisely for c = clin. On the other hand, we may be able

to find intersections for specific values of c with steeper decay, since Re ν−(c) < Re ν−(clin). We refer to such

intersections with the one-dimensional super-strong stable manifold as pushed fronts.

3 Slow-fast analysis

In this section, we outline the singular limit geometry of (1.2) in the context of geometric singular perturbation

theory. We begin with a description of the slow reduced system in §3.1, followed by the fast layer subsystem

in §3.2. We then construct singular ε = 0 periodic orbits in §3.3 and singular pulled/pushed front solutions

in §3.4.

3.1 Slow subsystem

Rescaling the traveling wave variable in (1.2) by τ = εξ, we obtain the slow system

εu′ = v

εv′ = −cv − f(u) + w

w′ = −1

c
(u− γw − a),

(3.1)

where “ ′ ” denotes
d

dτ
. Setting ε = 0, the flow is restricted to the critical manifold

M0 = {(u, v, w) : v = 0, w = f(u)}, (3.2)

with dynamics given by the reduced equation

u′ = −u− γf(u)− a
cf ′(u)

. (3.3)

Setting

u` =
1

3

(
a+ 1−

√
1− a+ a2

)
(3.4)

ur =
1

3

(
a+ 1 +

√
1− a+ a2

)
, (3.5)

the critical manifold M0 can be decomposed into three normally hyperbolic branches

M`
0 = {(u, v, w) : v = 0, w = f(u), u ∈ (−∞, u`)} (3.6)

Mm
0 = {(u, v, w) : v = 0, w = f(u), u ∈ (u`, ur)} (3.7)

Mr
0 = {(u, v, w) : v = 0, w = f(u), u ∈ (ur,∞)}, (3.8)

and two nonhyperbolic fold points. Setting w` = f(u`) and wr = f(ur), the points p` = (u`, 0, w`) and

pr = (ur, 0, wr) denote the locations of the lower left and upper right fold points, respectively, on the critical

manifold. The critical manifold and the associated reduced flow (3.3) are shown in Figure 1.

Away from the folds, the reduced flow onM`
0 satisfies u′ < 0, while the reduced flow onMr

0 satisfies u′ > 0. On

the middle branch Mm
ε there is a single equilibrium at p = (a, 0, 0) which is attracting for the reduced flow.
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0 a 1

Mm
0M`
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Figure 1: Shown is the critical manifold M0 =M`
0 ∪Mm

0 ∪Mr
0 and the associated reduced flow (3.3).

3.2 Layer analysis of pulled/pushed fronts

Setting ε = 0 in the traveling wave equation (1.2), we obtain the layer (fast) subsystem

u̇ = v

v̇ = −cv − f(u) + w
(3.9)

For each 0 < a < 1/2 and each w ∈ (w`, wr), this system has three equilibria pi(w), i = 1, 2, 3, where pi(w) =

(ui(w), 0), and the roots ui(w) of w = f(u) are numbered in increasing order. By examining the linearization(
U̇

V̇

)
=

(
0 1

−f ′(u) −c

)(
U

V

)
(3.10)

which has eigenvalues

ν± =
−c±

√
c2 − 4f ′(u)

2
(3.11)

we see that for c > 0 the outer equilibria p1(w), p3(w) are saddles, and the middle equilibrium p2(w) is a stable

node or focus, depending on the sign of the quantity c2 − 4f ′(u2(w)).

We are primarily interested in the layer problem for w = 0, which contains the equilibrium (u, v, w) = (a, 0, 0) of

the full system (note that p = p2(0)). Linearizing about the equilibrium p2(0) = (u2(0), 0) = (a, 0) in the layer

problem (3.9), we obtain the eigenvalues

ν± =
−c±

√
c2 + 4(a2 − a)

2
(3.12)

We are interested in the fronts which connect the middle equilibrium p2(0) to either p1(0) or p3(0); the results

are summarized in Figures 2 and 3. For each value of the wavespeed c > 0 the equilibrium p2(0) is completely

stable. There are two fronts, or heteroclinics: φ` which connects p1(0) to p2(0) for all c > 0, and φr which

connects p3(0) to p2(0) for all c > cbs =
1√
2

(1− 2a).

There are two cases of interest: The first is the pulled case in which the fronts coincide with the existence of

a double root in the linearization of p2(0), which we can easily see occurs for c = clin = 2
√
a(1− a) for each
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(a) c > cp

�r
p

(b) c = cp

(c) cbs < c < cp

�f

(d) c = cbs

(e) clin < c < cbs

�`lin

(f) c = clin

(g) 0 < c < clin

(h) c > cp

�r
p

(i) c = cp

(j) clin < c < cp

�`lin

�r
lin

(k) c = clin

(l) cbs < c < clin

�f

(m) c = cbs

(n) 0 < c < cbs

(o) c > clin

�`lin

�r
lin

(p) c = clin

(q) cbs < c < clin

�f

(r) c = cbs

(s) 0 < c < cbs

Figure 2: Shown are the phase portraits in (u, v)-space for the layer problem (3.9) for w = 0 and values of

0 < a < ab (left column), ab < a < 1/3 (middle column), 1/3 < a < 1/2 (right column) and c > 0. The

equilibria p1(0), p2(0), p3(0) are depicted from left to right along the u-axis in each figure.
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c⇤

cbs

1

2
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6

1

2
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5

6

Figure 3: Shown is the relation of the speeds cbs(a), cp(a), clin(a) for 0 < a < 1/2. Also shown is the speed c∗(a)

which separates the speeds corresponding to periodic orbits in the hyperbolic regime versus those occurring in

the nonhyperbolic regime c ≥ c∗(a).

0 < a < 1/2 in the case of φ`. In the case of φr, we also require clin > cbs (otherwise this front does not exist

– see Figure 2), which holds for each value of ab < a < 1/2. We denote the corresponding fronts by φ`lin, φ
r
lin,

which are depicted in Figure 2.

The second case is the pushed case in which the equilibrium p2(0) is a stable node and the front under consid-

eration approaches p2(0) along a strong stable direction: For c > 2
√
a(1− a), the equilibrium p2(0) is a stable

node with two distinct real eigenvalues. There is a unique solution φrp which approaches p2(0) along the stronger

eigendirection.

In both cases, the rate of decay of the heteroclinic is locally minimal, as one can readily see from the computation

of the eigenvalues.

To determine the wavespeed of the front φrp, we compute the solutions directly. To find φrp, we assume that

the derivative v = u̇ can be written as a graph over u with zeros at u = a, 1, which leads us to the ansatz

v = b(u−1)(u−a) for some b ∈ R. Substituting this ansatz into (3.9) for w = 0 results in the algebraic equation

2b2u− b2(1 + a) = −cb+ u (3.13)

from which we compute a solution when b =
1√
2

and c = cp =
1√
2

(1 + a) for 0 < a < 1/3. The equation

u̇ = b(u− 1)(u− a) (3.14)

can then be used to obtain the explicit solution profiles

φrp(ξ) =

(
up(ξ)

vp(ξ)

)
=

a+
1− a

2

(
1− tanh

(
1− a
2
√

2
ξ

))
− (1− a)2

4
√

2
sech 2

(
1− a
2
√

2
ξ

)
 . (3.15)

We note that there is no pushed front φrp(a) for a > 1/3 and no pushed front φ`p from p1(0) to p2(0) for any

10



value of a.

3.3 Singular periodic orbits

In this section, we collect results regarding singular periodic orbits for ε = 0. We separate the discussion into the

hyperbolic and nonhyperbolic regimes, depending on whether the relevant orbit passes through the nonhyperbolic

fold points on the critical manifold. Results regarding the persistence of these orbits for small ε > 0 are discussed

in §4.2.

3.3.1 Hyperbolic regime

Singular periodic orbits in the hyperbolic regime are formed by concatenating normally hyperbolic portions of the

left and right branchesM`
0,Mr

0 of the critical manifold with fast heteroclinic orbits. Regarding the heteroclinic

orbits, we have the following.

Proposition 3.1. For each value of the wavespeed 0 < c < c∗(a) =

√
1− a+ a2

2
, there exists wf(c), wb(c) ∈

(w`, wr) and fronts φf(c), φb(c) which connect the equilibria p3(wf), p1(wf) and p1(wb), p3(wb), respectively.

Proof. This result can be obtained from the analysis in, e.g. [5], though for completeness we provide a brief

outline of the argument. For each w ∈ (w`, wr), we recall that (3.9) admits three equilibria pi(w), i = 1, 2, 3,

where pi(w) = (ui(w), 0), and the roots ui(w) of w = f(u) are numbered in increasing order. We aim to find

heteroclinic orbits between the outer equilibria p1(w) and p3(w). Proceeding similarly as in §3.2, we use the

ansatz v = b(u−u1(w))(u−u3(w)). For each w ∈
(
w`,

w` + wr
2

)
, we find a front solution φf(c) when b = 1/

√
2

and

c =
[u3(w)− u2(w)]− [u2(w)− u1(w)]√

2
> 0 (3.16)

which connects p3(w) to p1(w). This defines c as a strictly decreasing function of w ∈
(
w`,

w` + wr
2

)
, or

equivalently this defines w = wf(c) as a strictly decreasing function of c. We note that c = 0 when u3(w)−u2(w) =

u2(w) − u1(w), or equivalently when u2(w) coincides with the inclination point of the cubic w = f(u), which

occurs when w =
w` + wr

2
. Furthermore, c increases as w decreases until w = w` whereby we can compute the

roots

u1(w`) = u2(w`) =
1

3

(
1 + a−

√
1− a+ a2

)
u3(w`) =

1

3

(
1 + a+ 2

√
1− a+ a2

) (3.17)

and the corresponding speed

c =
u3(w`)− u2(w`)√

2
=

√
1− a+ a2

2
. (3.18)

The existence of wb(c) and the corresponding front φb(c) which connects the equilibria p1(wb), p3(wb) is obtained

by exploiting the symmetry of (3.9) under the transformation

u→ 2(1 + a)

3
− u, v → −v, w → 2f

(
1 + a

3

)
− w (3.19)

By following the front φf(c), then the slow manifoldM`
0, then the front φb(c), and finally the slow manifoldMr

0,

we obtain a singular periodic orbit Γ0(c); see Figure 4 for the geometry of the setup in phase space.

11
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Figure 4: Shown is the geometry for of the singular periodic orbit Γ0(c) in the hyperbolic regime 0 < c < c∗(a).

The orbit Γ0(c) is formed by traversing the singular segments φf(c),M`
0, φb(c),Mr

0 in turn.

3.3.2 Nonhyperbolic regime

In the plane w = w`, the layer problem (3.9) results in a Fisher–KPP type equation which admits a front

solution φf(c) for each value of the wavespeed c ≥ c∗(a) [1]. Using a similar symmetry argument as in the proof

of Proposition 3.1, the same holds in the plane w = wr, resulting in front solutions φb(c) for each c ≥ c∗(a).

The fronts φf(c), φb(c) for c ≥ c∗(a) form heteroclinic connections between each of the fold points of the critical

manifold with the saddle equilibrium on the opposite branch. For the critical wavespeed c = c∗(a), these fronts

approach the fold along a strong stable direction, while for c > c∗(a), they approach the fold along a center

manifold with algebraic decay.

There is still a singular periodic orbit Γ0(c) obtained as in §3.3.1, by following φf(c), then M`
0, then φb(c), and

finally the slow manifold Mr
0. See Figure 5 for the setup. We refer to this regime as the nonhyperbolic regime

due to the loss of normal hyperbolicity at the fold points on the critical manifold.

3.4 Singular traveling fronts

Combining results from the previous sections concerning the fast/slow dynamics, we construct singular pushed/pulled

fronts which connect the equilibrium at (a, 0, 0) to one of the singular periodic orbits Γ0(c).

3.4.1 Pulled fronts

We recall from §3.2 that for c = clin(a) = 2
√
a(1− a) for each value of 0 < a < 1/2, there exist pulled

fronts φ`lin(a), φrlin(a) which connect (a, 0, 0) to the left and right branches M`
0 and Mr

0 of the critical manifold,

respectively.

Further, from §3.3, for each c > 0 there exists a singular periodic orbit Γ0(c). For c < c∗(a) =

√
1− a+ a2

2
, this

periodic orbit is in the hyperbolic regime, while c ≥ c∗(a) constitutes the nonhyperbolic regime.

Therefore, for 0 < a <
1

2
−
√

5

6
, at c = clin(a), there are pulled fronts coinciding with a singular periodic orbit

12
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Figure 5: Shown is the geometry for of the singular periodic orbit Γ0(c) in the nonhyperbolic regime c ≥ c∗(a).

The orbit Γ0(c) is formed by traversing the singular segments φf(c),M`
0, φb(c),Mr

0 in turn.

Γ0(c) in the hyperbolic regime, while for
1

2
−
√

5

6
< a <

1

2
, the pulled fronts coincide with a periodic orbit in

the nonhyperbolic regime.

This allows us to construct singular pulled fronts as follows: For each value of the wave speed c = clin(a) for

certain values of 0 < a < 1/2, there is a singular invasion front F r0 (a) which follows the periodic orbit Γ0(clin(a)),

then a segment of the right branch Mr
0 of the critical manifold, then the front φrlin(a). This can only happen in

the case that the periodic orbit traverses a fast segment φf which lies below w = 0; otherwise the front φrlin(a)

does not exist. This happens whenever clin(a) > cbs =
1√
2

(1 − 2a), which occurs for ab < a <
1

2
. Hence there

is a singular invasion front F r0 (a) for each ab < a <
1

2
. The geometry of the singular pulled front is shown in

Figure 6.

For the same values of ab < a <
1

2
, there is a second front F `0 (a) which follows Γ0(clin(a)), then a segment of

the left branch M`
0 of the critical manifold, then the front φ`lin(a). While the front φ`lin(a) exists for 0 < a < ab,

since the periodic orbit Γ0(clin(a)) lies entirely above the plane w = 0, there is no singular orbit which can reach

(a, 0, 0) via φ`lin(a).

3.4.2 Pushed fronts

Similarly to the pulled case, we construct singular invasion fronts P r0 (a) at c = cp(a) =
1√
2

(1 + a) for each value

of 0 < a < 1/3 by following the periodic orbit Γ0(cp(a)), then a segment of the right branch Mr
0 of the critical

manifold, then the front φrp(a); see Figure 7. We note that the associated periodic orbit Γ0(cp(a)) always occurs

in the nonhyperbolic regime.
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Figure 6: Shown is the geometry of the singular pulled fronts F r0 (a) and F `0 (a). The front F r0 (a) is formed by

following the singular periodic orbit Γ0(clin(a)) formed by φf ,M`
0, φb,Mr

0, then a segment of the right branch

Mr
0 of the critical manifold, then the front φrlin(a); F `0 (a) is formed by following Γ0(clin(a)), then a segment of

the left branch M`
0 of the critical manifold, then the front φ`lin(a).
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Wu(Mr
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p

Figure 7: Shown is the geometry of the singular pushed front P r0 (a), which is formed by concatenating the

singular periodic orbit Γ0(clin(a)) formed by φf ,M`
0, φb,Mr

0, with a segment of the right branch Mr
0 of the

critical manifold, then the front φrp(a).
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4 Persistence of solutions for 0 < ε� 1

We use geometric singular perturbation theory to show that the singular solutions constructed in §3.3–3.4 perturb

to solutions of the full problem for sufficiently small ε > 0. Using information about the periodic orbits Γε(c) for

small ε, we find the desired invasion fronts as intersections of the unstable manifold Wu(Γε(c)) of the periodic

orbit and solutions with appropriate decay properties on the stable manifold Ws(p) of the equilibrium.

In §4.1, we collect results of Fenichel theory regarding persistence of invariant manifolds for 0 < ε� 1, and we

further describe the flow near the fold points on the critical manifold. In §4.2, we construct periodic orbits for

0 < ε � 1 based on the singular solutions in §3.3, and in §4.3 we prove a technical proposition concerning the

closeness of the stable/unstable manifolds of the periodic orbits to the stable/unstable manifolds of the left and

right slow manifolds M`,r
ε . Finally we complete the proofs of Theorems 1.1, 1.2 and 1.3 in §4.4, §4.5 and §4.6,

respectively.

4.1 Persistence of invariant manifolds

We first recall some standard results from geometric singular perturbation theory. Away from the fold points,

the branches M`
0,Mm

0 ,Mr
0 are normally hyperbolic and therefore persist as locally invariant slow manifolds

M`
ε,Mm

ε ,Mr
ε, on which the flow is an O(ε) perturbation of the slow flow (3.3). Therefore the flow on M`

ε

satisfies u′ < 0, on Mr
ε we have u′ > 0, and on Mm

ε there is a single equilibrium at p which is attracting for the

slow flow.

Further the two dimensional stable/unstable manifolds Ws/u(M`
0) formed as the union of the stable/unstable

manifolds of the saddle equilibria p1(w) of the layer equations (3.9) persist for 0 < ε � 1 as locally invariant

two-dimensional stable/unstable manifolds Ws/u(M`
ε) of the perturbed slow manifoldM`

ε. These manifolds are

foliated by stable/unstable fibers which form an invariant family. The same holds for the saddle-type critical

manifold Mr
0 and we obtain corresponding perturbed stable/unstable manifolds Ws/u(Mr

ε).

The middle branchMm
0 is completely stable and hence has a three dimensional stable manifold Ws(Mm

0 ) which

persists asWs(Mm
ε ) for sufficiently small ε > 0. Since the equilibrium p onMm

ε is attracting under the slow flow,

the manifold Ws(Mm
ε ) in fact coincides with the stable manifold Ws(p). This stable manifold can be separated

into slow/fast components: In the fast system (1.2) for ε = 0 there are two strictly negative eigenvalues, while a

third negative eigenvalue which is O(ε) comes from the slow flow tangential to the slow manifoldMm
ε for ε > 0.

Hence the equilibrium p has a two dimensional strong stable manifold Wss(p) whose tangent space is O(ε)-close

to the plane {w = 0} (when ε = 0, Wss(p) lies entirely in this plane).

4.1.1 Local analysis near the folds

We consider the lower left fold p`. The analysis near the upper fold is similar. The lower fold point is given by

the fixed point p` = (u`, 0, w`) of the layer problem (3.9) where from (3.4) we have

u` =
1

3

(
a+ 1−

√
1− a+ a2

)
,

and w` = f(u`). The linearization of (1.2) about this fixed point has one negative real eigenvalue −c < 0 and a

double zero eigenvalue, since f ′(u`) = 0.

We note that the geometry near the fold is similar to that considered in [7, §4] (in fact the scenarios are identical

up to a reversal of time and change of orientation), and hence we draw on the local analysis as presented in [7].

We first move to a local coordinate system in a neighborhood of p`: there exists a neighborhood V` of p`, in

which we can perform the following Ck-change of coordinates Φε : V` → R3 to (1.2), which is Ck-smooth in c ∈ Ic
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and ε > 0 sufficiently small. We apply Φε in the neighborhood of the fold point and rescale time by a positive

constant so that (1.2) becomes

x′ =
(
y − x2 + h(x, y, ε; c)

)
,

y′ = εg(x, y, ε; c),

z′ = z (−θ +O(x, y, z, ε)) ,

(4.1)

where θ is a positive constant, and h, g are Ck-functions satisfying

h(x, y, ε; c) = O(ε, xy, y2, x3),

g(x, y, ε; c) = 1 +O(x, y, ε),

uniformly in c ∈ Ic. In the transformed system (4.1), the x, y-dynamics is decoupled from the dynamics in the

z-direction along the straightened out strong stable fibers. Thus, the flow is fully described by the dynamics on

the two-dimensional invariant center manifold z = 0 and by the one-dimensional dynamics along the fibers in

the z-direction. Figure 8 depicts the singular ε = 0 flow of (4.1).

M`
0

z

x

y

Mm
0

Figure 8: Shown are the singular ε = 0 dynamics in the local coordinates of the lower left fold point. The

trajectory M`,+
0 is formed by concatenating M`

0 with the positive x-axis.

We consider the flow of (4.1) on the invariant manifold z = 0. We append an equation for ε, arriving at the

system

x′ = y − x2 + h(x, y, ε; c),

y′ = εg(x, y, ε; c),

ε′ = 0.

(4.2)

For ε = 0, this system possesses a critical manifold given by {(x, y) : y − x2 + h(x, y, 0; c) = 0}, which in

a sufficiently small neighborhood of the origin is shaped as a parabola opening upwards. The branch of this

parabola for x < 0 is repelling and corresponds to the manifoldM`
0. We defineM`,+

0 to be the singular trajectory

obtained by appending the fast trajectory given by the line {(x, 0) : x > 0} to the repelling branch M`
0 of the

critical manifold; see Figure 8. In [7, §4] it was shown that, for sufficiently small ε > 0, M`,+
0 perturbs to a

trajectory M`,+
ε on z = 0, represented as a graph y = ysε(x; c), which is O(ε2/3)-close in C0 and O(ε1/3)-close

in C1 to M`,+
0 , uniformly in c ∈ Ic. Therefore, the manifold Ws(M`,+

0 ) composed of the strong stable fibers of

the singular trajectory M`,+
0 also perturbs to a two-dimensional locally invariant manifold Ws(M`,+

ε ) which is

O(ε2/3)-close in C0 and O(ε1/3)-close in C1 to Ws(M`,+
0 ).
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Figure 9: Shown is the geometry near the lower left fold point for c ≈ c∗(a) and 0 < ε � 1. The manifold

Ws(M`,+
ε ) is formed by the stable fibers of the trajectory M`,+

ε . The manifolds Ws(M`,+
ε ) and Wu(Mr

ε)

intersect transversely in the section Σfold
z .
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Figure 10: Shown is the geometry near the lower left fold point for c > c∗(a) and 0 < ε � 1. The manifolds

Ws(M`,+
ε ) and Wu(Mr

ε) intersect transversely in the section Σfold
x .

17



For c > c∗(a), the manifolds Ws(M`,+
0 ) and Wu(Mr

0) intersect along the front φf(c). The following proposition

concerns the transversality of this connection.

Proposition 4.1. Fix 0 < a < 1/2. There exists δc > 0 such that for each c > c∗(a)− δc and each sufficiently

small ε > 0, the manifolds Ws(M`,+
ε ) and Wu(Mr

ε) intersect transversely.

Proof. We note that to the right of the fold point (that is, for x > 0 in the local coordinates in V`), the trajectory

M`,+
0 lies in a plane of constant w since in this region M`,+

0 is described by the fast ε = 0 flow. Thus we need

to show transversality of the manifolds Ws(M`,+
0 ) and Wu(Mr

0) with respect to w, which is a parameter for the

fast ε = 0 flow.

It suffices to prove transversality at ε = 0 for each c ≥ c∗(a). By the C1-dependence of the manifolds on c, this

transversality persists for c > c∗(a) − δc. The fact that this transversality persists for small ε > 0 follows from

the O(ε1/3)-closeness of Ws(M`,+
ε ) and Ws(M`,+

0 ) as C1-manifolds.

To continue, we consider the planar system (3.9), for which there exists the heteroclinic connection φf(c) for each

c ≥ c∗(a) which connects the equilibria p3(w`) and p1(w`).

Thus the manifoldsWs(M`,+
0 ) andWu(Mr

0) intersect in the full system along φf(c). SinceM`,+
0 lies in the plane

y = 0 in the region x > 0 (and thus so do its fast fibers since the fast flow is confined to y = const planes), we

have that Ws(M`,+
0 ) is tangent to the plane y = 0 along φf(c); equivalently Ws(M`,+

0 ) is tangent to the plane

w = w` in the original (u, v, w)-coordinates. In (3.9), from regular perturbation theory, the unstable manifold

of the equilibrium p3(w) (given by the trajectory φf(c) at w = w`) breaks smoothly in w and thus Wu(Mr
0) is

transverse to planes w = const; in particular this gives the necessary transversality of Ws(M`,+
0 ) and Wu(Mr

0).

We therefore obtain the desired transverse intersection of Ws(M`,+
ε ) and Wu(Mr

ε) c > c∗(a) − δc and each

sufficiently small ε > 0. The geometry of this intersection for ε > 0 is depicted in Figure 9 for c ≈ c∗(a) and in

Figure 10 for c > c∗(a) + δc.

The analysis near the upper right fold point follows in a similar fashion. There it is possible to construct a

singular trajectory Mr,+
0 analogous to M`,+

0 . This trajectory also possesses a stable manifold Ws(Mr,+
0 ) which

perturbs as O(ε2/3) in C0 and as O(ε1/3) in C1. For ε = 0, this manifold analogously intersects Wu(M`
0) along

the heteroclinic trajectory φb(c) for c ≥ c∗(a) in the plane w = wr. We have the following, which is proved

similarly to Proposition 4.1.

Proposition 4.2. Fix 0 < a < 1/2. There exists δc > 0 such that for each c > c∗(a)− δc and each sufficiently

small ε > 0, the manifolds Ws(Mr,+
ε ) and Wu(M`

ε) intersect transversely.

See Figure 5 for a depiction of the results of Propositions 4.1 and 4.2.

4.2 Construction of periodic orbits

In this section, we show that the singular periodic orbits Γ0(c) constructed in §3.3 perturb to periodic orbits Γε(c)

of the full system for sufficiently small ε > 0. It is well known that this holds in the hyperbolic regime [5, 40];

hence we focus on the nonhyperbolic regime. We have the following proposition.

Proposition 4.3. Fix 0 < a < 1/2. There exists δc > 0 such that for each c > c∗(a) − δc, and for each

sufficiently small 0 < ε� 1, there exists a periodic orbit Γε(c) which is O(ε2/3)-close to Γ0(c).

Remark 4.4. The O(ε2/3) estimate in Proposition 4.3 appears due to the passage near the fold points on the

critical manifold.
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Remark 4.5. Proposition 4.3 guarantees, for fixed a, the existence of periodic orbits Γε(c) for c > c∗(a) − δc,
where δc > 0 is independent of ε. This family of orbits therefore overlaps with those in the hyperbolic regime,

forming the single family described in Theorem 1.1.

Proof of Proposition 4.3. For technical reasons, it is best to split the proof of Proposition 4.3 into two cases: (i)

c ≈ c∗(a) and (ii) c > c∗(a), though the arguments in each case are similar.

We begin with case (i) and fix 0 < a < 1/2. For sufficiently small δc > 0, we define the interval Ic =

[c∗(a) − δc, c
∗(a) + δc]. When c = c∗(a), the fronts φf(c), φb(c) approach the folds along the unique strong

stable direction. Our approach for constructing periodic orbits which follow Γ0(c) for c ∈ Ic will be to place a

two-dimensional section Σfold
z near the lower left fold point p` transverse to the strong stable eigendirection and

consider the associated Poincaré map Π : Σfold
z → Σfold

z ; fixed points of this map correspond to periodic orbits.

We determine the location of Wu(Mr
ε) in the neighborhood V`. From Proposition 4.1, we know that Wu(Mr

0)

intersectsWs(M`,+
0 ) transversely for ε = 0 along the front φf(c

∗(a)), and this intersection persists for c ∈ Ic and

sufficiently small ε > 0.

We define the exit section Σfold
z by

Σfold
z = {z = ∆z}; (4.3)

see Figure 9 for the setup. For c ∈ Ic and sufficiently small ε > 0, the intersection of Wu(Mr
ε) and Ws(M`,+

ε )

occurs at a point

(x, y, z) = (x`(c, ε), y
s
ε(x`(c, ε); c),∆z) ∈ Σfold

z , (4.4)

and thus we may expand Wu(Mr
ε) in Σfold

z as a graph x = xuε(y; c) where

xuε(y; c) = x`(c, ε) +O (|y − ysε(x`(c, ε); c)|) , |y| ≤ ∆y, (4.5)

for some small ∆y > 0.

We now consider a small interval of initial conditions in Σfold
z which we will evolve backwards in time until they

return to the section Σfold
z ; that is, we consider the inverse map Π−1z : Σfold

z → Σfold
z . Since Wu(Mr

ε) ∩ Σfold
z is

given by a graph over |y| ≤ ∆y, we can define for each |ỹ| ≤ ∆y the curve Iỹ = {(x, ỹ,∆z) : |x| ≤ ∆x} ⊂ Σfold
z

for sufficiently small ∆x > 0 which transversely intersects Wu(Mr
ε) in Σfold

z at the point (xuε(ỹ; c), ỹ,∆z); see the

left panel of Figure 11.

Due to this transverse intersection, when evolving Iỹ backwards in time, by the exchange lemma [36], Is traces

out a two-dimensional manifold Īỹ which aligns exponentially close to Ws(Mr
ε) before transversely intersecting

Wu(M`
ε) near the plane w ≈ wr, due to Proposition 4.2. Due to this second transverse intersection, again by the

exchange lemma, Īỹ then aligns exponentially close to Ws(M`
ε) and hence arrives in the section Σfold

z aligned

exponentially close to Ws(M`,+
ε ); see Figure 11 (left panel).

Therefore, we have that Π−1z (Iỹ) is given by a curve

(x, y) = (x̃, ysε(x̃; c) + h(x̃, ỹ, c, ε)) (4.6)

for |x̃| ≤ ∆x, where h(x̃, ỹ, c, ε) = O(e−η/ε) uniformly in (x̃, ỹ, c).

We now consider Πz applied to Π−1z (Iỹ). Of course Πz(Π
−1
z (Iỹ)) ⊂ Iỹ, but the image is contained in an

exponentially thin interval within Iỹ. In particular for a point (x̃, ysε(x̃; c) + h(x̃, ỹ, c, ε)) ∈ Π−1z (Iỹ) with |x̃| ≤ ∆x,

the image under Πz is given by

Πz (x̃, ysε(x̃; c) + h(x̃, ỹ, c, ε)) =
(
xuε(ỹ; c) +O(e−η/ε), ỹ

)
, (4.7)
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Figure 11: Shown is the setup for case (i) in the section Σfold
z (left) and for case (ii) in the section Σfold

x (right)

in the proof of Proposition 4.3.

where the exponentially small errors are uniform in x̃, ỹ, c and the derivatives with respect to these variables are

also exponentially small. To find a fixed point, we set the argument equal to the right hand side and obtain

x̃ = xuε(ỹ; c) +O(e−η/ε)

ỹ = ysε(x̃; c) +O(e−η/ε).
(4.8)

Hence we search for zeros of F(x̃, ỹ; c, ε) where

F(x̃, ỹ; c, ε) :=

(
x̃− xuε(ỹ; c) +O(e−η/ε)

ỹ − ysε(x̃; c) +O(e−η/ε)

)
. (4.9)

We have that

D(x̃,ỹ)F(0, 0; c∗(a), 0) :=

(
1 K

0 1

)
, (4.10)

for some K independent of ε, and so by the implicit function theorem, for c ∈ Ic and sufficiently small ε > 0, we

can solve for a solution which occurs when(
x̃

ỹ

)
=

(
x̃p(c, ε)

ỹp(c, ε)

)
:=

(
x`(c, ε)

ysε(x`(c, ε); c)

)
+O(e−η/ε), (4.11)

which corresponds to a periodic orbit.

We now turn to the case (ii) for which it remains to consider values c > c∗(a) + δc. The argument is similar to

case (i), and hence we only outline the differences. For small ∆x > 0, we define the section

Σfold
x = {x = ∆x}; (4.12)

see Figure 10 for the setup.

Since φf(c) approaches the fold along a center direction for c > c∗(a), φf(c) is attracted to the local center manifold

z = 0 in forward time. Hence for each ∆z > 0, by possibly shrinking ∆x if necessary, it is possible to guarantee
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that φf(c) intersects the section Σfold
x in the plane y = 0 at a point (∆x, 0, zf(c)) where 0 ≤ zf(c) < ∆z/2.

Therefore in the section Σfold
x , the manifold Wu(Mr

ε) can be represented as a graph

z = zf(c) +O(y, ε), |y| ≤ ∆y. (4.13)

For each |ỹ| ≤ ∆y, we now define the curve Iỹ = {(∆x, ỹ, z) : |z| ≤ ∆z} ⊂ Σfold
x which transversely intersects

Wu(Mr
ε) provided ∆y is sufficiently small.

Since Ws(M`,+
ε ) is O(ε2/3) close in C0 to Ws(M`,+

0 ), in the section Σfold
x , the manifold Ws(M`,+

ε ) lies in

the plane y = ysε(∆x; c) = O(ε2/3) for |z| ≤ ∆z, and therefore intersects Wu(Mr
ε) transversely at the point

(y, z) = (ysε(∆x; c), zuε (c)) where zuε (c) = zf(c) +O(ε2/3); see Figure 11 (right panel).

Proceeding as before, we consider the inverse map Π−1x : Σfold
x → Σfold

x , under which Π−1x (Iỹ) returns to Σfold
x

exponentially aligned with Ws(M`,+
ε ). We again consider the image Πx(Π−1x (Iỹ)), and proceeding similarly as

before, we find a fixed point corresponding to a periodic orbit at(
ỹ

z̃

)
=

(
ỹp(c, ε)

z̃p(c, ε)

)
:=

(
0

zf(c)

)
+O(ε2/3). (4.14)

Remark 4.6. We remark that the periodic orbits constructed in the hyperbolic regime are spectrally stable in

the original PDE [12]; their spectra is contained in the open left plane, except for a simple eigenvalue at the

origin due to translation invariance. This implies that these solutions are in fact nonlinearly stable [20]. It is

not known whether the periodic orbits in the nonhyperbolic regime are stable, and we do not consider the PDE

stability of the periodic orbits from Proposition 4.3 in this work. However, we expect that the methods used in [12]

to obtain spectral stability of the periodic orbits in the hyperbolic regime extend to the nonhyperbolic regime with

appropriate modifications.

4.3 Stable and unstable manifolds of the periodic orbits Γε(c)

In this section, we prove a technical result result related to the stable and unstable manifolds of the periodic

orbits Γε(c) from §4.2. This is necessary in completing the proof of Theorem 1.1, which requires hyperbolicity

of the orbits Γε(c), and is further needed in order to find invasion fronts, which manifest as heteroclinic orbits

lying in the intersection of Wu(Γε(c)) and Ws(p).

The periodic orbit Γε(c) is found by perturbing from a singular structure Γ0(c) which consists of concatenated

slow and fast segments, where the slow segments are portions of the branches M`
0,Mr

0 of the critical manifold.

When 0 < ε� 1, we aim to show that along portions of Γε(c) which are nearbyM`
ε,Mr

ε, the unstable manifold

Wu(Γε(c)) is, in an appropriate sense, close to Wu(M`
ε),Wu(Mr

ε), respectively.

Consider the periodic orbit Γε(c) for c > 0, and recall that wf(c), wb(c) ∈ [w`, wr] denote the jump-off heights

along the associated singular periodic orbit Γ0(c). (Note that wf(c) = w` and wb(c) = wr for all c ≥ c∗(a).)

Proposition 4.7. Fix 0 < a < 1/2 and c > 0, and let wm, wM satisfy wf(c) < wm < wM < wb(c). Then there

exists ∆, η > 0 such that for all ε > 0 sufficiently small, the following holds. Consider the Fenichel neighborhoods

U ` :=
{
q = (u, v, w) : d(q,M`

ε) < ∆, wm < w < wM
}

Ur := {q = (u, v, w) : d(q,Mr
ε) < ∆, wm < w < wM} .

(4.15)

Within U ` the periodic orbit Γε(c) is O(e−η/ε)-close toM`
ε in the C1-topology, and the manifoldsWu(Γε(c)),Ws(Γε(c))

are O(e−η/ε)-close in the C1-topology to Wu(M`
ε),Ws(M`

ε), respectively.

Within Ur, the same statements hold with respect to the manifolds Mr
ε and Wu(Mr

ε),Ws(Mr
ε).
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Figure 12: Shown is the setup in the section Σf (left) and Σb (right) in the proof of Proposition 4.7.

Proof. We focus on the hyperbolic case 0 < c < c∗(a); the nonhyperbolic case c ≥ c∗(a) is similar. We

consider a Poincaré section Σf transverse to the periodic orbit along the front φf(c). We study the Poincaré map

Πp : Σf → Σf to determine the structure of the manifolds Wu(Γε(c)),Ws(Γε(c)). We can analogously place a

section Σb transverse to the periodic orbit along the front φb(c); see Figure 4. Then Πp is the composition of

two maps Πp = Πbf ◦ Πfb where Πfb : Σf → Σb and Πbf : Σb → Σf denote the transition maps between the

sections Σf ,Σb.

Within the section Σf , the manifoldsWu(Mr
ε) andWs(M`

ε) intersect transversely at a point in which isO(e−η/ε)-

close to Γε(c). We choose local coordinates {(X,Y ) : |X|, |Y | ≤ ∆} in the section Σf so that Wu(Mr
ε) ∩ Σf =

{X = 0} and Ws(M`
ε) ∩ Σf = {Y = 0}. In these coordinates, Γε(c) ∩ Σf is given as a point (X,Y ) = O(e−η/ε).

We now shift these coordinates so that Γε(c) ∩ Σf = (0, 0) and thus Wu(Mr
ε) and Ws(M`

ε) are given by curves

X = O(e−η/ε) and Y = O(e−η/ε), respectively; see Figure 12 (left panel).

Within the section Σb, we proceed similarly and choose coordinates {(W,Z) : |W |, |Z| ≤ ∆} so that Γε(c) ∩
Σf = (0, 0) and the manifolds Wu(M`

ε) and Ws(Mr
ε) are given by curves W = O(e−η/ε) and Z = O(e−η/ε),

respectively; see Figure 12 (right panel).

We wish to obtain estimates on the map Πp : (X,Y ) 7→ Πp(X,Y ). We consider a line B0 := {(X,Y0) : |X| ≤
∆} ⊂ Σf . We now consider the image Π−1bf (B0) in the section Σb. Since B0 transversely intersects Wu(Mr

ε), in

backwards time, by the exchange lemma Π−1bf (B0) is aligned exponentially close to Ws(Mr
ε) which is given by a

curve Z = O(e−η/ε). We next consider a line F0 := {(X0, Y ) : |Y | ≤ ∆} ⊂ Σf ,and we consider the image Πfb(F0)

in the section Σb. Again by the exchange lemma, since F0 transversely intersects Ws(M`
ε), in Σb Πfb(F0) is

aligned exponentially close to Wu(M`
ε).

Therefore the two curves Π−1bf (B0) and Πfb(F0) intersect transversely at a point (W,Z) = (W ∗, Z∗) = O(e−η/ε).

We now reverse the maps and, again by the exchange lemma, deduce that Πbf (W ∗, Z∗) = (X∗, Y0) where

X∗ = O(e−η/ε), and similarly Π−1fb (W ∗, Z∗) = (X0, Y
∗) where Y ∗ = O(e−η/ε); see Figure 12 (left panel).

Therefore, given (X0, Y0), there exists X∗, Y ∗ such that Πp(X0, Y
∗) = (X∗, Y0), and X∗, Y ∗ and their derivatives

with respect to X0, Y0 are O(e−η/ε); also, by construction, the point (X,Y ) = (0, 0) is a fixed point of Πp. On

the domain of definition of Π, it follows that the derivative DΠp is uniformly expanding on the cone |X| ≤ µ|Y |,
and similarly DΠ−1p is expanding on the cone |Y | ≤ µ|X| for any sufficiently small fixed µ > 0.

Therefore, the splitting of the tangent space at the fixed point (X,Y ) = (0, 0) along the X and Y coordinate
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directions is an almost hyperbolic splitting in the sense of [34, §3]. Hence by [34, Theorem 3.1], the fixed point

(X,Y ) = (0, 0) corresponding to Γε(c) is a hyperbolic set and therefore has invariant stable and unstable mani-

folds Wu(Γε(c)),Ws(Γε(c)) given as graphs over the subspaces X = 0 and Y = 0, respectively [21]. By evolving

Wu(Γε(c)),Ws(Γε(c)) forward (resp. backward) under the flow of (1.2) and again using the exchange lemma,

it is clear that within the Fenichel neighborhoods U`, Ur, the stable/unstable manifolds Wu(Γε(c)),Ws(Γε(c))

must align C1 O(e−η/ε)-close to the stable/unstable manifolds of the slow manifolds M`
ε,Mr

ε as claimed.

For the nonhyperbolic case, the same argument can be applied by replacing the manifoldWs(M`
ε) withWs(M`,+

ε )

in the section Σf , and by similarly replacing Ws(Mr
ε) with Ws(Mr,+

ε ) in Σb; see Figure 5.

4.4 Proof of Theorem 1.1

In light of the results of §4.2 and §4.3, we briefly conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. The existence of a continuous family of periodic orbits in the hyperbolic/nonhyperbolic

regimes follows from known results in [40], combined with Proposition 4.3 above; see §3.3. It remains to consider

the final statements regarding the period L(c; ε) of the solutions.

First, we comment on the monotonicity of the period. We claim that the derivative ∂cL(c; ε) has fixed sign.

Suppose ∂cL(c; ε) = 0 for some value of c. Let φper(ξ; c, ε) = (uper, wper)(ξ; c, ε) denote the family of traveling

periodic orbits. Each element of this family is a stationary solution to the PDE (1.1) in the appropriate comoving

frame ξ = x− ct

D∂ξξφper + c∂ξφper + F (φper) = 0, (4.16)

where

D =

(
1 0

0 0

)
, F (u,w) =

(
f(u)− w

ε(u− γw − a)

)
(4.17)

along with periodic boundary conditions φper(ξ + L; c, ε) = φper(ξ; c, ε), for all ξ ∈ R. Equivalently, by rescaling

the traveling wave variable ξ = Lθ, φper satisfies the equation

4π2

L2
D∂θθφper +

2π

L
c∂θφper + F (φper) = 0 (4.18)

with the fixed periodic boundary conditions φper(θ + 2π; c, ε) = φper(θ; c, ε), for all θ ∈ R. The linearization

of (4.18) about φper is given by the operator

Lper :=
4π2

L2
D∂θθ +

2π

L
c∂θ + F ′(φper) (4.19)

and due to translation invariance ∂θφper lies in the kernel of Lper.

By differentiating (4.18) with respect to c, if ∂cL(c; ε) = 0, then the derivative ∂cφper satisfies the equation

4π2

L2
D∂θθ(∂cφper) +

2π

L
c∂θ(∂cφper) + F ′(φper)∂cφper = −2π

L
∂θφper, (4.20)

that is, ∂cφper lies in the generalized kernel of Lper. From this we deduce that φper has a Floquet multiplier 1 of

algebraic multiplicity 2, which contradicts the hyperbolicity of φper obtained in §4.3. We deduce that the period

L(c; ε) is strictly monotone in c; the fact that L is increasing follows from the expansions below.

To obtain the asymptotics of L(c; ε) in ε, we will use proximity of the periodic orbits Γε(c) to the singular

solutions Γ0(c). We first consider the hyperbolic regime and fix 0 < c < c∗(a). Then Γε(c) follows an orbit in
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phase space which remains O(ε)-close to the singular orbit Γ0(c) which traverses the front φf , the piece of the

slow manifold M`
0 between w = wf and w = wb, the front φb, and finally the piece of the slow manifold Mr

0

from w = wb and w = wf . We proceed by estimating the time spent along each portion.

Along the slow manifold M`
0, Γε(c) is O(ε)-close to the curve w = f(u) and the w-dynamics are given by

ẇ =
ε

c
(u− γw − a) (4.21)

=
ε

c
(f−1(w)− γw − a+O(ε)), (4.22)

where f−1(w) is interpreted as the smallest of the three roots of f(u) = w. We determine the time spent along

this portion as

L`ε(c) =

∫ wb

wf

c

ε(f−1(w)− γw − a+O(ε))
dw

=
c

ε

∫ wb

wf

1 +O(ε))

(f−1(w)− γw − a)
dw.

(4.23)

We define

L`0(c) = c

∫ wb

wf

1

(f−1(w)− γw − a)
dw (4.24)

and note that L`0(c) > 0 and L`0(c) is an increasing function of c due to the fact that wf and wb decrease and

increase, respectively, as c increases. Further, we have that

εL`ε(c) = L`0(c) +O(ε). (4.25)

Along Mr
0, we can proceed similarly and define

Lr0(c) = c

∫ wf

wb

1

(f−1(w)− γw − a)
dw, (4.26)

where now f−1(w) refers to the largest of the three roots of u = f(w). Again we have that Lr0(c) > 0 and Lr0(c)

is an increasing function of c. Finally we obtain that the time spent near Mr
0 is given by Lrε(c) where

εLrε(c) = Lr0(c) +O(ε). (4.27)

Finally, the full period L(c, ε) is obtained as the sum L`ε(c) + Lrε(c) spent within a O(ε) neighborhood of the

slow manifolds, plus the jump time spent traveling between the slow manifolds along the fronts φf and φb. To

estimate these jump times, we note that each jump consists of a finite time segment between small Fenichel

neighborhoods ofM`
0 andMr

0, as well as transitions from the boundaries of the Fenichel neighborhoods to O(ε)

neighborhoods of M`
0 and Mr

0. These latter transition times can be estimated as O(log ε) using corner-type

estimates (see, for instance, [6, Theorem 4.5]). Hence we obtain

L(c, ε) = L`ε(c) + Lrε(c) +O(log ε)

= ε−1L0(c) +O(log ε)
(4.28)

where L0(c) = L`0(c) + Lr0(c).

We now consider the nonhyperbolic regime and fix c > c∗(a). We proceed similarly by considering the flow along

the slow manifolds, noting that now Γε(c) traverses near the folds alongM`,+
ε andMr,+

ε . By the C1 −O(ε1/3)-

proximity of the manifoldsM`,+
ε andMr,+

ε to their singular ε = 0 counterparts, and the fact that Γε(c) remains

within O(ε2/3) of the singular solution Γ0(c), we can estimate the time spent along each of M`,+
ε and Mr,+

ε
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between w = w` and w = wr. Near M`,+
ε , the time spent is approximated by

L`ε(c) =

∫ wr

w`

c+O(ε2/3)

ε(f−1(w)− γw − a+O(ε1/3))
dw

=
c

ε

∫ wr

w`

1 +O(ε1/3)

(f−1(w)− γw − a)
dw.

(4.29)

By defining

L`0(c) = c

∫ wr

w`

1

(f−1(w)− γw − a)
dw, (4.30)

we note L`0(c) > 0 and L`0(c) is an increasing function of c, and we have that

εL`ε(c) = L`0(c) +O(ε1/3). (4.31)

We define Lrε(c), L
r
0(c) analogously and set L0(c) = L`0(c) +Lr0(c); by similar arguments as in the hyperbolic case

above, we obtain

L(c, ε) = L`ε(c) + Lrε(c) +O(log ε)

= ε−1L0(c) +O(ε−2/3).
(4.32)

4.5 The pulled case: proof of Theorem 1.2

In the pulled front case, we aim to find an intersection of the manifolds Wu(Γε(c)) and Ws(p) coinciding with a

double root in the linearization about the equilibrium p. From the layer analysis in §3.2, for ε = 0 this double

root occurs at c = clin(a). In the full three-dimensional system for ε = 0, there is an additional zero eigenvalue

present due to the third equation ẇ = 0. This eigenvalue perturbs and becomes negative for 0 < ε� 1, so that

the stable manifold Ws(p) is three dimensional; see also §4.1.

Hence for ε = 0, we define the strong stable manifold Wss(p) to be that which corresponds to the two strictly

negative eigenvalues; this manifold lies in the plane {w = 0}. For 0 < ε � 1, this manifold perturbs to a

two-dimensional manifold which is O(ε)-close to its ε = 0 counterpart. Further the eigenvalues perturb and may

split; however, by solving for c = clin(a) + O(ε) =: clin(a, ε) as in Lemma 2.1, we can ensure that the double

eigenvalue persists for 0 < ε� 1.

We therefore have the following.

Proof of Theorem 1.2. The manifolds Wss(p) and Wu(Mr
0) intersect transversely for ε = 0. This transverse

intersection persists for 0 < ε � 1, with the double eigenvalue occurring for c = clin(a, ε). By Proposition 4.7,

the unstable manifold Wu(Γ(clin(a, ε))) is O(e−η/ε)-close to Wu(Mr
ε) and hence also transversely intersects

Wss(p) along a solution orbit F rε (a).

A similar argument can be applied to the manifolds Wu(M`
ε) and Wss(p), which results in a second distinct

heteroclinic solution F `ε (a).

4.6 The pushed case: proof of Theorem 1.3

We recall from §3.2 that for 0 < a < 1/3, the front φrp(a) is constructed by identifying the unique solution

which decays to p with the strongest rate for ε = 0. Again, as outlined above, when ε > 0, the equilibrium p

is completely stable and has a three dimensional stable manifold Ws(p). In the pushed regime, there are three
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distinct real eigenvalues, and hence for 0 < ε� 1, within this manifold is a one-dimensional ‘super’ strong stable

manifold Wsss(p) which is O(ε)-close to the front φrp(a).

To construct invasion fronts in the pushed case, we aim to find an intersection of the manifolds Wu(Γε(c)) and

Ws(p) along the strong stable manifold Wsss(p).

First a lemma.

Lemma 4.8. Fix 0 < a < 1/3 and let c̃ = c− cp(a). For all sufficiently small ε > 0 and c̃, the distance function

defining the separation of the manifolds Wu(Mr
ε) and Wsss(p) is given by

D(c̃, ε) = M c
f c̃+Mε

f ε+O(ε2 + c̃2), (4.33)

where M c
f ,M

ε
f < 0 are given by

M c
f = −

∫ ∞
−∞

ecp(a)ξvp(ξ)2 dξ (4.34)

Mε
f =

1

cp(a)

∫ ∞
−∞

∫ ξ

−∞
ecp(a)ζvp(ζ)(up(ξ)− a) dζ, (4.35)

where up(ξ), vp(ξ) are given by (3.15).

Proof. To compute this distance function, we apply Melnikov theory.

We consider the planar system (3.9) for w = 0

u̇ = v

v̇ = −cv − f(u),
(4.36)

As stated in §3.2, for c = cp(a), this system possesses a heteroclinic connection φrp(ξ) = (up(ξ), vp(ξ)) between

the critical points (u, v) = (1, 0) = p3(0) and (u, v) = (a, 0) = p2(0) = p that lies in the intersection ofWu(p3(0))

and Wsss(p). We now compute the distance between Wu(p3(0)) and Wsss(p) to first order in c − cp(a). We

consider the adjoint equation of the linearization of (4.36) about the front φr given by

ψ̇ =

 0 f ′(up(ξ))

−1 cp(a)

ψ. (4.37)

The space of solutions which grow as ξ →∞ with exponential rate at most

ν ≤ −ν+ =
cp(a)−

√
cp(a)2 + 4(a2 − a)

2
(4.38)

is one-dimensional and spanned by

ψp(ξ) := ecp(a)ξ

(
−v̇p(ξ)

u̇p(ξ)

)

= ecp(a)ξ

(
−v̇p(ξ)

vp(ξ)

) (4.39)

Let F0 denote the right hand side of (4.36), and define the Melnikov integral

M c
f =

∫ ∞
−∞

DcF0(φrp(ξ)) · ψp(ξ) dξ

= −
∫ ∞
−∞

ecp(a)ξvp(ξ)2 dξ

< 0.
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This integral measures the distance between Wu(p3(0)) and Wsss(p) to first order in c− cp(a).

We next compute the distance between Wu(p3(0)) and Wsss(p) to first order in ε. We now consider the adjoint

equation of the linearization of the full system (1.2) about the front φr at ε = 0, which is given by

Ψ̇ =


0 f ′(up(ξ)) 0

−1 cp(a) 0

0 −1 0

Ψ. (4.40)

The space of solutions which grow as ξ →∞ with exponential rate at most −ν+ is two dimensional and spanned

by

Ψ1
p(ξ) :=


−ecp(a)ξ v̇p(ξ)

ecp(a)ξu̇p(ξ)

−
∫ ξ

−∞
ecp(a)ζ u̇p(ζ)

 , Ψ2
p(ξ) :=

0

0

1

 , (4.41)

and Ψ1
p is the unique such solution which converges to zero as t→ −∞. We denote by F1 denote the right hand

side of (1.2), and we define the Melnikov integral

Mε
f =

∫ ∞
−∞

DεF1(φrp(ξ)) ·Ψ1
p(ξ) dξ

=
1

cp(a)

∫ ∞
−∞

∫ ξ

−∞
ecp(a)ζvp(ζ)(up(ξ)− a) dζ dξ

< 0,

which measures the distance between Wu(p3(0)) and Wsss(p) to first order in ε.

Setting c̃ = c− cp(a), we are now able to write the distance function

D(c̃, ε) = M c
f c̃+Mε

f ε+O(ε2 + c̃2), (4.42)

which defines the separation of Wsss(p) and Wu(Mr
ε) for 0 < ε� 1 and c̃ sufficiently small.

We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. The manifolds Wsss(p) and Wu(Mr
0) intersect for ε = 0. These manifolds perturb for

0 < ε � 1. By Proposition 4.7, the unstable manifold Wu(Γ(c)) is O(e−η/ε)-close to Wu(Mr
ε). We show that

by adjusting c, it is possible to find an intersection of Wu(Γ(c)) and Wsss(p).

In Lemma 4.8, the distance between Wsss(p) and Wu(Mr
ε) was computed as

D(c̃, ε) = M c
f c̃+Mε

f ε+O(ε2 + c̃2). (4.43)

Since Wu(Γ(cp(a, ε))) is O(e−η/ε)-close to Wu(Mr
ε), the separation between Wu(Γ(c)) and Wsss(p) is given by

the modified distance function

D̂(c̃, ε) = M c
f c̃+Mε

f ε+O(ε2 + c̃2), (4.44)

where the exponentially small terms have been absorbed into the O(ε2) term. We can solve for an intersection

by setting D̂(c̃, ε) = 0, which occurs when

c = cp(a, ε) := cp(a)− Mε
f

M c
f

ε+O(ε2), (4.45)

where the coefficient
Mε

f

M c
f

> 0. This intersection occurs along the desired solution orbit P rε (a).
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Figure 13: Shown are spacetime plots of u(x, t) corresponding to left pulled fronts obtained for a = 0.2 (left

panel) and a = 0.4 (center panel) and a right pulled front obtained for a = 0.4 (right panel).

5 Direct simulations — corroboration and more phenomena

In this section, we present results of direct numerical simulations which visualize the predicted pulled and pushed

fronts of Theorems 1.2 and 1.3, as well as some additional interesting phenomena in the region a = O(ε). Except

where indicated otherwise, all simulations were performed for ε = 0.001 and γ = 0, using Matlab’s ode15s solver

initialized with the homogeneous state (u,w) = (a, 0) and a small amplitude perturbation near the left edge of

the spatial domain.

Pulled fronts. Our results in Theorem 1.2 predict the existence of ‘left’ and ‘right’ pulled fronts F `ε (a), F rε (a)

for each value of a ∈ (1/2 − 1/
√

6, 1/2) with wave speed c = clin(a, ε) = clin(a) + O(ε). While Theorem 1.2

guarantees the existence of these solutions for all such values of a, we expect that the right pulled front F rε (a)

loses stability for a < 1/3 as Theorem 1.3 predicts the existence of a steeper pushed front. Furthermore, in this

region the singular front φrlin = (urlin, v
r
lin) in the underlying fast system (3.9) is non-monotone and therefore by

Sturm-Liouville theory the linearization

LU := Uξξ + clinUξ + f ′(urlin)U (5.1)

of the layer Nagumo PDE

ut = uxx + f(u) (5.2)

in the corresponding comoving frame ξ = x− clint admits a positive eigenvalue. We expect that this eigenvalue

persists in the full system for ε > 0, rendering the front F rε (a) unstable in the PDE (1.1) for a < 1/3.

Figure 13 depicts spacetime plots of the variable u(x, t) of left and right pulled fronts obtained for a = 0.4 as

well as a left pulled front obtained for a = 0.2. The left pulled fronts are distinguished via the fact that profile

eventually increases monotonically as ξ = x− ct→∞.

Pushed fronts. We illustrate the results of Theorem 1.3, which predicts pushed fronts for each 0 < a < 1/3.

Figure 14 depicts spacetime plots of the variable u(x, t) of pushed fronts obtained for values of a = {0.05, 0.1, 0.2}.

Speed predictions. We compare our predictions with speeds obtained numerically in direct simulations.

For pulled fronts, we compute the predicted speed clin(a, ε) by solving for pinched double roots using a Newton

continuation solver. To compute the predicted speed cp(a, ε) for pushed fronts, we use the explicit solutions (3.15)

and the expression (4.45) for cp(a, ε) in terms of the Melnikov integrals Mε
f ,M

c
f , to obtain the leading order
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Figure 14: Shown are spacetime plots of u(x, t) corresponding to pushed fronts obtained for a = 0.05 (left panel),

a = 0.1 (center panel), and a = 0.2 (right panel).

approximation

cp(a, ε) ≈ 1 + a√
2
− 3

√
2

a(1 + a)

(
−1 +H

[
1 + a

1− a

])
ε (5.3)

where the Melnikov integrals were evaluated in Mathematica, and H[x] denotes the harmonic number function.

The approximations for the predicted speeds clin(a, ε) and cp(a, ε) are depicted in Figure 15 by magenta and

dashed cyan curves, respectively.

Also shown in Figure 15 are numerically computed speeds of profiles obtained in direct numerical simulations,

which are in agreement with the predictions. In order to select for left (resp. right) pulled fronts, the initial

perturbation from the homogeneous state (u,w) = (a, 0) was chosen to be negative (resp. positive). The results

for negative perturbations are depicted by purple crosses. Left pulled fronts are obtained for values of a greater

than the critical ab, below which connecting orbits are blocked; for lower values of a, the solutions transition to

right pushed fronts with the corresponding speed cp(a, ε). The results for positive perturbations are depicted by

black circles. Right pulled fronts are obtained for values of a > 1/3, below which the transition to pushed fronts

occurs. This agrees with our expectation that the right pulled fronts lose stability for values of a < 1/3.

In Figure 16, we depict the results of numerical simulations of pushed fronts for fixed a = 0.175 and decreasing

ε, and we compare the results with the leading order prediction (5.3). The right panel of Figure 16 depicts a

log-log plot of the difference between the predicted and computed speeds as ε varies, which suggests that the

error in using the prediction (5.3) is indeed higher order in ε.

Additional bifurcations for a = O(ε). The results of Theorem 1.3 are valid for fixed a and sufficiently small

ε > 0, that is, typically 0 < ε � a. As a → 0, the equilibrium (u,w) = (a, 0) moves toward the origin and

approaches the lower left fold point on the critical manifold; see Figure 1. When a = 0, the equilibrium lies

exactly at the fold and admits the structure of a canard point [28]. In (1.1), this specific scenario is responsible for

a wide range of complex canard-induced dynamics [7, 8] when unfolding jointly in the parameters 0 < a, ε� 1.

In our current setup, we therefore expect similar phenomena in this region, in particular traveling canard orbits

in (1.2) as well as spatially homogeneous canard oscillations in the kinetics of (1.1). Figure 17 depicts the results

of direct numerical simulations for a = ε = 0.05 and a = ε = 0.1; we observe the appearance of traveling front

solutions which leave oscillatory patterns in the wake of the interface.

6 Discussion

We presented existence results for periodic wave trains and heteroclinic orbits connecting an equilibrium to those

wave trains in a traveling-wave equation for the FitzHugh–Nagumo equation in the oscillatory regime, that is, in
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Figure 15: Shown are speeds obtained from direct numerical simulations compared with predictions for ε = 0.001

(left) and ε = 0.01 (right). The dashed cyan curves and solid magenta curves depict predictions for cp(a, ε) and

clin(a, ε), respectively. The black circles and purple crosses depict numerically computed speeds for profiles

obtained from direct numerical simulations with positive and negative initial perturbations, respectively, in

order to select for right versus left pulled fronts. Note the crossover from right pulled fronts to pushed fronts as

a decreases through a = 1/3, as well as the disappearance of left pulled fronts as a decreases through ab for the

case of ε = 0.001. For ε = 0.01, the transition to pushed fronts occurs for a larger value of a, at which point the

pulled invasion front becomes oscillatory in nature due to two double roots merging into one complex pair. The

resulting oscillatory pulled front inherits the instability against the pushed front from the unstable pulled fronts

before the merging of the double roots; compare also Figure 17 for stable oscillatory fronts.
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Figure 16: (Left) Comparison of speeds obtained from direct numerical simulations (black circles) with the

leading order approximation cp(a, ε) ≈ 0.831−5.004ε (dashed cyan curve) from (5.3) for the values a = 0.175 and

ε = {0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01}. (Right) Log-log plot of the difference between the numerically

computed speed and the leading order prediction. Here we plot log(0.831−5.004ε− c) (blue crosses) versus log ε

where c is the numerically computed speed. Also plotted is a straight line of slope 2 (red line), which indicates

that the error is O(ε2).
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Figure 17: Shown are spacetime plots of oscillatory fronts for a = ε = 0.05 (left panel) and a = ε = 0.1 (right

panel).

the parameter regime when the unique equilibrium of the system is unstable. The heteroclinic orbits represent

fronts that describe spreading of oscillations into a region occupied by an unstable equilibrium. We focused on

specific heteroclinic orbits with wave speed parameter given by a steepest front selection criterion, which are

observed when starting from compactly supported initial perturbations of the unstable state.

A first natural extension of our result would be concerned with the stability of the invasion fronts. As mentioned,

we expect right-pulled fronts to be stable only for values of a > 1/3, and left-pulled fronts to be stable throughout.

Pushed fronts should be stable, mimicking altogether the results from the scalar Nagumo equation. Here, stability

would refer to first spectral stability in suitably exponentially weighted spaces, linear stability, or even nonlinear

stability against localized perturbations. A nonlinear stability analysis involves several difficulties, involving first

the leading edge, and second the wave trains in the wake of the front. In the leading edge, the analysis for

pushed fronts is rather straighforward as exponential weights enforcing decay slightly weaker than the front push

the essential spectrum into the left half plane, leaving only a simple eigenvalue at the origin, while allowing for

perturbations that correspond to compactly supported initial data [18]. For pulled fronts, exponential weights

with rate of decay of the front push the essential spectrum only to the origin, and additional algebraic weights are

required to obtain linear and nonlinear decay; see for instance [15]. Initial conditions with (one-sided) compact

support relative to the unstable equilibrium are not small (or even bounded) perturbations in such a function

space. The second difficulty is concerned with the fact that the wave trains in the wake of the primary front

are only diffusively stable, thus requiring a decomposition analogous to [16]. An analysis allowing for compactly

supported perturbations of the unstable state or even perturbations of finite size, independent of ε, appears out

of reach at this point.

In a slightly different direction, one would like to understand transitions to oscillatory fronts as shown in Figure

17. Similar phenomena had been observed in [17] and attributed to an instability of a pushed front with respect

to a pair of pinched double roots crossing the imaginary axis [17, §3 & §5]. In the present case, the analysis

would likely involve the understanding of the critical canard transition at a = 0, extending work in [8].
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