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On Functions Whose Mean Value Abscissas
Are Midpoints, with Connections to

Harmonic Functions
Paul Carter and David Lowry-Duda

Abstract. We investigate functions with the property that for every interval, the slope at the
midpoint of the interval is the same as the average slope. More generally, we find functions
whose average slopes over intervals are given by the slope at a weighted average of the end-
points of those intervals. This is equivalent to finding functions satisfying a weighted mean
value property. In the course of our exploration, we find connections to harmonic functions
that prompt us to explore multivariable analogues and the existence of “weighted harmonic
functions.”

1. INTRODUCTION AND STATEMENT OF THE PROBLEM Recall the mean
value theorem of calculus, which states that if f is a differentiable function on [a, b],
then there is a c ∈ (a, b), which we call the mean value abscissa, such that

f(b)− f(a)
b− a

= f ′(c).

In typical applications, such as in most proofs of the fundamental theorems of calculus,
we are given f and know there exists such a c. But what if we place conditions on c
and ask when there exist functions f satisfying the mean value theorem with that c?
For instance, what if c is exactly halfway between a and b?

Question 1. For which differentiable functions f is

f(b)− f(a)
b− a

= f ′
(
b+ a

2

)
(1)

for all b > a?

In other words, for which functions f does the midpoint of each interval serve as the
mean value abscissa for that interval? The midpoint of [a, b] is the average of a and b.
What about more general averages, like weighted averages?

Question 2. For a fixed λ ∈ (0, 1), which differentiable functions f satisfy

f(b)− f(a)
b− a

= f ′ (λa+ (1− λ)b) (2)

for all b > a?

In other words, for which functions f do weighted averages of the endpoints of inter-
vals serve as mean value abscissas for those intervals?

We explore the answers to these two questions. Along the way, we’ll find strong
connections between functions satisfying these constrained mean value theorem re-
quirements and harmonic functions which will prompt us to investigate high dimen-
sional analogues.
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2. A FIRST ATTEMPT AT THE FIRST QUESTION Before trying to find all
such functions, we should note that if f(x) is an affine function f(x) = ax + b for
any a, b, then f satisfies the conditions for both questions. So there are infinite fam-
ilies of solutions. But without further details, it might be hard to find all functions
satisfying (1).

Remark. In fact, it was known to Archimedes that parabolas also satisfy (1). This
appears in Proposition 1 in his work on the quadrature of the parabola [3]. In modern
times, some calculus textbook authors include verifying that parabolas satisfy (1) as
an exercise. For instance, it appears as an “Additional and Advanced” exercise in [8].

When first encountering a problem, it can be useful to consider simplifying as-
sumptions. We might be able to find more functions by expanding the left- and right-
hand sides of (1). Suppose that f is a function that satisfies (1), and suppose f is
at least 3 times continuously differentiable. Then we have the Taylor polynomial
f(x) = f(y) + f ′(y)(x − y) + 1

2
f ′′(y)(x − y)2 + 1

6
f ′′′(y)(x − y)3 + h(x)(x −

y)3, where h(x) → 0 as x → y. Subtracting f(y) and dividing by x − y yields an
expression for the left-hand side of (1):

f(x)− f(y)
x− y

= f ′(y) + 1
2
f ′′(y)(x− y) + 1

6
f ′′′(y)(x− y)2 + h(x)(x− y)2.

Taking the Taylor polynomial for f ′(x) centered at y and substituting (x+ y)/2, we
see that the right-hand side of (1) is

f ′(y) + 1
2
f ′′(y)(x− y) + 1

8
f ′′′(y)(x− y)2 + 1

4
h̃(x+y

2
)(x− y)2,

where h̃(x)→ 0 as x→ y. Setting these two expressions equal, we cancel the f ′(y)
and f ′′(y) terms and divide each side by (x − y)2. Letting x → y, we see that
1
6
f ′′′(y) = 1

8
f ′′′(y), or rather that f ′′′(y) = 0.

Since this is true for all y, the third derivative is identically 0. So f is at most a
quadratic polynomial. We can check that if f(x) = a+ bx+ cx2, then

f(x)− f(y)
x− y

=
b(x− y) + c(x2 − y2)

x− y
= b+ c(x+ y) = f ′

(
x+ y

2

)
,

so every polynomial of degree at most 2 is an answer to Question 1.
Exploration through Taylor polynomials led us only to parabolas. But we made a

big assumption. What about f that satisfy the conditions of the first question but which
are not necessarily three times differentiable?

Connection to harmonic functions. By fixing various a and allowing b to vary in (1),
one can show that f ′(x) is continuous. We now use the fundamental theorem of cal-
culus to rewrite (1) as

1

b− a

∫ b

a

f ′(t) dt = f ′
(
b+ a

2

)
, (3)

or equivalently as

1

2h

∫ x+h

x−h
f ′(t) dt = f ′(x). (4)
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This can be interpreted to mean that the value f ′(x) is given by the average of f ′ in
any symmetric interval around x, a very restrictive property. This is precisely the mean
value property satisfied by harmonic functions,

g(x) =
1

|Bh(x)|

∫
Bh(x)

g(t) dV, (5)

where g is a harmonic function on Rn, Bh(x) denotes the ball of radius h centered
at x, dV denotes the standard Euclidean volume measure, and |Bh(x)| denotes the
volume of Bh(x). Harmonic functions appear in many areas of mathematics, but are
particularly fundamental to the theory of differential equations. Recall that a twice
differentiable function g is called harmonic if the sum of the second partial derivatives
of g is identically 0.

At least, that’s the standard definition. Harmonic functions can be thought of in
more intuitive ways. One particularly illuminating overview on harmonic functions is
given by Needham [5], who explores geometric interpretations of harmonic functions
by exploring relations similar to (5). In the memorably titled [4], Kac gives a different
approach to harmonic functions while explaining why they are called “harmonic.”

The study of harmonic functions usually begins with R2, as it is trivial to identify
the harmonic functions on R. The only functions on R with identically zero second
derivative are affine functions ax + b. It is a remarkable theorem that any function
satisfying (5) is itself harmonic (for the standard proof, see Lemma 4.6 and subsequent
discussion in [6]). In fact, the condition (1) is the degenerate one-dimensional form of
another integral mean value property shared by harmonic functions, namely

g(x) =
1

|∂Bh(x)|

∫
∂Bh(x)

g(t) dS, (6)

where ∂Bh(x) denotes the boundary ofBh(x), |∂Bh(x)| is the surface area ofBh(x),
and dS denotes the standard Euclidean surface area measure.

So for any function f satisfying (1), its derivative f ′ satisfies (4), and so is harmonic.
Thus f ′ is at most a linear polynomial, so that f is at most a quadratic polynomial. We
have filled in the gap left from Taylor expansions by appealing to harmonic functions.

3. INVESTIGATING WEIGHTED MEAN VALUES Let us now try to understand
the more general Question 2. Pursuing the connection to harmonic functions, we can
rewrite (2) as the integral weighted mean value property

f ′ (λa+ (1− λ)b) = 1

b− a

∫ b

a

f ′(t) dt. (7)

This is similar to the regular harmonic mean value property (4), and so we might ask
whether functions satisfying (7) are harmonic. This turns out to be the case.

To prove this, we first show that any function satisfying (7) is infinitely differen-
tiable. We take x = a+b

2
and h = b−a

2
and rewrite (7) as

f ′ (x+ (1− 2λ)h) =
1

2h

∫ x+h

x−h
f ′(t) dt, (8)

which now holds for any x and any h > 0. We can center the left hand side at x
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through a change of variables, getting

f ′(x) =
1

2h

∫ x+2λh

x−(2−2λ)h
f ′(t) dt.

By the fundamental theorem of calculus, we can directly differentiate f ′(x) to see
that f ′′(x) = 1

2h
(f ′(x+ 2λh)− f ′(x− (2− 2λ)h)). By the same argument, each

of the two terms appearing in the derivative are differentiable with derivatives ex-
pressible as linear combinations of f ′. Inductively, we can show that f ′ is infinitely
differentiable.

Remark. We can see the infinite differentiability in a different way. We can compose
the integral weighted mean value property with itself to write f ′ as the 2-fold integral

f ′(x) =
1

2h

∫ x+2λh

x−(2−2λ)h

(
1

2h

∫ t+2λh

t−(2−2λh)
f ′(u) du

)
dt,

which is clearly twice-differentiable, again by the fundamental theorem of calculus.
Composing n times, we can represent f ′ as an n-fold integral which is n times differ-
entiable. So f ′, and therefore f , is infinitely differentiable.

As f is at least twice continuously differentiable, we can use Taylor’s Theorem
as before to write f(x) = f(y) + f ′(y)(x− y) + 1

2
f ′′(y)(x− y)2 + h(x)(x− y)2,

where h(x)→ 0 as x→ y. Similar to when we first tackled Question 1, we expand
the left-hand side and right-hand side of (2). The left-hand side remains

f ′(y) + 1
2
f ′′(y)(x− y) + h(x)(x− y).

Using the linear Taylor polynomial for f ′(x) and simplifying, the right-hand side be-
comes

f ′(y) + λf ′′(y)(x− y) + λh̃(λx+ (1− λ)y)(x− y),

where h̃(x)→ 0 as x→ y. Setting these equal, we may cancel f ′(y) and divide by
(x− y). Letting x→ y, we see that 1

2
f ′′(y) = λf ′′(y).

There are two possibilities. If λ = 1
2
, then our “weighted average” is just the nor-

mal average from Question 1. Otherwise, we must have f ′′(y) = 0. This is true for all
y, and so the second derivative is identically 0. We conclude that the only twice dif-
ferentiable functions satisfying the conditions from Question 2 are linear polynomials
f(x) = ax+ b unless λ = 1

2
, when f can be a quadratic polynomial.

We have shown that the normally-weighted mean value property on R is distin-
guished as the only weighted mean value property that leads to a nontrivial family. It
was not obvious (to the authors, at least) that there would be no analogous “weighted
harmonic functions” corresponding to a weighted mean value property, and this adds
to the list of special properties held by harmonic functions.

We summarize the answers to the two original questions in the following theorem.

Theorem 1. Fix a λ ∈ (0, 1), and suppose f : R −→ R satisfies the weighted mean
value condition

f(b)− f(a)
b− a

= f ′(λa+ (1− λ)b) (9)
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for all a < b. Then f is a quadratic polynomial. Further, if λ 6= 1
2
, then f is merely a

linear polynomial.

Remark. We have used that (2) is supposed to hold for all a < b, allowing both a and b
to vary. Another interesting question comes from fixing a = 0 and letting b vary. Then
we might look for f with the mean value abscissa on the intervals [0, b] being given by
weighted averages of 0 and b. In this case, there are additional families of functions,
but only for λ = 1/(k + 1)1/k. The reader might try to explore this approach using
Taylor expansions, or perhaps another method entirely.

4. WEIGHTED HARMONIC FUNCTIONS IN HIGHER DIMENSIONS Our
initial questions led us to study functions satisfying the integral weighted mean value
property for R, and we found that the non-weighted average has a distinguished con-
nection to harmonic functions. Since there are many more harmonic functions on Rn
for n ≥ 2 than there are for R, there might be enough wiggle room for a “weighted
harmonic function” to exist corresponding to a weighted mean value property on Rn.
In analogy with (8), we can ask about the following integral weighted mean value
property

g(x+ (1− 2λ)hv) =
1

|Bh(x)|

∫
Bh(x)

g(t) dV. (10)

Here, λ ∈ (0, 1) is the weight, and v is a unit vector indicating the direction of
the weighting. The mean value abscissa (x + (1 − 2λ)hv) is a point in the ball
Bh(x) that differs from the center of the ball by a distance proportional to the radius.
Then (10) can be interpreted to mean that the average value of g on the ball Bh(x) is
given by the value of g at the point (x+ (1− 2λ)hv) inside that ball. So we ask the
following question.

Question 3. For a fixed λ ∈ (0, 1) and a fixed unit vector v ∈ Rn, which functions
g ∈ C1(Rn) satisfy

g(x+ (1− 2λ)hv) =
1

|Bh(x)|

∫
Bh(x)

g(t) dV

for all x and all h > 0?

Notice that when n = 1 and v = 1, this is exactly Question 2. As this generalizes
Question 2, our method also generalizes our approach to answering Question 2.

When λ = 1
2
, the mean value abscissa is exactly the center of the ball, and so the

weighted mean value property becomes the ordinary mean value property (5). Then
for λ = 1

2
, it is exactly harmonic functions g which answer Question 3.

Let us now consider λ 6= 1
2
. We first show that any function satisfying (10) is in-

finitely differentiable. Rewrite (10) as

g(x) =
1

|Bh|

∫
Bh(x−(1−2λ)hv)

g(t) dV, (11)

where |Bh| denotes the volume of the ball of integration. As g is continuously differen-
tiable, we can now compute any partial derivative of g by differentiating (11) using the
Leibniz rule for higher dimensions (sometimes called the Reynolds transport theorem,
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see [2] for additional exposition) to obtain

∂ig(x) =
1

|Bh|

∫
∂Bh(x−(1−2λ)hv)

g(t)ei · n dS

=
1

|Bh|

∫
∂Bh(0)

g(t+ x− (1− 2λ)hv)ei · n dS,

where ei denotes the i-th standard basis vector of Rn, ∂i denotes the partial derivative
with respect to the i-th coordinate, and n is the outward-pointing unit normal vector
field of the boundary ∂Bh. To compute the second partial derivative ∂ij , we can now
differentiate under the integral sign

∂ijg(x) =
1

|Bh|

∫
∂Bh(0)

∂jg(t+ x− (1− 2λ)hv)ei · n dS

since the first partial derivatives of g exist and are continuous. Continuing inductively,
we conclude that g is smooth.

Remark. In fact, it should be possible to relax the assumption that g ∈ C1 and de-
duce this from the argument above under the assumption that g is at least continuous.
However, for simplicity in applying the Reynolds transport theorem, we assume g has
continuous partial derivatives.

As g is at least twice continuously differentiable, we can again use Taylor’s Theo-
rem, which states

g(x) = g(y) + (x− y) · ∇g(y) +O(|x− y|2), (12)

where ∇g denotes the gradient of g and O is big-oh notation, indicating roughly that
the remainder vanishes at least as quickly as |x− y|2 as x→ y. We now compute

g(x+ (1− 2λ)hv) =
1

|Bh|

∫
Bh(x)

g(t) dV

=
1

|Bh|

∫
Bh(0)

g(x+ t) dVt

=
1

|Bh|

∫
Bh(0)

(
g(x) + t · ∇f(x) +O(|t|2)

)
dVt

= g(x) +∇g(x) ·
(

1

|Bh|

∫
Bh(0)

t dVt

)
+O(h2).

We use the notation dVt to remind ourselves that the variable of integration is t, not
x. The integral of the vector field t over the ball Bh(0) is zero, so the integral term
above vanishes. We have thus shown that

g(x+ (1− 2λ)hv) = g(x) +O(h2).

Using this expression, we can show that g is constant in the v-direction, that is, ∂g
∂v

=
0. We compute

∂g

∂v
= lim

h→0

g(x+ (1− 2λ)hv)− g(x)
(1− 2λ)h

= lim
h→0

g(x) +O(h2)− g(x)
(1− 2λ)h

= 0.
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As g is constant in the v-direction, and the mean value abscissa (x + (1 − 2λ)hv)
deviates from the center of the ballBh(x) in exactly the v-direction, we can show that
g is harmonic. At each x, the function g satisfies

g(x) = g(x+ (1− 2λ)hv) =
1

|Bh(x)|

∫
Bh(x)

g(t) dV,

which is precisely the mean value property for harmonic functions.
By choosing an orthonormal basis for Rn with v as a basis vector, we can think of g

as coming from a function g̃ on Rn−1, which is extended to Rn trivially by having no
dependence on the v-coordinate. Noting that the sums of the second partial derivatives
of g and g̃ are the same, we have that g̃ is also harmonic. So a function g satisfying the
integral weighted mean value theorem (10) for λ 6= 1

2
is really a harmonic function on

Rn−1, extended to Rn by being constant in the v-direction.
For example, in the case n = 2, without loss of generality we may take v = (0, 1),

i.e., the unit vector in the y-direction, so that g is constant in y. From this we see that
the weighted harmonic functions are simply those which are harmonic functions of the
single variable x, that is, linear functions g(x, y) = ax+ b.

In conclusion, we have shown the following

Theorem 2. Fix λ ∈ (0, 1) and a unit vector v ∈ Rn. Suppose g : Rn −→ R satisfies

g(x+ (1− 2λ)hv) =
1

|Bh(x)|

∫
Bh(x)

g(t) dV

for all x ∈ Rn and h > 0. Then g is a harmonic function. Further, if λ 6= 1
2
, then g is

constant in the v-direction, i.e., ∂
∂v
g = 0.

This is consistent with our answers to Questions 1 and 2, and includes Theorem 1
as the R1 case. This is also consistent with our earlier observation that the normally-
weighted mean value property is distinguished among weighted mean value properties
by including a strictly larger family of functions.

Remark. As a final note, it is also very natural to think of those g satisfying the
alternate weighted mean value property

g(x+ (1− 2λ)hv) =
1

|∂Bh(x)|

∫
∂Bh(x)

g(t) dS, (13)

analogous to the harmonic mean value property (6). We claim that, similar to the case
of harmonic functions, this condition is equivalent to (10) and hence leads to a result
equivalent to Theorem 2. Again assuming for simplicity that g ∈ C1, using a very
similar argument as above, it is not hard to show that g is in fact infinitely differentiable
and satisfies ∂g

∂v
= 0. We do not repeat the details here, but just note that to show

differentiability, we rewrite the property (13) as

g(x) =
1

|∂Bh|

∫
∂Bh(0)

g(t+ x− (1− 2λ)hv) dV. (14)

We can now differentiate this expression to obtain smoothness of g. From this, we
use a similar argument involving Taylor’s theorem as above to find that ∂g

∂v
= 0. From

this we deduce the harmonic mean value property (6), and hence the conclusion of
Theorem 2 remains valid.
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