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Relaxing the integral test: an “elementary”
challenge for the advanced calculus
student
Paul Carter, Yitzchak (Isaac) Solomon

The subject of calculus has its share of technical assumptions, typically arising from power-
ful theorems in analysis. Are there good counterexamples that give insight into these subtleties
and remain within an elementary toolbox? This article describes just such an illustrative ex-
ample, whose analysis requires a number of techniques discussed in a second calculus course.
The integral test is usually stated as the following.

Integral Test. Suppose that f(x) is a continuous, positive and decreasing function on the
interval [k,∞) with an = f(n). Then the following hold:

(i) If
∫ ∞

k

f(x)dx is convergent so is
∞∑

n=k

an. (ii) If
∫ ∞

k

f(x)dx is divergent so is
∞∑

n=k

an.

We aim to show that, in the statement of the integral test, one cannot relax the condition
that the function be decreasing. The intuition here is that oscillatory, wave-like functions can
peak at the integers but have very little mass elsewhere, giving an integral that will not be
comparable to our original sum. That intuition alone is enough to inspire a host of piecewise-
linear counterexamples to a generalization of the integral test (see [1] for a typical example).
Instead, we eschew the piecewise world and look for an elementary function that will do the
job. What we propose is

CS(x) = (cos2(πx))x

x
.

which is graphed in Figure 1. A simple calculation shows that
∞∑

n=1

CS(n) =
∞∑

n=1

(cos2(πn))n

n
=

∞∑
n=1

1

n
,

the harmonic series, which diverges. From Figure 1, we can make a guess as to why the integral
has a chance of being finite.

Quite simply, all the mass of the function is centered at the integers! The integral, which
measures area, will also capture how quickly the function decays between integer points, and
hence will shrink quite rapidly. Still, we must prove that∫ ∞

1

CS(x)dx <∞ .

The first step is to break up our integral into pieces.∫ ∞

1

(cos2(πx))x

x
dx =

∞∑
n=1

∫ n+1

n

(cos2(πx))x

x
dx ≤

∞∑
n=1

∫ n+1

n

(cos2(πx))n

n
dx.
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(a) Plot of CS(x) for x ∈ [1, 10].
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(b) Plot of CS(x) for x ∈ [5, 10].
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(c) Plot of CS(x) for x ∈ [50, 55].

Figure 1.

An instructive, iterative calculation using repeated application of integration by parts shows that∫ n+1

n

(cos2(πx))n

n
dx =

(2n− 1)!!

n(2n)!!
.

where the double factorial skips 2 each time, i.e. 8!! = 8 × 6 × 4 × 2. Now we have shown
that our original integral is smaller than the following sum

∞∑
n=1

(2n− 1)!!

n(2n)!!
,

for which the ratio test proves inconclusive. However, if we define

An =
(2n− 1)!!

(2n)!!
=

2n− 1

2n
× 2n− 3

2n− 2
× 2n− 5

2n− 4
× · · · × 3

4
× 1

2

Bn =
(2n)!!

(2n+ 1)!!
=

2n

2n+ 1
× 2n− 2

2n− 1
× 2n− 4

2n− 3
× · · · × 4

5
× 2

3
,

a term-by-term comparison shows that each factor in An is smaller than the corresponding
factor in Bn, hence An < Bn. So we have

A2
n ≤ AnBn =

(2n− 1)!!

(2n+ 1)!!
=

1

2n+ 1
.

Returning to our infinite sum, and employing the direct-comparison test,

∞∑
n=1

(2n− 1)!!

n(2n)!!
=

∞∑
n=1

An

n
≤

∞∑
n=1

1

n
√
2n+ 1

≤
∞∑

n=1

1

n3/2
,

which converges by the p-test, thus completing the proof.
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