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Abstract

This paper examines a spike-adding bifurcation phenomenon whereby small amplitude canard cycles

transition into large amplitude bursting oscillations along a single continuous branch in parameter space. We

consider a class of three-dimensional singularly perturbed ODEs with two fast variables and one slow variable

and singular perturbation parameter ε � 1 under general assumptions which guarantee such a transition

occurs. The primary ingredients include a cubic critical manifold and a saddle homoclinic bifurcation within

the associated layer problem. The continuous transition from canard cycles to N -spike bursting oscillations

up to N ∼ O(1/ε) spikes occurs upon varying a single bifurcation parameter on an exponentially thin

interval. We construct this transition rigorously using geometric singular perturbation theory; critical to

understanding this transition are the existence of canard orbits as well as slow passage through the saddle

homoclinic bifurcation, which are analyzed in detail.

1 Introduction

The phenomenon of bursting has been widely studied in models of neurons and neuroendocrine cells, as well

as other excitable media, including physical systems such as semiconductor lasers [1, 33], or in chemical reac-

tions [32]. These solutions are characterized by alternation between slow quiescent phases and active bursting

phases comprised of a sequence of action potentials or spikes, and can be time-periodic or aperiodic. One of the

earliest models was introduced by Chay and Keizer [4] to describe bursting dynamics in pancreatic beta-cells,

which formed the basis in [29, 30] for analyzing the bursting phenomenon in the context of singularly perturbed,

or fast-slow, ordinary differential equations. This has since been a primary mathematical formulation for under-

standing bursting in numerical and analytical studies. In this context, bursting solutions can frequently arise

as periodic orbits, in which the active phase is governed by oscillations on the fast timescale, and the quiescent

phase is associated with drift along a slow manifold.

A feature which is prevalent in many bursting models is that of spike-adding, in which variation in system

parameters can result in additional spikes during the bursting phase. This has been demonstrated and analyzed

numerically in a variety of bursting models [6, 7, 13, 24, 26, 27, 38]. In particular, these studies find that

bursting solutions with different numbers of spikes can exist in nearby parameter regimes, and furthermore

that different branches of spiking solutions can be connected, so that a bursting orbit with N spikes can be

continuously deformed into one with N + 1 (or more) spikes upon parameter continuation. Spike-adding has

been shown to occur when varying the location of an equilibrium [7, 27], or when varying the singular perturbation

parameter itself [13, 22, 36, 38]. In many cases, this behavior has been intimately linked to the phenomenon of

canards [9, 10, 21]: For instance, canard dynamics have been analyzed in relation to spike-adding in square-wave

neuronal bursting models with one slow variable, such as the Morris–Lecar–Terman model [13, 25, 31, 36] and

the Hindmarsh–Rose model [14, 15, 24], in which a canard explosion of periodic orbits is responsible for the onset

of spike-adding [7, §III]. In systems with two slow variables, the role of folded singularities and their associated
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canard dynamics have been analyzed in relation to spike-adding in parabolic bursting models such as the Plant

model of bursting in the Aplysia ganglion R15 cell [6, 28] and in the study of mixed-mode bursting oscillations [7].

In many contexts, canard solutions provide a mechanism whereby small parameter changes can produce contin-

uous transitions between globally distinct solutions, for example in the classical planar canard explosion [21], or

in transitions between different traveling pulse solutions in the FitzHugh–Nagumo system of nerve impulse prop-

agation [3]. In this spirit, this paper aims to rigorously analyze the link between canard explosion and the spike

adding phenomenon in an example class of square wave bursting models and identify general techniques which

can be used in the analysis of similar global transitions in singular perturbation problems. We focus on one of

the simpler, well-studied geometric descriptions of square-wave bursting with one slow variable, introduced and

analyzed by Terman [36], which includes the Morris–Lecar model below as a primary motivating example. Our

interest lies in the spike-adding process that is induced by a canard explosion when adjusting a parameter which

controls the location of an equilibrium of the system. Although we are concerned with Terman’s geometric for-

mulation in this work, we note that square-wave bursters with different geometries, such as the Hindmarsh-Rose

model, exhibit a similar transition from canard explosion to spike-adding bursting oscillations [7].

The Morris–Lecar system [25]

v̇ = y − 0.5 (v + 0.5)− 2w (v + 0.7)−m∗(v) (v − 1)

ẇ = 1.15 (w∗(v)− w) τ(v)

ẏ = ε(k + k̄r − v)

(1.1)

w∗(v) =
1

2

(
1 + tanh

(
v − 0.1

0.145

))
, m∗(v) =

1

2

(
1 + tanh

(
v + 0.01

0.15

))
, τ(v) = cosh

(
v − 0.1

0.29

)
,

was originally proposed as a model of electrical activity in barnacle muscle fibers. In that context, v is interpreted

as membrane potential, w as fraction of open potassium ion channels, and y is related to the near-membrane

calcium concentration. The quantity k + k̄r determines the equilibrium potential corresponding to potassium

conductance. We identify (1.1) as being among the simplest examples of onset of spike-adding of bursting

oscillations through canard explosion. Figure 1 depicts the transition from local canard explosion to large scale

bursting oscillations, obtained numerically in (1.1) for ε = 0.001. The lower panels show the v-profiles of bursting

oscillations with 1 and 2 spikes in bursting phase; all solutions along the transition from local canard explosion

born at a Hopf bifurcation to large amplitude bursting oscillations were found along the same branch in parameter

space and were obtained in the numerical continuation software AUTO upon varying the parameter k for fixed

ε = 0.001. Figures 2 and 3 depict numerically computed bifurcation diagrams of the spike adding process,

labelled with the locations of the orbits from Figure 1. We note that all of these orbits occur at very nearby

(exponentially close) values of the parameter k.

In [36], Terman developed general assumptions in a class of three-dimensional ODEs which ensure that the

geometry of the equations is qualitatively similar to that of (1.1). This formed the basis for the analysis of

bursting solutions of the system (1.1) in [22, 36, 37] using geometric methods, and later using Conley index

techniques [17, 18]. See Figure 4 for a visualization of the singular limit geometry. The primary features are a

cubic critical manifold M with three branches: an attracting bottom branch Mb, a saddle-type middle branch

Mm, and upper branch Mu (typically repelling). In the fast layer dynamics for a value of y = ȳh, the system

undergoes a saddle-homoclinic bifurcation along the middle branch, from which bifurcates a family P of periodic

orbits for y > ȳh. The cubic critical manifold also admits two fold points: one of classical fold type (F`) and one

of canard type (Fr); in (1.1), the constant k̄r denotes the v-coordinate of the fold Fr, which can be approximated

numerically as k̄r ≈ −0.2449. The fold points and the saddle homoclinic bifurcation are the key pieces (and

main technical challenges) to understanding the spike adding transitions in this setting.

The spike-adding sequence is then generated as follows (see Figure 1 for sample periodic orbits along the transition
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Figure 1: Shown is the continuous spike-adding transition in (1.1) for ε = 0.001 obtained in AUTO; all solutions

exist for values of k ≈ −0.0002 on an interval of width O(e−1/ε). The upper left panel shows the transition

sequence labeled 1–4 from small amplitude canard orbits (blue label 1) to a 1-spike bursting solution (green

label 4), and the critical manifold M is shown in dashed red. The lower left panel depicts the the v profile for

the 1-spike solution. The upper right panel shows the transition sequence labeled 5–8 from a 1-spike bursting

solution to a 2-spike bursting solution (green label 8). The solutions labelled 5–8 all traverse the spike labelled

A. The second spike is grown from right to left until reaching the upper fold F`, where it turns back (see solution

with orange label 6) and continues from left to right to solution 7 before finally being deposited at the spike

labelled B, culminating in a 2-spike bursting solution (green label 8); the v profile for the 2-spike solution is

shown in the lower right panel.
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Figure 2: Bifurcation diagram of spike-adding sequence of bursting oscillations, obtained numerically in (1.1) for

ε = 0.001. Here the period is plotted versus the bifurcation parameter k, along with the locations of the bursting

orbits from Figure 1 labelled 1 − 8, as well as the orbit from Figure 5 (red circle) and the orbit from Figure 6

(red diamond).
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Figure 3: (Left) Bifurcation diagram of spike-adding sequence of bursting oscillations, obtained numerically

in (1.1) for ε = 0.001. Here the period is plotted versus the maximum v value obtained over one period. The

period wiggles back and forth as max v increases, as each spike is continually added along the transition. A

zoom of the upper portion of the spike-adding bifurcation curve is plotted in the right inset. Also shown are the

locations of the bursting orbits from Figure 1 labelled 1− 8, as well as the orbit from Figure 5 (red circle) and

the orbit from Figure 6 (red diamond).
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Figure 4: Shown is the singular limit geometry for the class of square-wave bursting models considered by

Terman [36]. The cubic critical manifold admits three branches: Mu (repelling), Mm (saddle-type), and Mb

(attracting). There are two folds: F` (classical fold) and Fr (canard point). In the fast layer dynamics, there is

a saddle homoclinic bifurcation at y = ȳh which results in a family of periodic orbits P for y > ȳh.

in the Morris–Lecar system (1.1) obtained using AUTO). At the lower right fold Fr are born small amplitude

canard orbits; see for example the blue orbit in the left panel of Figure 1. As the parameter k is varied on

an exponentially thin interval, the orbits grow into large amplitude canards until reaching the upper left fold

F`, though when continuing along the repelling upper branch Mu, eventually they begin to interact with the

family P of periodic orbits. The number of spikes in a given bursting solution is determined by the number of

excursions around the upper branch Mu, and the family of periodic orbits P allows for many such excursions.

In particular, passing near the saddle homoclinic bifurcation allows for a fast spike which follows the singular

homoclinic orbit to be “deposited”, while the growth continues back along the middle branch Mm towards the

fold, and back to the saddle homoclinic bifurcation to deposit another spike, and so on. Figure 5 depicts a

bursting solution obtained numerically in (1.1) after many such spike-adding events by continuing numerically in

parameter space from the local canard explosion at the fold Fr. The fact that the slow portion of the bursting

orbits passes near the lower fold from an attracting slow manifold to a saddle slow manifold (that is, along a

canard segment) is what allows each successive spike adding event to take place within an exponentially thin

interval of the parameter k; this also explains the proximity of these solutions in the bifurcation diagram in

Figure 2.

Remark 1.1. If the manifold P extends beyond the fold point Fr – as is the case in (1.1) – then outside the

canard regime, that is once the equilibrium has moved up onto the middle branch, Terman showed in [36] that

the system admits relaxation-type bursting oscillations which follow the bottom branch Mb then jump off the fold

point Fr up to the manifold P, completing excursions around P until finally jumping back down to Mb; see

Figure 6 for an example bursting orbit in this regime computed numerically for (1.1). In fact, numerical studies

have demonstrated that spike-adding persists in this regime [13]; see also the bifurcation diagrams in Figures 2

and 3, in which all of the bursting orbits, including the relaxation-type bursting oscillations as in Figure 6,

are contained on the same continuous spike-adding branch, though no longer at exponentially close values of
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Figure 5: Spikes are continuously added to the bursting oscillations along the spike-adding transition, achieving

an O(1/ε) number of spikes. The left panel depicts a bursting solution of (1.1) along the transition from 7 to 8

spikes, and the right panel depicts the corresponding v-profile. The solution was obtained in AUTO for ε = 0.001

and k ≈ 0.0002.

the parameter k, as these orbits lie outside the canard explosion regime. Such orbits, however, do still contain

“canard-like” segments along the saddle-type middle branch Mm of the slow manifold.

The aim of this work is to analyze the canard explosion regime in detail for 0 < ε� 1 and rigorously construct

the spike-adding sequence from small amplitude canard cycles to bursting solutions with an O(1/ε) number of

spikes. We will show that this transition occurs along a single continuous branch under exponentially small

variations in the single bifurcation parameter k for fixed ε. The primary technical challenges relate to analysis

near the fold points F`,r as well as tracking solutions near the saddle homoclinic bifurcation. We present a

detailed analysis of slow passage near the saddle homoclinic bifurcation in order to understand how solutions

behave in this region; this analysis is critical in showing how branches of periodic orbits with different numbers

of spikes are connected.

The remainder of this paper is outlined as follows. The general setup and assumptions are detailed in §2, as well

as the statement of the main result, Theorem 2.2. The proof of Theorem 2.2 is given in §3, followed by a brief

discussion in §4.

2 Setup

The model system under consideration is a three-dimensional singularly perturbed ordinary differential equation

with two fast variables and one slow variable, which we write in the form

v̇ = f1(v, w, y, k, ε)

ẇ = f2(v, w, y, k, ε)

ẏ = εg(v, w, y, k, ε),

(2.1)

where ˙ =
d

dt
, k is a bifurcation parameter, ε > 0 is a small parameter and f1, f2, g are Cr+1-smooth functions

of their arguments for some r ≥ 3. We refer to (2.1) as the fast system. By rescaling τ = εt, we obtain the
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Figure 6: Shown is a bursting solution obtained in (1.1) for ε = 0.001 and k ≈ 0.0539. Note that this parameter

regime is away from the canard explosion, and the solution no longer follows a canard trajectory alongMm
ε after

passing the fold Fr, but rather jumps directly from Fr to the periodic manifold Pε.

corresponding slow system

εv′ = f1(v, w, y, k, ε)

εw′ = f2(v, w, y, k, ε)

y′ = g(v, w, y, k, ε),

(2.2)

where ′ =
d

dτ
. These two systems are equivalent for any ε > 0, though the dynamics are best understood

by perturbing from the distinct singular limits obtained by setting ε = 0 in each of (2.1), (2.2). We outline

hypotheses with respect to each of these limits in §2.1 and §2.2, respectively. Assumptions on the slow/fast

geometry of this system which guarantee bursting orbits were formulated by Terman in [36], and these form the

basic setting in which we shall work. In some places, stronger hypotheses are required and we outline these in

detail. Lastly, we describe additional assumptions regarding the nonhyperbolic fold points in the system in §2.3,

and we state the main result in §2.4.

2.1 Layer problem

Setting ε = 0 in (2.1) results in the layer problem

v̇ = f1(v, w, y, k, 0)

ẇ = f2(v, w, y, k, 0)

ẏ = 0,

(2.3)

which we consider for k ∈ [−k0, k0] for some k0 > 0. The dynamics are restricted to planes y =const, and this

system admits a manifold of equilibria

M0 := {(v, w, y) : F (v, w, y, k, 0) = 0}, F (v, w, y, k, ε) :=

(
f1(v, w, y, k, ε)

f2(v, w, y, k, ε)

)
(2.4)

which is called the critical manifold. For simplicity we assumeM0 can be written as a graph over the v-coordinate.

We also assume the following (see Figure 4).
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Figure 7: Shown is the structure of the layer problem (2.3) in the cases: (a) y ∈ (ȳ`, ȳh), (b) y = ȳh, and (c)

y ∈ (ȳh, ȳp), as well as (d) y = ȳ` and (e) y = ȳr corresponding to the layer problems which contain the fold

points F`,r. Pictured in each phase portrait for y ∈ (ȳ`, ȳp) are the heteroclinic orbits φu(y), φb(y), φp(y); note

that for y = ȳh, the orbit φu(y) coincides with the homoclinic orbit γh. In (c), also pictured are the periodic

orbits γp(·; y) which bifurcate from γh for y > ȳh.

Hypothesis 1. (S-shaped critical manifold) We assume the critical manifold is S-shaped, consisting of three

branches; that is, we assume there exists ȳr, ȳ` such that the layer problem (2.3) admits a single equilibrium pb(y)

for y ∈ (−∞, ȳ`), three equilibria pb(y), pm(y), pu(y) for y ∈ (ȳ`, ȳr) and a single equilibrium pu(y) for y ∈ (ȳr,∞),

with two equilibria colliding at saddle-node bifurcations at each of y = ȳ`, ȳr with p` := pu(ȳ`) = pm(ȳ`) and

pr := pb(ȳr) = pm(ȳr).

We denote the fold points by

F`,r = (v̄`,r, w̄`,r, ȳ`,r). (2.5)

We can therefore decompose M0 as

M0 =Mb
0 ∪ Fr ∪Mm

0 ∪ F` ∪Mu
0 , (2.6)

where the three branches Mb,m,u
0 (bottom, middle, upper) are contained in the regions {−∞ < y < ȳr}, {ȳ` <

y < ȳr}, {ȳ` < y <∞}, respectively. We will sometimes writeM∗0(y1, y2), for ∗ = b,m, u to refer the intersection

M∗0 ∩ {y1 ≤ y ≤ y2}.

Hypothesis 2. The bottom and middle branches of the critical manifold M0 satisfy the following.

(i) The bottom branch Mb
0 is normally attracting, that is, D(v,w)F |Mb

0
has two eigenvalues with negative real

part.

(ii) The middle branchMm
0 is of saddle type, so that D(v,w)F |Mm

0
has one positive and one negative eigenvalue.

Crucial to the spike-adding process in (2.1) is a saddle-homoclinic bifurcation in the layer problem which occurs

along the middle branch Mm
0 .

Hypothesis 3. (Saddle homoclinic orbit) There exists y = ȳh(k) ∈ (ȳ`, ȳr) such that (2.3) admits a homoclinic

orbit γh(t) = (vh(t), wh(t)) bi-asymptotic to the saddle equilibrium ph := pm(ȳh); further, the homoclinic orbit

γh(t) surrounds the equilibrium pu(ȳh) (see Figures 4 and 7).
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We now consider the dynamics for nearby values of y. In order to construct a continuous spike-adding transi-

tion, we require some nondegeneracy with respect to the saddle-homoclinic bifurcation. We first consider the

linearization of the layer problem (2.3) about the equilibrium ph, which by Hypothesis 2 admits one positive and

one negative eigenvalue, which we denote by λ±h , respectively.

We next linearize (2.3) about γh, which results in the system

Φ̇ = D(v,w)F (vh(t), wh(t), ȳh, k, 0)Φ. (2.7)

The associated adjoint equation is given by

Ψ̇ = −D(v,w)F (vh(t), wh(t), ȳh, k, 0)TΨ, (2.8)

which admits a unique bounded solution Ψh(t) (up to multiplication by a constant). We assume the following

regarding the bifurcation of periodic orbits from the homoclinic orbit γh; see Figure 7.

Hypothesis 4. (Periodic manifold) The saddle quantity νh := λ+h − λ−h associated with the equilibrium ph

satisfies νh < 0 and the Melnikov integral

Mh =

∫ ∞

−∞
DyF (vh(t), wh(t), ȳh, 0, 0) ·Ψh(t)dt 6= 0, (2.9)

is nonzero so that γh breaks transversely as y is varied near y ≈ ȳh [23]. Therefore from the homoclinic orbit γh

bifurcates a family of attracting periodic orbits [16] for either y < ȳh or y > ȳh; we assume the latter and denote

this family by

P = {γp(·; y) = (vp(·; y), wp(·; y)) : y ∈ (ȳh, ȳp)} (2.10)

for some ȳh < ȳp < ȳr. As a result we have the following (see, for instance, the discussion in [16, §3.6]).

(i) The periodic orbits {γp(·; y) : y ∈ (ȳh, ȳp)} have corresponding periods Tp(y), y ∈ (ȳh, ȳp), where Tp(y) is a

smooth function of y and Tp(y)→∞ as y → ȳh.

(ii) Each periodic orbit γp(·; y), y ∈ (ȳh, ȳp) admits a single nontrivial Floquet multiplier e−µp(y)Tp(y) < 1, where

µp(y) > 0 is a smooth function of y.

We note that away from the endpoints y = ȳh, ȳp, the family P forms an invariant manifold, which is normally

attracting; this manifold is shaped as a cylinder which surrounds the upper branch Mu
0 ; see Figure 4.

The next hypothesis concerns the existence of heteroclinic orbits connecting the middle branch Mm
0 to the

bottom branch Mb
0 as well as heteroclinic orbits between Mm

0 and P; see Figure 7.

Hypothesis 5. (Behavior of Wu(Mm
0 )) For each value of y ∈ (ȳ`, ȳr), the saddle equilibrium pm(y) has a one

dimensional unstable manifold Wu(pm(y)) which is composed of two orbits Wm
− ,W

m
+ .

(i) For each y ∈ (ȳ`, ȳr), W
m
− is given by a heteroclinic orbit φb(y) which limits onto the stable equilibrium

pb(y) on the bottom branch Mb
0.

(ii) The behavior of Wm
+ varies: For y = ȳh, Wm

+ is precisely the homoclinic orbit γh. For y ∈ (ȳ`, ȳh), Wm
+

is given by a second heteroclinic orbit φu(y) which limits onto the stable equilibrium pb(y) on the bottom

branchMb
0, while for y ∈ (ȳh, ȳp), Wm

+ is a heteroclinic orbit φp(y) which limits onto the attracting periodic

orbit γp(·; y). The behavior of Wm
+ for y ≥ ȳp is not relevant.
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2.2 Reduced problem

Taking ε = 0 in (2.2) results in the associated reduced problem

0 = f1(v, w, y, k, 0)

0 = f2(v, w, y, k, 0)

y′ = g(v, w, y, k, 0),

(2.11)

which is a differential-algebraic system in which the flow is restricted to the critical manifold M0. Regarding

the slow flow, we have the following.

Hypothesis 6. (Slow flow). The function g0(v, w, y) = g(v, w, y, 0, 0) satisfies

g0|Mm
0
< 0, g0|Mb

0
> 0, g0(v̄r, w̄r, ȳr) = 0, g0(v̄`, w̄`, ȳ`) < 0 (2.12)

and

1

Tp(y)

∫ Tp(y)

0

g0(vp(t; y), wp(t; y), y)dt < 0, y ∈ (ȳh, ȳp). (2.13)

2.3 Fold points

Finally, we discuss hypotheses regarding the fold points F`,r. At each of the folds, the linearization of (2.1) for

ε = 0 admits a double zero eigenvalue due to the loss of normal hyperbolicity occuring along the critical manifold.

There is one remaining hyperbolic direction, which we assume is repelling in the case of F` and attracting in the

case of Fr. Hence near the fold points, there exist local two-dimensional center manifolds, on which we assume

that F` and Fr take the form of nondegenerate planar fold and canard points (in the sense of [20]), respectively.

The corresponding center manifold is repelling in the case of F` and attracting in the case of Fr, and hence we

refer to F` as a normally repelling fold point, and Fr as a normally attracting canard point.

This is the content of the following.

Hypothesis 7. The fold points F`,Fr satisfy the following.

(i) (Normally repelling nondegenerate fold point) The point F` is a normally repelling fold point, in the sense

that

D(v,w)F (v̄`, w̄`, ȳ`, k, 0) (2.14)

has one positive eigenvalue for k ∈ [−k0, k0]. The full system (2.1) therefore admits a two-dimensional local

center manifold Wc(F`), on which we assume the point F` is a nondegenerate fold (or jump) point in the

sense of [20, §2.1].

(ii) (Normally attracting nondegenerate canard point) The point Fr is a normally attracting canard point, i.e.

D(v,w)F (v̄r, w̄r, ȳr, k, 0) (2.15)

has one negative eigenvalue for k ∈ [−k0, k0]. The full system (2.1) therefore admits a two-dimensional

local center manifold Wc(Fr), on which we assume the point Fr is a nondegenerate canard point with

unfolding parameter k in the sense of [20, §3.1]. This two-dimensional system therefore admits a singular

Hopf bifurcation for k = ε = 0, which we assume is nondegenerate, in the sense of [21, §3.4].

Remark 2.1. The nondegeneracy condition for the singular Hopf bifurcation can be determined from the normal

form of the reduced equations on Wc(Fr); we refer to Theorem 3.2 below.
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2.4 Statement of the main result

We are now able to state our main result. We define an N -spike bursting solution to be a periodic orbit which

completes N excursions around the upper branch Mu. We have the following.

Theorem 2.2. Consider system (2.1) satisfying Hypotheses 1–7. Then there exist ρ, η, ε0 > 0 such that for each

ε ∈ (0, ε0), there exists a continuous one-parameter family

θ 7→ (ksa(θ,
√
ε),B(θ,

√
ε)), θ ∈ (0,Θ(ε)) (2.16)

of periodic orbits B(θ,
√
ε) originating at a Hopf bifurcation near the fold point Fr, where ksa,B are C1 in (θ,

√
ε).

For θ ∈ (N,N + 1), the periodic orbit B(θ,
√
ε) is an N -spike bursting solution, and the quantity Θ(ε) satisfies

lim
ε→0

εΘ(ε) = θ0 > 0. Further, for θ ∈ (ρ,Θ(ε)), the parameter ksa(θ,
√
ε) satisfies

|ksa(θ,
√
ε)− kmc(

√
ε)| = O(e−η/ε) (2.17)

for a Cr function kmc(
√
ε) = O(ε).

Theorem 2.2 guarantees the existence of a single connected branch of bursting solutions which encompasses

the transition from canard explosion (i.e. small amplitude Hopf cycles local to the fold point Fr) to large

amplitude bursting oscillations with an O(1/ε) number of spikes. Each spike is added sequentially throughout

the spike-adding process as the single bifurcation parameter k varies on an interval of size O(e−η/ε).

The remainder of this paper is concerned with the proof of Theorem 2.2.

3 Construction of spike-adding sequence

In this section, we present the proof of Theorem 2.2 by constructing the entire spike-adding sequence of bursting

solutions for small ε > 0. We begin in §3.1 by collecting facts regarding the perturbation of normally hyperbolic

portions of the critical manifold M0 and their (un)stable manifolds, which follow from standard results of

geometric singular perturbation theory [12]. In §3.2–3.3, we analyze the fold point Fr and the canard explosion

which occurs in a local two-dimensional center manifold Wc(Fr) containing the fold.

We then proceed by constructing bursting solutions which complete large excursions in phase space, that is,

periodic orbits which do not remain in a small neighborhood of the fold point Fr. We describe in §3.4 the general

strategy for constructing such solutions, and in §3.5–3.7 we construct the transition from 0-spike solutions to

1-spike solutions. To understand how additional spikes are generated, a detailed understanding of the flow near

the saddle-homoclinic bifurcation is needed, which we present in §3.8, and the proof of the key technical result

is given in §3.9. In §3.10-§3.11, we construct N -spike solutions for any N and show how the branches of N -spike

solutions and (N + 1)-spike solutions are connected. Finally, the proof of Theorem 2.2 is briefly concluded

in §3.12.

3.1 Persistence of invariant manifolds

We collect several preliminary results which follow from standard geometric singular perturbation theory and

center manifold theory. For sufficiently small ε0, k0, we have the following:

1. Away from the fold points F`,r, the three branches Mb,m,u
0 are normally hyperbolic and persist for

(k, ε) ∈ (−k0, k0) × (0, ε0) as locally invariant slow manifolds Mb,m,u
ε . The middle branch Mm

0 has

two-dimensional stable and unstable manifolds Ws(Mm
0 ),Wu(Mm

0 ) which persist as locally invariant
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manifolds Ws(Mm
ε ),Wu(Mm

ε ) for (k, ε) ∈ (−k0, k0) × (0, ε0). Similarly the bottom branch Mb
0 has a

three-dimensional stable manifold Ws(Mb
0) which persists as a locally invariant manifold Ws(Mb

ε) for

(k, ε) ∈ (−k0, k0)× (0, ε0).

2. Near the fold point Fr there is a local two-dimensional attracting Cr-smooth center manifold Wc(Fr)
which persists for (k, ε) ∈ (−k0, k0)× (0, ε0). The slow manifoldsMb

ε andMm
ε extend into a neighborhood

of Fr, where they shadow corresponding basepoint solution orbits Mb,r
ε and Mm,r

ε which lie on Wc(Fr).

3. Near the fold point F` there is a local two-dimensional repelling Cr-smooth center manifoldWc(F`) which

persists for (k, ε) ∈ (−k0, k0)× (0, ε0).

4. Away from the saddle homoclinic bifurcation at y = ȳh, the periodic manifold P persists as a two-

dimensional normally attracting locally invariant manifold Pε for (k, ε) ∈ (−k0, k0)× (0, ε0).

3.2 Local coordinates near F r and maximal canards

By Hypothesis 7, in a neighborhood of the fold Fr, after a change of coordinates we obtain the system (see for

instance [20] or [2, §6])

ẋr = xr (−cr(k) +O(xr, yr, zr, ε))

żr = yrh1(yr, zr, k, ε) + z2rh2(yr, zr, k, ε) + εh3(yr, zr, k, ε)

ẏr = ε (−zrh4(yr, zr, k, ε) + kh5(yr, zr, k, ε) + yrh6(yr, zr, k, ε))

k̇ = 0

ε̇ = 0 ,

(3.1)

where cr(k) > 0, and the functions hj , j = 1, . . . , 6 are Cr and satisfy

h3(yr, zr, k, ε) = O(yr, zr, k, ε)

hj(yr, zr, k, ε) = 1 +O(yr, zr, k, ε), j = 1, 2, 4, 5.
(3.2)

At the linear level, the slow variable yr in these local coordinates corresponds to a rescaling of the original slow

variable (y − ȳr). Here the variables (zr, yr) parameterize the center manifold Wc(Fr), while xr parameterizes

the strong stable fibers, which have been straightened so that the (zr, yr) center dynamics are decoupled from

xr. See Figure 8 for a schematic of the singular ε = 0 flow near Fr.
The manifold Wc(Fr) is given by xr = 0; we recall that by construction Wc(Fr) contains the one-dimensional

(shadowed) slow manifolds Mb,r
ε and Mm,r

ε . We note that the (zr, yr) coordinates are in the canonical form for

a canard point (compare [20]). Canard points are characterized by canard trajectories which follow a strongly

attracting manifold (in this caseMb,r
ε ), pass near the equilibrium and continue along a strongly repelling manifold

(in this case Mm,r
ε ) for some time. To understand the flow near this point, we use blowup methods as in [20].

Restricting to the center manifold xr = 0, the blow up transformation is given by

yr = r̄2ȳ, zr = r̄z̄, k = r̄k̄, ε = r̄2ε̄ , (3.3)

defined on the manifold B = S2 × [0, r̄0]× [−k̄0, k̄0] for sufficiently small r̄0, k̄0 with (ȳ, z̄, ε̄) ∈ S2. There is one

relevant coordinate chart which will be needed for the matching analysis; in the literature, this is frequently

referred to as the “family rescaling” chart, which corresponds to an ε-rescaling of the variables and parameters.

Keeping the same notation as in [20] and [21], the family rescaling chart K2 uses the coordinates

yr = r22y2, zr = r2z2, k = r2k2, ε = r22. (3.4)
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Figure 8: Pictured is a schematic of the singular flow in a neighborhood of the right fold point Fr. The normally

attracting center manifold Wc(Fr) corresponds to the plane {xr = 0}.

Using these blow-up charts, the authors of [20] studied the behavior of the manifolds Mb,r
ε and Mm,r

ε and

determined conditions under which these manifolds coincide along a canard trajectory. We place a section

Σr = {zr = 0, |xr| ≤ δx, |yr| < ρ} for small fixed δx, ρ which will serve as a Poincaré section for constructing the

periodic orbits.

In the chart K2, the section Σr is given by Σr =
{
z2 = 0, |xr| ≤ δx, |r22y2| < ρ

}
. It was shown in [20] that for

all sufficiently small r2, k2, the manifolds Mb,r
ε and Mm,r

ε reach Σr at y2 = yb2(k2, r2) and y2 = ym2 (k2, r2),

respectively. We have the following result which describes the distance between Mb,r
ε and Mm,r

ε in Σr.

Proposition 3.1. [20, Proposition 3.5] The distance between the slow manifolds Mb,r
ε and Mm,r

ε in Σr is given

by

yb2 − ym2 = D0(k2, r2) = dk2k2 + dr2r2 +O(r22 + k22) , (3.5)

where the coefficients dk2 , dr2 are constants, bounded away from zero independently of k2, r2. Hence we can solve

for the existence of a maximal canard trajectory within Wc(Fr), corresponding to a zero of the distance function

D0(k2, r2), which occurs when

k2 = kmc
2 = µr2 +O(r22), (3.6)

where µ = −dr2
dk2
6= 0.

This proposition describes the splitting of the manifoldsMb,r
ε andMm,r

ε as a function of k2, r2, and in particular

ensures that this splitting occurs in a transverse fashion as the parameter k = k2r2 is varied near k ≈ kmc(
√
ε),

where the function

kmc(
√
ε) = kmc

2

√
ε = µε+O(ε3/2) (3.7)

denotes the location of the maximal canard solution.

Further, it was shown in [20] that the system (3.1) undergoes a singular Hopf bifurcation, which also occurs

near the location of the maximal canard. The sub/super criticality of the Hopf bifurcation is determined via the
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quantity

AH = −a1 + 3a2 − 2a4 − 2a5 (3.8)

where

a1 =
∂h1
∂zr

(0, 0, 0, 0), a2 =
∂h2
∂zr

(0, 0, 0, 0), a3 =
∂h3
∂zr

(0, 0, 0, 0)

a4 =
∂h4
∂zr

(0, 0, 0, 0), a5 = h6(0, 0, 0, 0)

We have the following.

Theorem 3.2. [20, Theorem 3.1] There exist ε0, k0 > 0 such that for (k, ε) ∈ (−k0, k0)× (0, ε0) the system (3.1)

admits a single equilibrium. The equilibrium is stable for k < kH(
√
ε), where

kH(
√
ε) = −a3 + a6

2
ε+O(ε3/2) (3.9)

and loses stability through a Hopf bifurcation as k passes through kH(
√
ε). The Hopf bifurcation is nondegenerate

if the quantity AH defined in (3.8) is nonzero. It is supercritical if AH < 0 and subcritical if AH > 0.

3.3 Local canard explosion

Within the center manifold Wc(Fr), we refer to [21] for the bifurcation of local canard orbits from the singular

Hopf bifurcation at the equilibrium at the origin. Upon varying the parameter k ≈ kmc(
√
ε), these orbits grow

to small, but O(1), size within Wc(Fr). We quote the following from [21].

Theorem 3.3. [21, Theorems 4.1, 4.2, Proposition 4.3] Assume that AH 6= 0 and that ρ > 0 is sufficiently small.

Then there exists ε0 > 0 such that for ε ∈ (0, ε0), the system (3.1) undergoes a Hopf bifurcation at k = kH(
√
ε),

from which bifurcates a continuous family of periodic orbits

s 7→ (ksc(s,
√
ε),Γsc(s,

√
ε)), s ∈ (0, ρ] (3.10)

where ksc(s,
√
ε) is Cr in (s,

√
ε) with ksc(s,

√
ε)→ kH(

√
ε) as s→ 0, and

|ksc(ρ,√ε)− kmc(
√
ε)| = O(e−q/ε). (3.11)

For each s ∈ (0, ρ], the orbit Γsc(s,
√
ε)) ⊂ Wc(Fr) passes through the point (xr, yr, zr) = (0,−s, 0).

This theorem guarantees the existence of a singular Hopf bifurcation and the bifurcation of a continuous family

of periodic orbits within the center manifold Wc(Fr) which grow to O(1) amplitude for all sufficiently small ε

(determined via the small parameter ρ which, in general, satisfies 0 < ε� ρ).

3.4 General strategy of constructing O(1)-amplitude periodic orbits

In this section, we describe a general strategy for constructing a periodic orbit which completes an O(1) excursion

in phase space before returning to a neighborhood of the fold Fr. The idea is to determine an appropriate one-

dimensional curve I of initial conditions which can be evolved both forward and backward in time, spanning a

two-dimensional manifold I of candidate solution orbits. This manifold is tracked forward and backward until

it first intersects the section Σr; this intersection is therefore given by two curves I+, I−, resulting from the

forward and backward evolution, respectively. The geometric setup for the construction strategy is shown in

Figure 9.
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Figure 9: Shown is a schematic of the strategy for constructing large amplitude bursting oscillations outlined

in §3.4. A one-dimensional manifold I of candidate solutions is evolved forwards and backwards under the flow

of (2.1) until intersecting the section Σr. This intersection consists of two curves: I± (corresponding to the

forward and backward evolution, respectively); matching conditions are then determined within the section Σr

which guarantee the existence of a periodic orbit.

We then consider the Poincaré map Πr : Σr → Σr, and search for solutions with initial conditions on I− which

return to Σr, meeting the curve I+. The desired periodic orbit is then given by a fixed point of this map,

corresponding to an intersection of the curves I+, I− which occurs along a single solution orbit, lying entirely

within the manifold I.

We now describe this procedure in more detail, and determine conditions on the initial curve I which guarantee

that this strategy results in a unique solution. We assume the following.

(i) The curve I lies outside a small ∆-neighborhood of Fr.

(ii) Under the forward evolution of (2.1), the manifold I is contained in Ws(Mb
ε).

(iii) Under the backward evolution of (2.1), the manifold I transversely intersects Wu(Mm
ε ).

Under these conditions, we can construct a periodic orbits as follows. When evolving forwards, since the manifold

I is contained in Ws(Mb
ε), we can track I as it is exponentially contracted to Mb

ε until reaching a small

neighborhood of Fr, whereby I intersects Σr in a curve I+ which is O(e−η/ε)-close to Mb
ε ∩ Σr. On the other

hand, since I transversely intersectsWu(Mm
ε ) under the backward evolution of (2.1), by the exchange lemma [35],

in backwards time I intersects Σr in a curve I− which is aligned C1-O(e−η/ε)-close to the strong stable fibers

of the manifold Wc(Fr). In particular, I− intersects Wc(Fr) ∩ Σr at a base-point which is O(e−η/ε)-close to

Mm
ε ∩ Σr, and I− is thus aligned C1-O(e−η/ε)-close to the strong stable fiber of that base-point.

The Poincaré map Πr : Σr → Σr by construction satisfies Πr(I−) ⊆ I+. We use the blow-up coordinates (3.4) to

set up fixed point matching conditions in the section Σr. Within Σr, it is most natural to parametrize solutions

using the coordinates (xr, y2).
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Figure 10: Shown are singular periodic orbits in the case of lower 0-spike orbits and upper 1-spike orbits. The

lower/upper descriptor refers to which of the heteroclinic orbits φb, φu is followed. A lower 0-spike orbit follows

Mb, thenMm, then the heteroclinic orbit φb. An upper 1-spike orbit followsMb, thenMm, then the heteroclinic

orbit φu; the fast increase then decrease in the v-variable along the orbit φu constitutes the ‘spike’.

3.5 (Lower) 0-spike orbits

In this section, we construct 0-spike orbits, which encompass the transition from the local canard explosion

occurring within the center manifold Wc(Fr) to large canard orbits which complete a global excursion. This

excursion is characterized by a long canard trajectory, which consists of first following Mb
ε, thenMm

ε , and then

finally returning toMb
ε via one of the heteroclinic orbits φb(y), see Figure 10. We refer to these orbits as “lower”

0-spike orbits as they traverse one of the heteroclinic orbits φb(y), as opposed to one of the upper heteroclinics

φu(y). These orbits are most naturally parameterized by which heteroclinic connection φb(y) is followed, or

equivalently, the minimum y-value achieved along the orbit. Hence for s ∈ [ȳ` + ∆, ȳr − ∆], we search for a

0-spike periodic orbit which achieves a minimum y-value of y = s, and is obtained as a perturbation from the

singular orbit

Γ0(s) :=Mb
0(s, ȳr) ∪Mm

0 (s, ȳr) ∪ φb(s) (3.12)

Following the strategy of the previous section, we choose an appropriate one-dimensional curve Ib(s) of candidate

initial conditions. For this, we denote by wb the w-coordinate at which the orbit φb(s) intersects the set {v = v̄r}.
For sufficiently small δ > 0, we then define Ib(s) to be an interval of width δ which lies in the plane {y = s} and

is transverse to the fast layer dynamics, and which intersects φb(s) at w = wb. We now determine the behavior

of Ib(s) under the forwards and backwards evolution of (2.1).

Since φb(s) lies in the intersection Ws(Mb
0) ∩ Wu(Mm

0 ) for ε = 0, we see that for all sufficiently small ε > 0,

the forward evolution of Ib(s) must also lie in Ws(Mb
ε). On the other hand, the backwards evolution of Ib(s)

transversely intersects the manifold Wu(Mm
ε ). By the exchange lemma, the backwards evolution of Ib(s) traces

out a two-dimensional manifold Ib(s) which intersects Σr in a curve I−(s) which is aligned C1-O(e−η/ε)-close

to the stable fiber of a base-point on Wc(Fr) which itself is O(e−η/ε)-close to Mm,r
ε ∩ Σr.

We sum this up in the following

Lemma 3.4. Within Σr, the curve I−(s) is given as a graph

I−(s) = {(xr, y2) : y2 = ym2 + I−(xr, s, k, ε), |xr| ≤ δx} (3.13)
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Figure 11: Shown are the matching conditions within the Poincaré section Σr. Note that under the Poincaré

map Πr : Σr → Σr, we have that Π(I−) ⊆ I+. A periodic orbit can be therefore be found when the curves I±
intersect along a single solution orbit.

where

I−(0, s, k, ε) = O(e−η/ε), ∂νI
−(0, s, k, ε) = O(e−η/ε) (3.14)

for ν = xr, s, k.

We now consider the forward evolution of I−(s), which is contained in the two-dimensional manifold Ib(s).
By construction and by the above discussion, we have that Ib(s) ⊂ Ws(Mb

ε), and therefore Ib(s) will be C1-

exponentially contracted to Mb
ε and thus meets the section Σr in a curve I+(s) which is C1-O(e−η/ε)-close to

Mb,r
ε ∩ Σr. We have the following

Lemma 3.5. Consider the Poincaré map Πr : Σr → Σr. We have that Πr(I−(s)) ⊆ I+(s); parameterizing

points on I−(s) by their initial xr coordinate given by xr = x− for |x−| ≤ δx, we have that the curve Πr(I−(s))

is given by

Πr(I−(s)) =

{(
xr

y2

)
=

(
x+(x−, s, k, ε)

yb2 + I+(x−, s, k, ε)

)
, |x−| ≤ δx

}
(3.15)

where

I+(x−, s, k, ε) = O(e−η/ε), ∂νI
+(x−, s, k, ε) = O(e−η/ε)

x+(x−, s, k, ε) = O(e−η/ε), ∂νx
+(x−, s, k, ε) = O(e−η/ε)

(3.16)

for ν = x−, s, k.

It remains to solve for a fixed point of Πr which lies on the intersection of the curves I±(s); this corresponds

to a periodic orbit which is a perturbation of the singular orbit Γ0(s). An intersection of I±(s) occurs along a

single solution orbit if

x− = x+(x−, s, k, ε)

ym2 + I−(x−, s, k, ε) = yb2 + I+(x−, s, k, ε)
(3.17)

for some value of |x−| ≤ δx. Using the estimates (3.16), the first equation can be solved for

x− = x−(s, k, ε) = O(e−η/ε), ∂kx
−(s, k, ε) = O(e−η/ε). (3.18)
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Plugging this into the second equation and rearranging results in the equation

yb2 − ym2 + I+(x−(s, k, ε), s, k, ε)− I−(x−(s, k, ε), s, k, ε) = 0, (3.19)

which by Proposition 3.1 can be rewritten as

D0(k2, r2) + I+(x−(s, k, ε), s, k, ε)− I−(x−(s, k, ε), s, k, ε) = 0. (3.20)

Using the estimates (3.14), (3.16), (3.18), and the implicit function theorem, this equation can be solved for a

unique solution when

k = ksa0 (s, ε) = kmc(
√
ε) +O(e−η/ε) (3.21)

3.6 Upper 1-spike orbits

In this section, we construct 1-spike orbits which complete an excursion around the upper branch Mu
ε , corre-

sponding to a single spike. We first consider the simpler case of orbits which stay away from the upper left

fold F` and the saddle-homoclinic bifurcation occurring alongMm
ε , as these orbits can be constructed in a very

similar manner to the 0-spike orbits from §3.5.

These solutions are again characterized by a long canard trajectory, which consists of first following Mb
ε, then

Mm
ε , and then finally returning to Mb

ε; however, in contrast to the solutions constructed in §3.5, the fast jump

down to Mb
ε instead follows one of the heteroclinic orbits φu(y) – see Figure 10. Similarly, these orbits are

most naturally parameterized by which heteroclinic connection φu(y) is followed, or equivalently, the minimum

y-value achieved along the orbit. Hence for each s ∈ [ȳ` + ∆, ȳh−∆] we search for a 1-spike periodic orbit which

achieves a minimum y-value of y = s, and is obtained as a perturbation from the singular orbit

Mb
0(s, ȳr) ∪Mm

0 (s, ȳr) ∪ φu(s) (3.22)

Following the strategy of §3.5, we choose an appropriate one-dimensional curve Iu(s) of candidate initial con-

ditions. For this, we denote by wu the w-coordinate at which the orbit φu(s) intersects the set {v = v̄`}. For

sufficiently small δ > 0, we then define Iu(s) to be an interval of width δ which lies in the plane {y = s} and is

transverse to the fast layer dynamics, and which intersects φu(s) at w = wu. Since φu(s) lies in the intersection

Ws(Mb
0)∩Wu(Mm

0 ) for ε = 0, the remainder of the analysis follows identically to that in §3.5, with the periodic

orbit occurring for

k = ksa,upper1 (s, ε) = kmc(
√
ε) +O(e−η/ε), (3.23)

and we omit the details.

3.7 Overlap of 0-spike orbits and upper 1-spike orbits: analysis of upper left fold

point F `

We consider the upper left fold F`. We note that the geometry near the fold is similar to that considered in [2,

§4], and hence we draw on the local analysis as presented in [2]. We first move to a local coordinate system in a

neighborhood of F`, in which the equations take the form

ẋ` = x` (c`(k) +O(x`, y`, z`, ε)) ,

ż` = −y` + z2` + h`(y`, z`, k, ε)

ẏ` = εg`(y`, z`, k, ε)

(3.24)
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Figure 12: Shown is a schematic of the singular ε = 0 flow near the upper left fold point F`. The locally invariant

attracting center manifold Wc(F`) is given by the set {x` = 0}.

where c`(k) > 0, and h`, g` are Cr-functions satisfying

h`(y`, z`, k, ε) = O(ε, y`z`, y
2
` , z

3
` ),

g`(y`, z`, k, ε) = −1 +O(y`, z`, ε),

uniformly in k ∈ (−k0, k0). The geometry of (3.24) for ε = 0 is depicted in Figure 12. In the transformed

system (3.24), the (z`, y`)-dynamics are decoupled from the dynamics in the hyperbolic x`-direction along the

straightened strong unstable fibers. At the linear level, the slow variable y` in these local coordinates corresponds

to a rescaling of the original slow variable (y − ȳ`).
We consider the flow of (3.24) on the invariant manifold x` = 0. We append an equation for ε, arriving at the

system

ż` = −y` + z2` + h`(y`, z`, k, ε)

ẏ` = εg`(y`, z`, k, ε)

ε̇ = 0.

(3.25)

For ε = 0, this system possesses a critical manifold given by {(y`, z`) : −y` + z2` + h`(y`, z`, k, 0) = 0}, which in

a sufficiently small neighborhood of the origin is shaped as a parabola opening to the right; see Figure 12. The

branch of this parabola for z` < 0 is attracting and corresponds to the manifold Mm
0 . We define Mm,+

0 to be

the singular trajectory obtained by appending the fast trajectory given by the line segment {(y`, z`) : y` = 0, 0 ≤
z` ≤ δz} to the attracting branch Mm

0 of the critical manifold. We have the following

Proposition 3.6. ([2, Proposition 4.1]) For all sufficiently small ε > 0, we have the following.

(i) Within the center manifold {x` = 0}, the singular trajectory Mm,+
0 perturbs to a solution Mm,+

ε , which is

C0-O(ε2/3)-close and C1-O(ε1/3)-close to Mm,+
0 , uniformly in |k| < k0. This solution can be represented

as a graph

Mm,+
ε = {(0, y`, z`) : y` = sm,+(z`, k, ε), |z`| ≤ δz}. (3.26)
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Figure 13: Depicted are the results of Proposition 3.6. For sufficiently small ε > 0, the singular trajectoryMm,+
0

perturbs to a solutionMm,+
ε within the center manifold Wc(F`) = {x` = 0}. Furthermore, the two-dimensional

manifoldWu(Mm,+
0 ) composed of the strong unstable fibers ofMm,+

0 also perturbs to a two-dimensional locally

invariant manifold Wu(Mm,+
ε ) depicted by the purple surface. Also shown is the section Σ`in, transverse to the

center manifold Wc(F`).

(ii) The manifold Wu(Mm,+
0 ) composed of the strong unstable fibers of the singular trajectory Mm,+

0 also

perturbs to a two-dimensional locally invariant manifold Wu(Mm,+
ε ) which is C0-O(ε2/3)-close and C1-

O(ε1/3)-close to Wu(Mm,+
0 ), uniformly in |k| < k0.

The results of Proposition 3.6 are depicted in Figure 13.

We proceed by constructing solutions which pass near the fold. These solutions form a “bridge” between orbits

which departMm
ε along the heteroclinics φb(y) and those which depart along the heteroclinics φu(y), which were

constructed in §3.5 and §3.6, respectively. The geometric intuition is that the fold acts as a means of continuously

transitioning from one “side” ofMm
ε to the other. The challenge lies in parameterizing these orbits, as the exact

orbit φb(y) or φu(y) which is followed when leaving a neighborhood of F` is not naturally determined.

We choose 0 < δ � δz and define the section Σ`in (see Figure 13) by

Σ`in = {(x`, y`, z`) : y` = sm,+(−δz, k, 0), |x`| ≤ δx, |z` + δz| ≤ δ}. (3.27)

We have the following.

Lemma 3.7. For all sufficiently small ε > 0, we have that Σ`in ⊆ Ws(Mb
ε).

Proof. We first define a collection of potential “exit” sections for solutions with initial conditions in Σ`in. The
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first is given by

Σ`out,1 = {(x`, y`, δz) : |x`| ≤ δx, |y`| ≤ δ}. (3.28)

For the other sections, we first define U ` to be a planar δ-neighborhood of Mm,+
0 within the center manifold

{x` = 0}. This neighborhood U ` is bounded by four curves, given by Σ`in∩{x` = 0}, Σ`out,1∩{x` = 0}, as well as

two other curves U `upper and U `lower, chosen to lie an O(δ) distance on either side of Mm,+
0 , so that the union of

these four curves bounds a well-defined planar region U ` within {x` = 0} containingMm,+
0 , with O(δ) thickness.

We now define four additional exit sections

Σ`out,2 = {(δx, y`, z`) : (y`, z`) ∈ U `}
Σ`out,3 = {(−δx, y`, z`) : (y`, z`) ∈ U `}
Σ`upper = {(x`, y`, z`) : |x`| ≤ δx, (y`, z`) ∈ U `upper}
Σ`lower = {(x`, y`, z`) : |x`| ≤ δx, (y`, z`) ∈ U `lower}.

(3.29)

Previous blow-up analyses [2, 20] of non-degenerate fold points have studied the behavior of base-point solutions

with initial conditions in Σ`in ∩ {x` = 0} for 0 < ε � 1. In particular, these analyses show that initially such

solutions are quickly contracted O(e−η/ε)-close toMm,+
ε and remain O(e−η/ε)-close toMm,+

ε until reaching the

set Σ`out,1 ∩ {x` = 0}. Hence, when considering the full dynamics of (3.25), i.e. with the x`-dynamics included,

since solutions on the strong unstable fibers shadow their respective base-point trajectories, any solution with

initial condition in Σ`in must pass through one of the three sections Σ`out,j , j = 1, 2, 3. In particular, such solutions

do not pass through Σ`upper or Σ`lower. It remains to show that Σ`out,j , j = 1, 2, 3 are contained in Ws(Mb
ε).

To see this, we first consider solutions within Σ`out,2 ∩ {y` ≥ δ} and Σ`out,3 ∩ {y` ≥ δ}. Provided δ � δx, the

fact that such solutions are contained in Ws(Mb
0) is clear due to their proximity with the heteroclinic orbits

φu(y), φb(y) which lie in Ws(Mb
0). For sufficiently small ε > 0, by standard geometric singular perturbation

theory, these solutions are contained in Ws(Mb
ε).

For the remaining solutions, i.e. those within {|y`| ≤ δ}, we first note that due to Hypothesis 7 as well as

Hypothesis 5 regarding the layer problem (2.3) for ε = 0, any solution within the plane {y` = 0} lying a small

fixed distance δx from the fold F` must lie inWs(Mb
0). For sufficiently small δ � δx, by the smooth dependence

of the layer problem on y`, this also holds for solutions lying distance δx from F`, which are contained in the

region {|y`| ≤ δ}. Again, the fact that these solutions are contained in Ws(Mb
ε) for small ε > 0 follows from

standard geometric singular perturbation theory. Hence by appropriately choosing δ � δx, δz, we obtain the

result.

We note that for ε = 0, we have that

Wu(Mm
0 ) ∩ Σ`in = {(x`, y`, δz) : y` = sm,+(δz, k, 0), |x`| ≤ δx}. (3.30)

Therefore, for each |x̄| ≤ δx, we can define the interval

I`(x̄) = Σ`in ∩ {x` = x̄}, (3.31)

which clearly intersectsWu(Mm
0 ) transversely within Σ`in. This transversality persists for sufficiently small ε > 0.

Combining this with Lemma 3.7, we see that I`(x̄) satisfies the conditions outlined in the strategy from §3.4,

and the construction of periodic orbits which pass through I`(x̄) follows as in §3.5.

3.8 The flow near the saddle-homoclinic point

Before proceeding to construct N -spike solutions for N > 1, it is necessary to understand the passage of solutions

the near the saddle homoclinic point ph. This analysis is also critical in determining how the different branches of
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Figure 14: Shown is the flow near the saddle homoclinic bifurcation for sufficiently small ε > 0. The stable

and unstable manifolds Ws,u(Mm
0 ) of the critical manifold Mm

0 , which intersect transversely for ε = 0, perturb

to two-dimensional locally invariant manifolds Ws,u(Mm
ε ) which again intersect transversely near y ≈ ȳh for

0 < ε� 1. Away from the saddle homoclinic bifurcation, the periodic manifold P0 persists as a locally invariant

manifold Pε.

bursting solutions are connected. The main result of this section is Proposition 3.8, which concerns the behavior

of solutions which spend long times hear the saddle homoclinic point. The proof of Proposition 3.8 is given

in §3.9.

We continue by considering the flow in a neighborhood of the saddle homoclinic point ph. The existence of

a saddle homoclinic orbit γh at ph when ε = 0 implies that the manifolds Wu(Mm
0 ) and Ws(Mm

0 ) intersect

transversely along γh in the plane y = ȳh. This transverse intersection therefore persists for the manifolds

Wu(Mm
ε ) and Ws(Mm

ε ) for ε > 0 sufficiently small; see Figure 14.

In a neighborhood of Mm
ε , there exists a smooth change of coordinates such that the equations can be written

in the Fenichel normal form

Ȧ = F1(A,B, Y, k, ε)A

Ḃ = F2(A,B, Y, k, ε)B

Ẏ = ε(G1(Y, k, ε) +G2(A,B, Y, k, ε)),

(3.32)

where

F1(A,B, Y, k, ε) = −α(k) +O(A,B, Y, ε)

F2(A,B, Y, k, ε) = β(k) +O(A,B, Y, ε)

G1(Y, k, ε) = −γ(k) +O(Y, ε)

G2(A,B, Y, k, ε) = O(AB),

(3.33)

where α(k), β(k), γ(k) > 0 uniformly in |k| < k0, and α(k) > β(k) due to Hypothesis 4. In the following we will

suppress the dependence on k in the notation. In these coordinates, the set A = 0 corresponds to Wu(Mm
ε ), the

set B = 0 coincides with Ws(Mm
ε ), and the slow manifold Mm

ε is given by A = B = 0; see Figure 15.
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Πgl ◦Πloc(I∗)

I∗

Figure 15: Shown is the local geometry associated with the flow of the Fenichel normal form (3.32) near the saddle

homoclinic bifurcation for sufficiently small ε > 0. The manifoldsWu(Mm
ε ) andWs(Mm

ε ) coincide with the sets

A = 0 and B = 0, respectively, and the slow manifold Mm
ε is given by A = B = 0. The sections Σh

A,Σ
h
B defined

in (3.34) are placed at A = ∆ and B = ∆, respectively for small fixed ∆ > 0. Due to Hypothesis 4 manifold

Wu(Mm
ε ) transversely intersects Ws(Mm

ε ) in the section Σh
A for all sufficiently small ε > 0. Also depicted are

the results of Lemma 3.13, concerning the return map Πgl ◦ Πloc : Σh
B → Σh

B induced by the backwards flow

of (3.32), applied to a curve I∗ which transversely intersects Wu(Mm
ε ) in Σh

B .

We fix the two-dimensional sections

Σh
A = {A = ∆, |B| ≤ ∆, |Y | ≤ δY }

Σh
B = {B = ∆, |A| ≤ ∆, |Y | ≤ δY }

(3.34)

for small ∆ > 0 to be chosen later; see Figure 15.

By the above discussion, we can track Wu(Mm
ε ) along γh and deduce that this manifold transversely intersects

Ws(Mm
ε ) in the section Σh

A for all sufficiently small ε > 0 (see Figure 15). Thus the intersection of Wu(Mm
ε )

with the section Σh
A is given by a curve which can be represented as a graph over the B-coordinate, that is

Wu(Mm
ε ) ∩ Σh

A = {(∆, B, Yh(B, k, ε)) : |B| ≤ δ}, (3.35)

for some 0 < δ � ∆, where we can assume without loss of generality (by shifting coordinates) that

Yh(0, k, ε) = 0, ∂BYh(0, k, ε) = K(k, ε,∆), (3.36)

where K1 < K(k, ε,∆) < K2 uniformly in |k| < k0 and 0 < ε � 1 for some Kj = Kj(∆) > 0 for j = 1, 2; note

that Yh(0, k, 0) = 0 represents the location of the homoclinic orbit γh for ε = 0. In the following, it will also be

useful to invert this relation, i.e. represent Wu(Mm
ε ) as a graph B = Bh(Y, k, ε) for |Y | ≤ δY , where

Bh(0, k, ε) = 0, ∂YBh(0, k, ε) = 1/K(k, ε,∆). (3.37)

The primary result of this section is the following proposition, the proof of which is given in §3.9.

Proposition 3.8. Consider the backwards flow of (3.32). For each sufficiently small ∆ > 0, there exists

C, δY , k0, ε0 > 0 such the the following holds. For each (k, ε) ∈ (−k0, k0) × (0, ε0), consider a one-dimensional

manifold I∗ ⊂ Σh
B which transversely intersects Wu(Mm

ε ) in the section Σh
B at some Y ∈ (−δY , Cε| log ε|).
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Then there exists N̄(ε) = O(1/ε) such that under the backwards flow of (3.32), I∗ traces out a two-dimensional

manifold I which returns to the section Σh
B a total of N̄ times, each time transversely intersecting the manifold

Wu(Mm
ε ). Furthermore the transversality is uniform in ε > 0 sufficiently small.

Remark 3.9. The uniformity of the transversality with respect to ε means that this intersection does not approach

tangency as ε→ 0. This is important as the manifold I is tracked over N̄ = O(1/ε) excursions.

Remark 3.10. We also remark briefly on the ε| log ε|-bound for the Y -coordinate of intersection with Wu(Mm
ε ).

For larger values of Y , it is not possible to guarantee that I will intersectWu(Mm
ε ) again on its subsequent returns

to Σh
B under the backwards flow of (3.32), unless additional transversality conditions are satisfied. However, we

will show that these conditions will be satisfied after an O(1) number of returns to Σh
B; see Lemmas 3.13 and 3.14.

3.9 Proof of Proposition 3.8

The proof of Proposition 3.8 involves understanding both the flow near the saddle homoclinic point ph as well

as how solutions leave a neighborhood of the saddle homoclinic orbit γh and interact with the periodic manifold

Pε. We begin by analyzing the flow near γh in §3.9.1, followed by the flow in a neighborhood of Pε in §3.9.2.

The proof of Proposition 3.8 is briefly concluded in §3.9.3.

3.9.1 Analysis near the saddle homoclinic point

The estimates on the flow near the saddle homoclinic orbit γh necessary in the proof of Proposition 3.8 are

outlined in the following four lemmas. The first two lemmas give estimates on the local map Σh
B → Σh

A under

the backwards flow of (3.32), and the global map Σh
A → Σh

B in backwards time, respectively. The third then

combines these to give a precise return estimate Σh
B → Σh

B under the backwards flow of (3.32) in the case when

I∗ satisfies additional assumptions. The final lemma then shows that any choice of I∗ from Proposition 3.8 will

satisfy these extra assumptions after only an O(1) number of these excursions.

It is essential that the estimates are uniform with respect to the small parameters involved in the analysis, as the

two-dimensional manifold I, traced out by the one-dimensional manifold I∗ under the backwards flow of (3.32),

must be tracked over an asymptotically large number of excursions. To this end, we introduce the notation a ∼ b
for a, b > 0 if there exists C = C(∆) > 0 independent of all sufficiently small δY , ε0 such that

b

C
≤ a ≤ Cb. (3.38)

Here ∆ is the small constant from (3.34). Similarly we use the notation a . b for a, b > 0 if there exists

C = C(∆) > 0 such that a ≤ C(∆)b. Furthermore, any terms designated by O notation which do not contain

explicit ∆-dependence are understood to be taken up to a constant which may depend on ∆.

We begin with the following Shilnikov-type estimate [5, 19, 34], the proof of which is given in Appendix A.

Lemma 3.11. For each sufficiently small ∆ > 0, consider the local map Πloc : Σh
B → Σh

A under the backwards

flow of (3.32). There exists δY , δ > 0 such that the following holds. Consider (A,∆, Y ∗) ∈ Σh
B satisfying |A| ≤ δ.

Then for all sufficiently small ε > 0, we have

Πloc



A

∆

Y ∗


 =




∆

Bloc(R, Y
∗)

Yloc(R, Y
∗)


 (3.39)
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where ∆Rρ = A and

ρ(R, Y ∗; k, ε) = α/β +O(∆)

Bloc(R, Y
∗; k, ε) = ∆R(1 +O(∆))

Yloc(R, Y
∗; k, ε) = Y ∗ − εγ log(R)

β
(1 +O(∆)),

(3.40)

and the derivatives of these functions with respect to R, Y ∗ satisfy

∂Rρ = O
(

∆

R logR

)
, ∂Y ∗ρ = O(1)

∂RBloc = ∆(1 +O(∆)), ∂Y ∗Bloc = O(R logR)

∂RYloc = − ε

βR
(1 +O(∆)), ∂Y ∗Yloc = (1 +O(∆)),

(3.41)

where the estimates are uniform for all sufficiently small δY , δ, ε > 0.

The next lemma concerns the nature of the global map Πgl : Σh
A → Σh

B under the backwards flow of (3.32).

Lemma 3.12. For each sufficiently small ∆ > 0, consider the global map Πgl : Σh
A → Σh

B under the backwards

flow of (3.32). There exists Cgl, δY , δ > 0 such that the following holds. For all sufficiently small ε > 0, consider

a solution (∆, B, Y ) ∈ Σh
A satisfying |B| ≤ δ and |Y | ≤ δY . Then

Πgl




∆

B

Y


 =



Agl(B, Y )

∆

Ygl(B, Y )


 (3.42)

where

Agl(B, Y ) = Cgl(B −Bh(Y, k, ε)) +O
(
|Y ||B −Bh(Y, k, ε)|, ε|B −Bh(Y, k, ε)|, |B −Bh(Y, k, ε)|2

)

Ygl(B, Y ) = Y +O(ε).
(3.43)

The estimates will in general depend on ∆ but are uniform with respect to all sufficiently small δ, δY > 0 provided

ε > 0 is taken sufficiently small.

Proof. For fixed ∆, the map Πgl : Σh
A → Σh

B for solutions with initial conditions sufficiently close toWu(Mm
ε )∩Σh

A

can be determined by a finite time integration. In particular, the set Wu(Mm
ε ) ∩ Σh

A will map onto the set

Σh
B ∩ {A = 0}, and the estimates follow from the smoothness of this map.

The next lemma combines the estimates in Lemma 3.11 and Lemma 3.12 to determine the effect of the return

map

Πgl ◦Πloc : Σh
B → Σh

B (3.44)

under the backwards flow of (3.32). In particular, for a manifold which satisfies certain transversality estimates

with respect to the manifoldWu(Mm
ε ) in the section Σh

B , these estimates are preserved (in an appropriate sense)

under the backwards flow of (3.32). See Figure 16.

Lemma 3.13. Fix ∆ > 0 sufficiently small. For each C1 > 0 and each sufficiently small C2 > 0, there exists

C, δY , k0, ε0 > 0 such that for (k, ε) ∈ (−k0, k0)× (0, ε0), the following holds. Suppose that the one-dimensional

manifold I∗ ⊂ Σh
B can be represented as a graph Y = Y1(A, k, ε) which satisfies

C1ε| log ε| < Y1,0 < δY , sup
|A|≤C2|Y1,0|

|∂AY1(A, k, ε)| ≤
∣∣∣∣
ε log |Y1,0|

Y1,0

∣∣∣∣ , (3.45)
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Figure 16: Depicted is the setup within the sections Σh
B (left) and Σh

A (right) as in Lemma 3.13; see also

Figure 15. Note that in the right panel, the B-coordinate increases to the left in order to preserve the orientation

of Figure 15. The curve I∗, which is given by the graph Y = Y1(A, k, ε), transversely intersectsWu(Mm
ε ) within

the section Σh
B at Y = Y1,0. Under the reverse flow of (3.32), I∗ is mapped via Πloc to Σh

A, and the image

Πloc(I∗) again transversely intersects Wu(Mm
ε ) within Σh

A at a point (B, Y ) = (Bloc(Rt), Yloc(Rt)), where Rt
is as in (3.55). Further, in backwards time, Πloc(I∗) returns to Σh

B via the global map Πgl, and the image

Πgl ◦Πloc(I∗) corresponds to the graph of Y = Y2(A, k, ε), intersecting Wu(Mm
ε ) transversely at Y = Y2,0.

where Y1,0 := Y1(0, k, ε). Then under the reverse flow of (3.32), I∗ traces out a two-dimensional manifold I,

which again intersects Σh
B in a curve which can be represented as a graph Y = Y2(A, k, ε) satisfying

Y2,0 > Y1,0 + Cε, sup
|A|≤C2|Y2,0|

|∂AY2(A, k, ε)| ≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣ , (3.46)

where Y2,0 := Y2(0, k, ε).

Proof. The strategy of the proof is to combine the results of Lemma 3.11 and Lemma 3.12. Care must be taken

to ensure that for fixed ∆, the estimates hold independently of Y1,0 ∈ (C1ε| log ε|, δY ) for sufficiently small choice

of δY , ε0 with ε ∈ (0, ε0).

We first use Lemma 3.11 to determine the image of I∗ under the local map Πloc : Σh
B → Σh

A. Under the map

Πloc, I∗ is mapped to a curve in Σh
A parametrized by R = (A/∆)1/ρ as

Πloc




A

∆

Y1(A, k, ε)


 =




∆

Bloc(R)

Yloc(R)


 (3.47)

where the functions

Bloc(R) := Bloc(R, Y1(∆Rρ, k, ε))

Yloc(R) := Yloc(R, Y1(∆Rρ, k, ε)).
(3.48)

defined as in Lemma 3.11 satisfy

ρ(R) = α/β +O(∆)

Bloc(R) = ∆R(1 +O(∆))

Yloc(R) = Y1(∆Rρ, k, ε)− εγ logR

β
(1 +O(∆))

(3.49)
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and

∂R(Rρ) = ρRρ−1(1 +O(∆))

∂RBloc(R) = ∆(1 +O(∆))

∂RYloc(R) = ρ∆Rρ−1∂AY1(∆Rρ, k, ε)(1 +O(∆))− εγ

βR
(1 +O(∆))

(3.50)

by implicitly differentiating the functions Bloc, Yloc in (3.48) and using the estimates (3.41).

We first claim that the curve (B, Y ) = (Bloc, Yloc)(R) transversely intersects Wu(Mm
ε ) within Σh

B . The inter-

section of the manifold Wu(Mm
ε ) with Σh

B is given as a curve Y = Yh(B, k, ε). We therefore need to solve the

following equation.

Yh(Bloc(R), k, ε) = Yloc(R)

= Y1(∆Rρ, k, ε)− εγ logR

β
(1 +O(∆))

= Y1,0 +O(Rρ)− εγ logR

β
(1 +O(∆))

(3.51)

where we used (3.49). At first, we ignore the last term on the right hand side and consider the simpler equation

Yh(Bloc(R), k, ε) = Y1,0 +O(Rρ). (3.52)

Using (3.36) and (3.50), this equation can be solved for R = R0 =
Y1,0
K∆

(1 +O(∆)). We set R = R0(1 +R1) and

return to the full equation, which becomes

K∆R1R0(1 +O(∆)) +O(R1R
ν
0) = −εγ logR0

β
(1 +O(∆)) +O(εR1), (3.53)

where ν := min{ρ, 2} > 1. It is now possible to solve for

R1 = −εγ logR0

βK∆R0
(1 +O(∆, Rν−10 )). (3.54)

From this we obtain the solution R = Rt(k, ε) = R0(1 +R1) given by

Rt(k, ε) =
Y1,0
K∆

(1 +O(∆))− εγ

βK∆
log

(
Y1,0
K∆

)
(1 +O(∆)). (3.55)

Provided δY , ε0 are sufficiently small and since C1ε| log ε| < Y1,0 < δY by (3.45), we have that Rt ∼ |Y1,0|. Note

that the lower bound on Y1,0 is crucial in order to obtain that Rt ∼ |Y1,0|.
We now focus on the global map Πgl : Σh

A → Σh
B . Using Lemma 3.12, we have that

Πgl




∆

Bloc(R)

Yloc(R)


 =



Agl(Bloc(R), Yloc(R))

∆

Ygl(Bloc(R), Yloc(R))


 (3.56)

where

Agl(R) = Cgl(Bloc(R)−Bh(Yloc(R), k, ε))

+O ((|Yloc(R)|+ ε+ |Bloc(R)−Bh(Yloc(R), k, ε)|)|Bloc(R)−Bh(Yloc(R), k, ε)|)
Ygl(R) = Yloc(R) +O(ε),

(3.57)

where we have simplified the notation by writingAgl(R) = Agl(Bloc(R), Yloc(R)) and Ygl(R) = Ygl(Bloc(R), Yloc(R)).

The goal is to express Ygl as a graph Ygl = Y2(Agl, k, ε) over Agl and verify the estimates (3.46) are satisfied. We

first determine

Y2,0 = Ygl(Rt)

= Y1(∆Rρt, k, ε)−
εγ logRt

β
(1 +O(∆)) +O(ε),

(3.58)
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using (3.49). Using the fact that Rt ∼ |Y1,0|, for all sufficiently small δY , ε0 and C1ε| log ε| < Y1,0 < δY , we have

that

Rρt � |Y1,0|, (3.59)

so that

0 < (Y2,0 − Y1,0) ∼ ε |log |Y1,0||+O(ε). (3.60)

From this we obtain

Y2,0 > Y1,0 + Cε, (3.61)

for some C = C(∆), and further we note that |Y2,0| ∼ |Y1,0|.
In order to prove the estimate (3.46) regarding the derivative of Y2(A, k, ε) on the interval |A| ≤ C2|Y2,0| we first

determine the endpoints of this interval in terms of R, which we denote by Rstart, Rend. To find these endpoints,

we must solve for when

Agl(R) = ±C2Y2,0 (3.62)

in terms of R. By the implicit function theorem, after some manipulations using (3.50) and (3.57), and using

the relations (3.51), and (3.58) satisfied by Rt, we find that we can solve for

Rstart =

(
1− C2K

Cgl

)
Rt(1 +O(∆))

Rend =

(
1 +

C2K

Cgl

)
Rt(1 +O(∆)),

(3.63)

provided C2 is sufficiently small, and in particular, we have Rstart, Rend ∼ Rt. Therefore also Rstart, Rend ∼ |Y1,0|
and hence for all sufficiently small δY , ε0 and any C1ε| log ε| < Y1,0 < δY , we have

Rρend < C2|Y1,0|. (3.64)

We now compute

dYgl
dR

= ρ∆Rρ−1∂AY1(∆Rρ, k, ε)(1 +O(∆))− εγ

βR
(1 +O(∆)) +O(ε) (3.65)

whereby
∣∣∣∣
dYgl
dR

∣∣∣∣ ≤ ρ∆Rρ−1
∣∣∣∣
ε log |Y1,0|

Y1,0

∣∣∣∣ (1 +O(∆)) +
εγ

βRstart
(1 +O(∆))

.

(
|Y2,0|ρ−1 +

1

| log |Y2,0||

) ∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣
(3.66)

We now use (3.57) and compute the derivative

dAgl

dR
= Cgl

(
1 +O

(
∆, R,

∣∣∣∣
dYgl
dR

∣∣∣∣
))

(3.67)

We can then compute the slope
dYgl
dAgl

as the ratio of (3.66) and (3.67)

∣∣∣∣
dYgl
dAgl

∣∣∣∣ =

∣∣∣dYgl

dR

∣∣∣

Cgl

(
1 +O

(
∆, R,

∣∣∣dYgl

dR

∣∣∣
))

≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣

(3.68)

independently of the initial Y1,0 ∈ (C1ε| log ε|, δY ), by choosing δY , ε0 sufficiently small. It follows that the

manifold I intersects Σh
B in a curve which can be represented as a graph Y = Y2(A, k, ε) for values of |A| ≤

C2|Y2,0|, satisfying the estimates (3.46).
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The final technical lemma ensures that a manifold I∗ which intersects Wu(Mm
ε ) transversely in the section Σh

B

as in Proposition 3.8 satisfies the assumptions of Lemma 3.13 after finitely many returns to Σh
B .

Lemma 3.14. Consider the backwards flow of (3.32). For each sufficiently small ∆ > 0 there exist C1, C2 and

δY , ε0, k0 > 0 such that for each (k, ε) ∈ (−k0, k0) × (0, ε0), the following holds. Consider a one-dimensional

manifold I∗ ⊂ Σh
B which can be represented as a graph Y = Y1(B, k, ε) with Y1(0, k, ε) =: Y1,0 ∈ (−δY , C1ε| log ε|),

and which transversely intersectsWu(Mm
ε ) in the section Σh

B. Then under the backwards flow of (3.32), I∗ traces

out a two-dimensional manifold I which, after finitely many excursions, transversely intersects Σh
B in a curve

which can be represented as a graph Y = Y2(A, k, ε) satisfying

C1ε| log ε| < Y2,0 < δY , sup
|A|≤C2|Y2,0|

|∂AY2(A, k, ε)| ≤
∣∣∣∣
ε log |Y2,0|

Y2,0

∣∣∣∣ , (3.69)

where Y2,0 := Y2(0, k, ε).

Proof. We proceed as in the proof of Lemma 3.13, and we begin by determining the image of I∗ under the local

map Πloc : Σh
B → Σh

A. Under the map Πloc, I∗ is mapped to a curve in Σh
A parametrized by R = (A/∆)1/ρ as

Πloc




A

∆

Y1(A, k, ε)


 =




∆

Bloc(R)

Yloc(R)


 (3.70)

where the functions Bloc(R), Yloc(R) satisfy (3.49) and (3.50). We search for the location of a transverse inter-

section of the curve (B, Y ) = (Bloc, Yloc)(R) with Wu(Mm
ε ) within Σh

B , where Wu(Mm
ε ) is given by the graph

Y = Yh(B, k, ε). As in the proof of Lemma 3.13, we therefore need to solve an equation of the form

Yh(Bloc(R), k, ε) = Y1,0 +O(Rρ)− εγ logR

β
(1 +O(∆)). (3.71)

where Y1,0 ∈ (−δY , C1ε| log ε|). We first focus on the region |Y1,0| < C1ε| log ε|, and we consider the simpler

equation

Yh(Bloc(R), k, ε) = −εγ logR

β
(1 +O(∆)) +O(Rρ). (3.72)

Proceeding in a similar fashion as in the proof of Lemma 3.13, we set

R =
γε| log ε|
β∆K

(1 +R0), (3.73)

which results in the equation

R0(1 +O(∆)) +O((ε| log ε|)ν−1R0) = O
(

∆,
log(log ε)

log ε
,
R0

log ε

)
, (3.74)

which can be solved for

R0 = O(∆) (3.75)

for all sufficiently small ε > 0. This gives a solution to (3.72) defined by (3.73), which we denote by R1. We now

return to the full equation (3.71) and set R = R1(1 +R2), which results in the equation

R2(1 +O(∆)) +O((ε| log ε|)ν−1R2) =
Y1,0

∆KR1
+O

(
∆,

log(log ε)

log ε
,
R0

log ε

)

=
βY1,0

γε| log ε| +O
(

∆,
log(log ε)

log ε
,
R0

log ε

)
,

(3.76)
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which can be solved in the region |Y1,0| < C1ε| log ε| for

R2 =
βY1,0

γε| log ε| +O (∆) , (3.77)

resulting in a solution R = Rt := R1(1 +R2) of the equation (3.71) given by

Rt =
γε| log ε|
β∆K

(
1 +

βY1,0
γε| log ε| +O (∆)

)
. (3.78)

We now focus on the global map Πgl : Σh
A → Σh

B . Using Lemma 3.12, we have that

Πgl




∆

Bloc(R)

Yloc(R)


 =



Agl(Bloc(R), Yloc(R))

∆

Ygl(Bloc(R), Yloc(R))


 (3.79)

where

Agl(R) = Cgl(Bloc(R)−Bh(Yloc(R), k, ε))

+O ((|Yloc(R)|+ ε+ |Bloc(R)−Bh(Yloc(R), k, ε)|)|Bloc(R)−Bh(Yloc(R), k, ε)|)
Ygl(R) = Yloc(R) +O(ε),

(3.80)

We now show that Ygl can be written as a graph Ygl = Y2(Agl, k, ε) over Agl and verify the estimates (3.69) are

satisfied. We first determine

Y2,0 = Ygl(Rt)

= Y1(∆Rρt, k, ε)−
εγ logRt

β
(1 +O(∆)) +O(ε),

(3.81)

and using (3.78), we have that

Y2,0 = Y1,0 −
εγ log ε

β
(1 +O(∆)) +O(ε), (3.82)

so that

Y2,0 > C1ε| log ε| (3.83)

provided C1 = C1(∆) is sufficiently small and |Y1,0| < C1ε| log ε|, for all sufficiently small ε > 0. The esti-

mates (3.69) which concern the derivative of Y2(A, k, ε) proceed as in the proof of Lemma 3.13, noting that

Rt ∼ ε| log ε|.
Finally, it remains to consider the region Y1,0 ∈ (−δY ,−C1ε| log ε|). The strategy is to show that in this

case I∗ returns to Σh
B under the backwards flow of (3.32), this time intersecting Wu(Mm

ε ) at a value of Y >

−C1ε| log ε|, in which case the above argument can be repeated to complete the proof. We therefore return to

the equation (3.71), which we now aim to solve assuming Y1,0 ∈ (−δY ,−C1ε| log ε|).
We set R = R0R1 for some R0 ∈ (0, 1) and obtain the equation

K∆R0R1(1 +O(∆, (R0R1)ν−1)) = Y1,0 −
εγ logR1

β
(1 +O(∆))− εγ logR0

β
(1 +O(∆)). (3.84)

We first solve for R0 in terms of R1, Y1,0 by solving

K∆R0R1(1 +O(∆, (R0R1)ν−1)) = −εγ logR0

β
(1 +O(∆)). (3.85)

For C3 = C3(∆) sufficiently large so that

C3 >
γ

β∆K
, (3.86)
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we separate two cases: R1 > C3ε and R1 < 2C3ε. If R1 > C3ε, proceeding similarly as above, we can solve (3.85)

by setting

R0 = − εγ

β∆KR1
log

(
εγ

β∆KR1

)
(1 +R2), (3.87)

substituting into (3.85), and solving for R2 = O(∆) for all sufficiently small R1 satisfying R1 > C3ε.

Substituting back into (3.84), we now determine R1 by solving

0 = Y1,0 −
εγ logR1

β
(1 +O(∆)), (3.88)

whereby we obtain

R1 = exp

(
βY1,0
εγ

(1 +O(∆))

)
, (3.89)

and therefore the full solution R = Rt := R0R1 of (3.71) is given by

Rt = − εγ

β∆K
log

(
εγ

β∆K

)
(1 +O(∆)) +

Y1,0
∆K

(1 +O(∆)). (3.90)

On the other hand, returning to (3.85), in the region R1 < 2C3ε, after some rearranging we obtain the equation

R0 = exp

(
−βK∆R1

εγ
R0(1 +O(∆, (R0R1)ν−1))

)
. (3.91)

For 0 < R1 < 2C3ε, this relation defines R0 as a strictly positive, monotone decreasing function of R1, and in

this region, R0 is confined to the interval (C4, 1) for some 0 < C4(∆) < 1, which is independent of δY , ε. In

particular, this relation can be solved for

R0 =
W [Z]

Z
, Z =

βK∆R1

εγ
(1 +O(∆)) (3.92)

where W [·] denotes the principal branch of the Lambert W -function. Proceeding as above, we substitute back

into (3.84), solve for R1, and obtain the full solution R = Rt := R0R1 of (3.71), given by

Rt = R0 exp

(
βY1,0
εγ

(1 +O(∆))

)
. (3.93)

We now determine

Y2,0 = Ygl(Rt)

= Yloc(Rt) +O(ε)

= Yh(Bloc(Rt)) +O(ε)

= K∆Rt(1 +O(∆, Rt)) +O(ε).

(3.94)

Using (3.84), we have that

Y2,0 = −εγ logR0

β
(1 +O(∆)) +O(ε,Rνt). (3.95)

In the region R1 > C3ε, R0 is given by (3.87) so that

Y2,0 > −C1ε| log ε| (3.96)

for all sufficiently small ε > 0. In the region R1 < 2C3ε, we have that R0 is given by (3.92) so that

Y2,0 = O(ε) (3.97)
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for all sufficiently small ε > 0. The estimates (3.69) which concern the derivative of Y2(A, k, ε) are similar as in

the proof of Lemma 3.13, though with minor differences outlined below.

Using the expressions (3.80), we now compute

dYgl
dR

= ρ∆Rρ−1∂AY1(∆Rρ, k, ε)(1 +O(∆))− εγ

βR
(1 +O(∆)) +O(ε) (3.98)

whereby

dYgl
dR
≤ K∆ (3.99)

for all sufficiently small ε > 0. We now use (3.57) and compute the derivative

dAgl

dR
= Cgl

(
1 +O(∆, R)− 1

K

dYgl
dR

(1 +O(∆, R))

)
(3.100)

We can then compute the slope
dYgl
dAgl

as the ratio of (3.99) and (3.100)

∣∣∣∣
dYgl
dAgl

∣∣∣∣ =

∣∣∣dYgl

dR

∣∣∣

Cgl

(
1 +O(∆, R)− 1

K
dYgl

dR (1 +O(∆, R))
)

≤ C5(∆)

(3.101)

for some C5(∆) independent of the initial Y1,0 ∈ (−δY ,−C1ε| log ε|), by choosing δY , ε0 sufficiently small.

3.9.2 The flow near the periodic manifold Pε

We now consider the dynamics near the periodic manifold and the interaction with the analysis near the saddle

homoclinic point outlined in §3.9.1.

We consider a compact portion of the periodic manifold P0 ∩ {ȳh + δY /2 ≤ y ≤ ȳp − δY }, outside a small

neighborhood of the saddle homoclinic point. By Hypothesis 4, we note that in this region for ε = 0, the

cylindrical singular periodic manifold P0 is a two-dimensional normally attracting invariant manifold. By Fenichel

theory [11, Theorem 3], this manifold therefore persists for small ε > 0 as a two-dimensional normally attracting

locally invariant manifold Pε in the region y ∈ (ȳh + δY /2, ȳp − δY ), which again takes the form of a cylinder

which is Cr-close to P0.

In particular, this cylindrical manifold extends into a small neighborhood of the saddle homoclinic point. As

the periodic orbits contained in P0 bifurcate from the saddle homoclinic orbit γh, in its region of definition the

perturbed manifold Pε lies near the stable/unstable manifolds Ws,u(Mm
ε ). We now determine the proximity of

Pε and Wu(Mm
ε ) within the section Σh

B , which is given in the next lemma.

Lemma 3.15. Fix ∆ > 0. For all sufficiently small δY and each sufficiently small ε > 0, the following holds.

The periodic manifold Pε intersects the section Σh
B in a curve

Pε ∩ Σh
B = {(∆, Bp(y; k, ε), Y ) : Y ∈ (δY /2, δY )} (3.102)

where Bp(Y ; k, ε) is a smooth positive function of (Y, k, ε) which satisfies

Bp(Y ; k, ε) = O(Y α/β , ε). (3.103)

Proof. This estimate is derived from two simpler estimates: first the nature of the bifurcation of the periodic

orbits from the saddle homoclinic orbit for ε = 0, and second from the proximity of the perturbed manifold Pε
to its ε = 0 counterpart P0.
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We first consider the layer problem (2.3) to determine the proximity of P0 andWu(Mm
0 ) for ε = 0. The periodic

orbits are obtained by bifurcating from the saddle homoclinic orbit γh for values of y > ȳh. Here y acts as the

bifurcation parameter which, as outlined in Hypothesis 4, we assume unfolds this bifurcation in a transverse

fashion. It then follows from homoclinic bifurcation theory [16] that the periodic orbits which bifurcate from

γh for y ∈ (ȳh, ȳh + δY ) for sufficiently small δY lie at an O(|y − ȳh|α/β) distance from Wu(Mm
0 ) in the section

Σh
B . In particular, we have that the manifold P0 intersects the section Σh

B in a graph B = Bp(Y ; k, 0), where

Bp(Y ; k, 0) is is a smooth positive function of (Y, k) which satisfies

Bp(Y ; k, 0) = O(Y α/β). (3.104)

To obtain the full estimate (3.103), we now use the fact that away from the saddle homoclinic point, i.e. for

Y > δY /2, the periodic manifold Pε persists as a C1-O(ε) perturbation of its ε = 0 counterpart P0.

We now determine the local dynamics in a tubular neighborhood of Pε away from the saddle homoclinic point.

See Figure 17 for a visualization. We have the following.

Lemma 3.16. For sufficiently small δ > 0 and ε0 > 0, there exists a smooth change of coordinates S1× [−δ, δ]×
(ȳh + δY /2, ȳp − δY )→ R3 in a neighborhood of Pε which transforms (2.1) to the system

ẋc =
2π

Tp(y)
+ hc(xc, y, ε)

ẋs = −(µp(y) + hs(xc, xs, y, ε))xs

ẏ = εgp(xc, y, ε)

(3.105)

where hc, hs, gp are smooth functions of (xc, xs, y, ε) which satisfy

hc(xc, y, ε) = O(ε)

hs(xc, xs, y, ε) = O(xs, ε)∫

S1

gp(xc, y, ε) < 0,

(3.106)

uniformly in (xc, xs, y, ε) ∈ S1 × [−δ, δ]× (ȳh + δY /2, ȳp − δY )× [0, ε0).

Proof. We consider the variational equation about the periodic orbit γp(t; y) = (vp(t; y), wp(t; y)) in the layer

problem (2.1), given by

Φ̇ = D(v,w)F (vp(t; y), wp(t; y), y, k, 0)Φ. (3.107)

By Hypothesis 4 and standard Floquet theory, there exists a nontrivial solution Φ(t) = e−µp(y)tp(t; y) to (3.107),

where p(t; y) = (pv, pw)(t; y) ∈ R2 is a Tp(y)-periodic function of t. At the linear level, for small δ > 0, the

transformation S1 × [−δ, δ]× (ȳh + δY /2, ȳp − δY )→ R3 given by



xc

xs

y


 7→




vp

(
Tp(y)

2π
xc, y

)
+ xspv

(
Tp(y)

2π
xc, y

)

wp

(
Tp(y)

2π
xc, y

)
+ xspw

(
Tp(y)

2π
xc, y

)

y




(3.108)

maps (·, 0, y) onto γp(·; y), while xs parametrizes the tangent space of the stable fiber Ws(γp(·; y)) of γp(·; y). In

other words, in a plane of fixed y, xc parameterizes the direction tangent to γp(·; y), while xs parameterizes the

normal direction.
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In particular, the manifold P0 is given by the set xs = 0; this manifold persists for small ε > 0 as a locally

invariant manifold Pε, which can be given as a graph xs = xPs (xc, y, ε). Setting x̃s = xs − xPs (xc, y, ε), we arrive

at the equations

ẋc =
2π

Tp(y)
+ hc(xc, x̃s, y, ε)

˙̃xs = −(µp(y) + hs(xc, x̃s, y, ε))xs

ẏ = εgp(xc, x̃s, y, ε)

(3.109)

where hc, hs, gp are Cr functions which satisfy

hc(xc, x̃s, y, ε) = O(x̃s, ε)

hs(xc, x̃s, y, ε) = O(x̃s, ε)∫

S1

gp(xc, 0, y, 0)dxc < 0,

(3.110)

where the estimate on gp is due to Hypothesis 6. To obtain the form of the equations (3.105), we apply a final

coordinate transformation to straighten the strong stable fibers (see, e.g. [12, §X]), and abusing notation, we

drop the tildes for x̃s and continue to denote the (slightly modified) functions on the right-hand-side by hc, hs, gp.

The flow in a neighborhood of Pε is shown in Figure 17. The manifold Pε is given by the set {xs = 0}, and we

define the section

Σp := {xs = δ}. (3.111)

Solutions in this neighborhood are quickly attracted to Pε and follow the flow of basepoint solutions on Pε.
These solutions wind around Pε in forward time, slowly drifting downwards, in the shape of a helix. Since the

y-drift is of O(ε), and away from y ≈ ȳh the periods {Tp(y)} are bounded from above, given an orbit which

starts at y(0) = y0 for some y0 > ȳh + δY /2, we can compute the change in y after one rotation around Pε from

xc = 0 to xc = 2π to leading order as
∫ 2π

0

dy

dxc
dxc =

εTp(y0)

2π

∫ 2π

0

gp(xc, y0, 0)dxc +O(ε2), (3.112)

where the quantity
∫ 2π

0

gp(xc, y0, 0)dxc < 0 (3.113)

is independent of ε and is bounded away from zero uniformly in y0 > ȳh + δY /2 due to Hypothesis 6. That

is, after each successive ‘lap’ around Pε, the y-coordinate of a given solution decreases by an O(ε) amount.

Equivalently, under the backwards flow of (3.105), solutions on the manifold Pε wind around Pε, slowly drifting

upwards.

We now recall the existence of the heteroclinic orbits φp(y) for y ∈ (ȳh, ȳp) for ε = 0 which form connections

between Mm
0 and P0. These orbits form part of Wu(Mm

0 ) in the region y ∈ (ȳh, ȳp). Therefore Wu(Mm
0 )

enters a neighborhood of Pε; in particular, Wu(Mm
0 ) transversely intersects the section Σp in a smooth curve

which can be represented as a graph xc = xc(y) for y ∈ (ȳh + δY /2, ȳp − δY ). For sufficiently small ε > 0,

the perturbed manifold Wu(Mm
ε ) therefore also transversely intersects Σp in a curve graph xc = xc(y, ε) for

y ∈ (ȳh + δY /2, ȳp − δY ).

We now consider the behavior under the backwards flow of (3.105) of a basepoint solution γp on Pε. We refer

to Figure 17 for the relevant geometry. This solution admits a two-dimensional stable manifold Ws(γp), which

forms a surface that winds around Pε. Along each “lap” around Pε, Ws(γp) is aligned C1-O(ε)-close to a plane

y =const. Hence Ws(γp) repeatedly intersects Wu(Mm
ε ) in a transverse fashion on each lap around Pε.
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PεWu(Mm
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γp
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︸
︷︷

︸

O(ε)

Σp

0 2π

Figure 17: The left panel depicts the flow near the periodic manifold Pε for sufficiently small ε > 0. Solutions

on Pε wind around in forwards time, with the y-coordinate decreasing by an O(ε) amount after each loop; a

sample basepoint solution γp on Pε is depicted in blue. The strong stable fibers of such a trajectory form a

two-dimensional locally invariant manifold Ws(γp) on which solutions are contracted in forwards time towards

γp. The right panel depicts the two-dimensional section Σp which is placed transverse to the flow at a small

fixed distance from the manifold Pε. Note that Σp in fact forms a cylinder which extends all the way around

Pε, though only a portion is shown in the left panel for clarity. The manifold Ws(γp) as well as the unstable

manifold Wu(Mm
ε ) of the slow manifold Mm

ε intersect Σp in smooth curves.

3.9.3 Conclusion of the proof of Proposition 3.8

Combining the results of §3.9.1–3.9.2, we have the following.

Proof of Proposition 3.8. Using Lemma 3.14 and applying Lemma 3.13, the manifold I returns repeatedly to

the section Σh
B , each time transversely intersecting Wu(Mm

ε ) and satisfying the estimates (3.46).

Eventually I will transversely intersect Wu(Mm
ε ) within Σh

B at some value of Y > δY , whereby Lemma 3.13 is

no longer applicable. However, this intersection point now occurs an O(δY ) distance from the saddle homoclinic

bifurcation point, in a region where the periodic manifold Pε is known to persist. Using Lemma 3.15 in combi-

nation with Lemma 3.13, we deduce that I transversely intersects Pε in the section Σh
B . Further, in backwards

time I quickly aligns along the strong stable fibers of Pε, tracking a solution which winds repeatedly around

Pε. The results of §3.9.2 imply that I continues to repeatedly transversely intersect Wu(Mm
ε ) after each time

around Pε, until nearing y = ȳp. The total number of intersections is of O(1/ε) as the y coordinate changes by

an O(ε) amount on each lap around Pε.

3.10 Upper and lower N-spike orbits

Using the results of the previous section, it is possible to construct N -spike bursting orbits for any N < N̄ for

some N̄(ε) = O(1/ε). With the help of Proposition 3.8, the construction is nearly identical to the construction

of lower 0-spike orbits and upper 1-spike orbits in §3.5 and §3.6.

The N -spike orbits are still characterized by a long canard trajectory, which consists of first followingMb
ε, then

Mm
ε . The orbit then completes N spikes, or excursions, around the upper branchMu

ε before returning toMm
ε ,

then finally returning toMb
ε via one of the heteroclinic connections, either φu(y) in the case of an upper N -spike

orbit, or φb(y) for a lower N -spike orbit.

Again, these orbits are most naturally parameterized by which heteroclinic connection φu or φb is followed, in

addition to the minimum y-value achieved along the orbit, i.e. the y-value of φu(y) or φb(y). Hence for each
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s ∈ [ȳ` + ∆, ȳh − ∆] we search for an N -spike periodic orbit which achieves a minimum y-value of y = s, and

passes near φj(s), for j = u, b.

Following the general strategy in §3.4, in order to construct a periodic orbit, it is necessary to find a one-

dimensional manifold of initial conditions I which lies in Ws(Mb
ε), and which in backwards time traces out a

two dimensional manifold Ī which transversely intersectsWu(Mm
ε ). Whenever these conditions hold, then using

the exchange lemma, it is possible to set up and solve matching conditions near the fold Fr for a periodic orbit as

in §3.5. Hence to construct an N -spike orbit, we aim to find a manifold which satisfies these conditions which also

completes N excursions around the upper branch, which we will accomplish through the use of Proposition 3.8.

For lower N -spike orbits, we therefore follow the strategy of §3.5 by choosing an appropriate one-dimensional

curve of candidate initial conditions. As before, we denote by wb the w-coordinate at which the heteroclinic

orbit φb(s) intersects the set {v = v̄r}. For sufficiently small δ > 0, we then define Ib(s) to be an interval of

width δ which lies in the plane {y = s} and is transverse to the fast layer dynamics, and which intersects φb(s)

at w = wb.

In particular Ib(s) transversely intersects Wu(Mm
ε ), and therefore in backwards time Ib(s) traces out a two-

dimensional manifold Ib(s) which, by the exchange lemma, quickly aligns C1-O(e−η/ε)-close to Ws(Mm
ε ).

In particular, now transitioning to the local coordinates of §3.8, we have Ib(s) reaches the section Σh
A aligned C1-

O(e−η/ε)-close toWs(Mm
ε ) and therefore transversely intersectsWu(Mm

ε ) within Σh
A at a value of Y = O(e−η/ε).

Using the global map Πgl, this transverse intersection persists as Ib(s) completes an excursion following the

singular homoclinic orbit γh, and therefore Ib(s) transversely intersects Wu(Mm
ε ) within Σh

B at a value of

Y = O(ε).

We now use the results of Proposition 3.8, which guarantee that Ib(s) completes N̄(ε) = O(1/ε) excursions

around the upper branch in backwards time, transversely intersecting Wu(Mm
ε ) after each such excursion.

Therefore, for each fixed N , by construction the set of initial conditions Ib(s) lies in the stable manifoldWs(Mb
ε),

and by the above argument Ib(s) traces out a two-dimensional manifold Ib(s) which completes N excursions

around the upper branch in backwards time before transversely intersecting Wu(Mm
ε ).

Hence Ib(s) completes N excursions aroundMu
ε and satisfies the conditions outlined in §3.4. We may therefore

proceed identically as in §3.5 to set up matching conditions in order to construct the periodic orbit, which occurs

for

k = ksa,lower
N (s, ε) = kmc(

√
ε) +O(e−η/ε). (3.114)

For upper N -spike orbits, we follow the strategy of §3.6, again choosing an appropriate one-dimensional curve of

candidate initial conditions. As before, we denote by wu the w-coordinate at which the heteroclinic orbit φu(s)

intersects the set {v = v̄`}. For sufficiently small δ > 0, we define Iu(s) to be an interval of width δ which lies

in the plane {y = s} and is transverse to the fast layer dynamics, and which intersects φu(s) at w = wu. The

remainder of the analysis is identical to the above construction of lower N -spike orbits, and we obtain a solution

for

k = ksa,upperN (s, ε) = kmc(
√
ε) +O(e−η/ε). (3.115)

Finally, for N -spike orbits which pass near the upper left fold F`, the analysis is identical to that in §3.7, in

combination with the application of Proposition 3.8 as above. Additionally, arguing similarly as with the overlap

of lower 0-spike orbits and upper 1-spike orbits, this guarantees the overlap of lower N spike orbits and upper

(N + 1)-spike orbits as one continuous family.
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3.11 Orbits which pass near the saddle-homoclinic point

In §3.10, we constructed upper and lower N spike orbits, and we argued that the branch of lower N -spike orbits

and the branch of upper (N + 1)-spike orbits are connected via orbits which pass near the upper left fold F`.
However, in order to show that all of these bursting solutions (i.e. N -spike solutions for any N) lie on the same

branch, it remains to show that the branches of lower N -spike orbits and upper N -spike orbits are connected.

These two families are constructed in different ways, based on either following φu(y) or φb(y) for values of

y ∈ [ȳ` + ∆, ȳh −∆]; we must show that these two separate constructions can be extended in such a way that

they have an overlapping description for values of y ≈ ȳh, that is, near the saddle homoclinic point.

3.11.1 Upper and lower families of N-spike orbits near the saddle homoclinic point

We use the coordinate system from §3.8, and Taking δ > 0 sufficiently small and Y ∗ ∈ [−∆,−δY /2], we consider

the set

I∗+(Y ∗) = {(A,∆, Y ∗) : |A| ≤ δ} (3.116)

within the section {B = ∆}. It is clear that I∗+(Y ∗) transversely intersects Wu(Mm
ε ) within this section nearby

one of the singular orbits φu(y) for some value of y < ȳh − δY /2. In particular if δ is sufficiently small, then

every solution which crosses I∗+(Y ∗) also lies in the stable manifold Ws(Mb
ε). Following a similar construction

in 3.10, we see that for each N and each Y ∗ ∈ [−∆,−δY /2], the manifold I∗+(Y ∗) can be used as the basis for

constructing an upper N -spike orbit, and in particular this construction forms an overlapping family with the

construction of upper N -spike orbits from 3.10.

On the other hand, if we likewise consider the section {B = −∆}, we can perform an analogous procedure.

Taking δ > 0 sufficiently small and Y ∗ ∈ [−∆,−δY /2], we consider the set

I∗−(Y ∗) = {(A,−∆, Y ∗) : |A| ≤ δ} (3.117)

within the section {B = −∆}. Again it is clear that I∗−(Y ∗) transversely intersectsWu(Mm
ε ) within this section.

However this now occurs nearby one of the singular orbits φb(y) for some value of y < ȳh − δY /2. We again see

that every solution on I∗−(Y ∗) also lies in the stable manifoldWs(Mb
ε), and for each N , the manifold I∗−(Y ∗) can

be used as the basis for constructing a lower N -spike orbit, and this construction similarly forms an overlapping

family with the construction of lower N -spike orbits from 3.10.

3.11.2 Extending the upper and lower families of orbits

We now work to extend the two families of N -spike solutions defined through the above constructions involving

either I∗− (the lower family) or I∗+ (the upper family) in such a way that they form a single overlapping family

of N -spike orbits.

We begin with the upper family. We recall from §3.8 the definition of the sections

Σh
A = {A = ∆, |B| ≤ ∆, |Y | ≤ δY }

Σh
B = {B = ∆, |A| ≤ ∆, |Y | ≤ δY },

(3.118)

and we consider the intersection of Wu(Mm
ε ) with the section Σh

A. We recall from §3.8 that this intersection is

given by a curve which can be represented as a graph Y = Yh(B, k, ε) for |B| ≤ δ which satisfies (3.36). We

consider the set of curves

J †+ := {I†+(B†) : B† ∈ (−δ,−εκ)} (3.119)
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Σh
A

Ws(Mm
ε )
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Wu(Mm
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Σh
B,−

Wu(Mm
ε )

A

Y

Figure 18: Depicted is the setup within the sections Σh
A (left) and Σh

B,− (right) as in Lemma 3.17. Note that

in the left (resp. right) panel, the B-coordinate (resp. A-coordinate) increases to the left in order to preserve

the orientation of Figure 15. The two-dimensional set J †+, shaded orange in the left panel, consists of the union

of the one dimensional curves I†+(B†) for B† ∈ (−δ,−εκ). Likewise, the two-dimensional set J †−, shaded green

in the right panel, consists of the union of the one dimensional curves I†−(Y †) for Y † ∈ (−δY ,−Cε| log ε|). The

image of the set J †− under the map Πloc,−, as in Lemma 3.17, is also shown in the left panel.

parameterized by B† ∈ (−δ,−εκ), for some κ = κ(∆) > 0, where each curve I†+(B†) within Σh
A is defined by

I†+(B†) = {(∆, B†, Y ) : |Y − Yh(B†, k, ε)| ≤ δY /2}. (3.120)

We refer to Figure 18 for an illustration. For each fixed B† ∈ (−δ,−εκ), the curve I†+(B†) clearly intersects

Wu(Mm
ε ) transversely within the section Σh

A. Using the global map Πgl for the backwards flow of (3.32), I†+(B†)

is mapped to a curve in Σh
B which also transversely intersects Wu(Mm

ε ). Hence using Proposition 3.8, under

the backwards flow of (2.1), I†+(B†) traces out a two-dimensional manifold I†+(B†) in backwards time which

completes N̄ = O(1/ε) excursions around the upper branch, transversely intersecting Wu(Mm
ε ) after each such

excursion. The construction therefore proceeds as in the case of upper N -spike orbits as in §3.10 provided it

can be shown that I†+(B†) is also contained in the stable manifold Ws(Mb
ε) of the lower branch Mb

ε, which will

be shown below. We first note that orbits constructed in this manner form an overlapping family with those

constructed via the sets I∗+.

We now define the section

Σh
B,− = {B = −∆, |A| ≤ ∆, |Y | ≤ δY }. (3.121)

To show I†+(B†) ⊆ Ws(Mb
ε), we consider the forward evolution of I†+(B†) from Σh

A to Σh
B,− under the flow

of (3.32). This induces a map Σh
A → Σh

B,− under which points on I†+(B†) ∈ Σh
A are mapped as




∆

B†

Y


 7→




(B†)ρ∆1−ρ(1 +O(∆))

∆

Y +O(ε logB†)


 . (3.122)

Every point on I†+(B†) is therefore mapped O((B†)ρ) close to Wu(Mm
ε ), and the Y coordinate of each point

changes by no more than O(ε log ε), provided |B†| is not too small. Since Wu(Mm
ε ) is contained in Ws(Mb

ε),

we must also have I†+(B†) ⊆ Ws(Mb
ε), for sufficiently small choice of the constants δY , δ > 0, and all sufficiently

small ε > 0.
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Since I†+(B†) ⊆ Ws(Mb
ε), we can now proceed as in the case of upper N -spike orbits from §3.10 and construct

N -spike orbits passing through I†+(B†) for each B† ∈ (−δ,−εκ), for a constant κ = κ(∆) > 0.

We now work to extend the lower family, i.e. those orbits constructed via the sets I∗−(Y ∗). For each Y † ∈
(−δY ,−Cε| log ε|), we consider the curve I†−(Y †) within Σh

B,− defined by

I†−(Y †) = {(A,−∆, Y †) : |A| ≤ δ}. (3.123)

We first note that Wu(Mm
ε ) ⊂ Ws(Mb

ε), and in the section Σh
B,−, Wu(Mm

ε ) is given by the set {A = 0}; hence

for δ sufficiently small, we have that I†−(Y †) ⊂ Ws(Mb
ε). We now aim to show that the backwards evolution of

I†−(Y †) under the flow of (3.32) transversely intersects Wu(Mm
ε ) within the section Σh

A, in which case N -spike

orbits can be constructed similarly to those constructed via the sets I†+ above. We also show that these two

constructions have an overlapping region of definition, forming a single continuous family. (We note that it is

clear that orbits constructed via the sets I†−(Y †) have an overlapping region of definition with the lower family

constructed via the sets I∗−(Y ∗).)

We have the following, regarding the local map Πloc,− : Σh
B,− → Σh

A induced by the backwards flow of (3.32),

when applied to I†−(Y †); see Figure 18.

Lemma 3.17. For each sufficiently small ∆ > 0, there exist C, δY , κ > 0 such that the following holds. Consider

the set of curves J †− ⊂ Σh
B,− defined by

J †− := {I†−(Y †), Y † ∈ (−δY ,−Cε| log ε|)}. (3.124)

This set is mapped by Πloc,− onto a set {Ĩ†−(B†), B† ∈ (−εκ,O(e−η/ε))} ⊂ Σh
A, where Ĩ†−(B†) is a curve which

transversely intersects Wu(Mm
ε ) at B = B†.

Proof. For a point (A,−∆, Y †) ∈ I†−(Y †), we have

Πloc,−




A

−∆

Y †


 7→




∆

−∆R(1 +O(∆))

Y † +O(ε logR)


 , (3.125)

where A = ∆Rρ.

We proceed similarly as in the proof of Lemma 3.13, solving for when this curve intersects Wu(Mm
ε ) within the

section Σh
A. This results in an equation of the form

−K∆R(1 +O(∆, R)) = Y † − εγ logR

β
(1 +O(∆)). (3.126)

We use a similar strategy as in the proof of Lemma 3.14 and set R = R0R1 for some R0 > 1 and obtain the

equation

−K∆R0R1(1 +O(∆, R0R1)) = Y † − εγ logR1

β
(1 +O(∆))− εγ logR0

β
(1 +O(∆)). (3.127)

We first solve for R0 in terms of R1, Y
† by solving

−K∆R0R1(1 +O(∆, R0R1)) = −εγ logR0

β
(1 +O(∆)). (3.128)

After some rearranging we obtain the equation

R0 = exp

(
βK∆R1

εγ
R0(1 +O(∆, R0R1))

)
. (3.129)
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It suffices to solve in the region 0 < R1 ≤ O(ε), where this relation defines R0 as a strictly positive, monotone

increasing function of R1; in this region, R0 is confined to the interval (1, C̃(∆)) for some C̃(∆) > 1. We

substitute back into (3.127), solve for R1, and obtain the full solution R = R† := R0R1 of (3.126), given by

R† = R0 exp

(
βY †

εγ
(1 +O(∆))

)
. (3.130)

Over the interval of Y † ∈ (−δY ,−Cε| log ε|) for sufficiently large C = C(∆), the locations R† of intersection

span an interval R† ∈ (εκ,O(e−η/ε)) for some κ = κ(∆) > 1. Using (3.125) to determine the corresponding

B-coordinate of this intersection, and possibly taking κ slightly larger, we obtain the result.

Since the choice of κ = κ(∆) > 0 in (3.119) was arbitrary, it follows from Lemma 3.17 that N -spike solutions

constructed via the sets I†−(Y †) have an overlapping region of definition with those constructed via I†+(B†) and

thus can be taken to form a single continuous family.

3.12 Proof of Theorem 2.2

In this section, we briefly conclude the proof of the main theorem.

Proof of Theorem 2.2. The transition from the singular Hopf bifurcation and local canard explosion to 1-spike

bursting solutions was constructed in §3.3–3.7.

In §3.10–3.11, upper and lower N -spike bursting solutions were constructed for each N < N̄ where N̄ = O(1/ε).

It was also shown that the upper/lower families of N -spike orbits form a continuous family, and further that

the branch of N -spike orbits is connected to the branch of (N + 1)-spike orbits via orbits which pass near the

upper fold F`. Hence we inductively obtain a single continuous family of orbits beginning with the local canard

explosion which contains all of the bursting solutions up to those with N̄ spikes.

In order to parameterize the sequence of solutions, by Theorem 3.2, the Hopf bifurcation and local canard

explosion occur for k = ksc(s,
√
ε) for s ∈ (0, ρ], and hence for θ ∈ (0, ρ] we set ksa(θ,

√
ε) := ksc(θ,

√
ε), and we

define B(θ,
√
ε) to be the corresponding orbit Γsc(s,

√
ε). Next, we recall from §3.5 that the 0-spike solutions

were parameterized by the minimum y-value achieved given by y = s for s ∈ [ȳ` + ∆, ȳr −∆] and

|ksa,lower
0 (s,

√
ε)− kmc(

√
ε)| = O(e−η/ε). (3.131)

We therefore set

ksa(θ,
√
ε) := ksa,lower

0 (ȳ` + θ(ȳr − ȳ`),
√
ε) (3.132)

for θ ∈ [∆/(ȳr − ȳ`), 1 −∆/(ȳr − ȳ`)] and we define B(θ,
√
ε) to be the corresponding bursting orbit. Provided

∆ is sufficiently small, there will be overlap with the small amplitude canard orbits from the Hopf bifurcation,

in the sense that some orbits could have been constructed as both 0-spike bursting and small amplitude canard

orbits. Since each of these families were constructed using the implicit function theorem, they are locally unique

and hence form one continuous family. As these two families were parametrized slightly differently in s, solutions

on the overlapping region can be reparameterized if necessary.

For N ≥ 1 there are two families of N -spike orbits, namely the upper and lower families constructed in §3.10,

which occur for k = ksa,upperN (s,
√
ε) and k = ksa,lower

N (s,
√
ε), respectively, where s ∈ [ȳ` + ∆, ȳh−∆] denotes the

y-layer of the fast jump φu(s) or φb(s) which is followed.
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We therefore set

ksa(θ,
√
ε) :=





ksa,upperN (ȳ` + 2(θ −N)(ȳh − ȳ`),
√
ε), θ ∈

[
N +

∆

2(ȳh − ȳ`)
, N +

1

2
− ∆

2(ȳh − ȳ`)

]

ksa,lower
N (ȳ` + 2(N + 1− θ)(ȳh − ȳ`),

√
ε), θ ∈

[
N +

1

2
+

∆

2(ȳh − ȳ`)
, N + 1− ∆

2(ȳh − ȳ`)

]

(3.133)

and we define B(θ,
√
ε) to be the corresponding bursting orbit. In §3.10 it was shown that there exists a family

of solutions which pass near the fold F` which form a bridge between the lower N -spike solutions and upper

(N + 1)-spike solutions. Further in §3.11 it was shown that there exists a family of solutions which pass near the

saddle homoclinic bifurcation which form a bridge between the upper and lower N -spike solutions, which are

not naturally parameterized by the y-jump which was followed, and hence we may reparametrize ksa(θ,
√
ε) on

the intervals

θ ∈
[
N +

1

2
− ∆

2(ȳh − ȳ`)
, N +

1

2
+

∆

2(ȳh − ȳ`)

]
∪
[
N − ∆

2(ȳh − ȳ`)
, N +

∆

2(ȳh − ȳ`)

]
(3.134)

for each N to account for this. We therefore obtain N spike bursting solutions for N < N̄(ε), corresponding to

θ ∈ (0,Θ(ε)), where Θ(ε) := N̄(ε) = O(1/ε).

Finally the estimate

|ksa(θ,
√
ε)− kmc(

√
ε)| = O(e−η/ε) (3.135)

for θ > ρ follows from the estimates (3.21) and analogous estimates for the solutions with additional spikes.

4 Discussion

In this paper, we considered a class of three dimensional singularly perturbed ODEs under general assumptions

which guarantee the existence of a one-parameter family of periodic bursting orbits, encompassing the spike-

adding transition from a local canard explosion to large amplitude bursting oscillations with an O(1/ε)-number

of spikes. Among the geometric features necessary for this construction is a cubic critical manifold, where the

middle branch is of saddle type and one of the folds is a canard point [20], which allows for a local canard

explosion as well as long canard trajectories along the middle branch. The other crucial feature is a saddle

homoclinic bifurcation on the middle branch in the fast subsystem, from which bifurcates a family of periodic

orbits in the layer problem.

The construction of the spike-adding sequence was obtained by considering the global aspects of the flow via

geometric singular perturbation theory as well as calling on prior results for local analyses of the fold points [2, 20].

New to this work is a detailed analysis of slow passage through the saddle homoclinic bifurcation, which was

essential for guaranteeing the transverse construction of the bursting solutions as well as ensuring that the

branches of N -spike and (N +1)-spike bursting solutions are in fact connected, so that the entire sequence forms

a single uninterrupted branch. The analysis of this bifurcation is based on well known homoclinic bifurcation

theory [16] combined with Shilnikov-type estimates [5, 19, 34]. Of particular difficulty is tracking solutions in this

region for O(1/ε) time, for which new analysis involving geometric singular perturbation methods is necessary.

We remark on the relation of the bursting solutions constructed here to the classical square-wave type bursting

solutions studied in detail in prior works [36, 37], in which solutions were constructed using similar geometric

ideas. However, ultimately the geometry of the classical bursting solutions differs in that they are constructed

outside the canard regime and involve trajectories which “fall off” the fold point Fr onto the periodic manifold
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Pε (see Figure 6), rather than continue up the middle branch Mm
ε along a canard trajectory before doing so.

In particular, for such solutions to exist, one must have that the periodic manifold Pε extends to some value

of ȳp > ȳr. Associated with these solutions are rich dynamics and chaotic behavior [37], and without further

detailed analysis, it is not immediately obvious that these solutions lie on the same branch as those constructed in

Theorem 2.2, or whether a continuous spike adding process persists into this region, though numerical evidence

suggests this is the case; see, e.g. Figure 2. Under additional technical assumptions, we expect that the solutions

constructed in Theorem 2.2 should indeed lie on the same branch as the classical solutions, with the spike adding

process continuing upon varying k. While the focus of the current work is on the onset of the spike adding

process as a canard-induced phenomenon, we expect that similar methods will be applicable in this regime. This

is beyond the scope of this paper and is the subject of ongoing work.

While the assumptions for the system (2.1) are fairly general, in a broader sense the geometric setup is still

rather specific. Systems such as the Morris–Lecar–Terman model (1.1) fit directly into such a framework, and

other three-dimensional square-wave bursting models, such as the Hindmarsh–Rose model, which admits Hopf

bifurcations and an additional saddle homoclinic bifurcation in the layer problem [7], could be analyzed via

the same analysis, with some additional steps, to obtain a result analogous to Theorem 2.2. However, systems

with more complicated geometry would require the analysis of canard phenomena not treated in this work;

for instance, the role of folded saddle canards on a two dimensional slow manifold has been emphasized in

some four-dimensional parabolic bursting oscillation models [8]. Additionally, slow passage through a spike-

adding bifurcation has been used to explain the phenomenon of mixed-mode bursting oscillations [7]. We note

that canards and saddle homoclinic bifurcations are still identified in these contexts as being important for

the spike-adding phenomenon, and we emphasize that the techniques used in this current work are general;

the fundamental idea involves combining local and global analyses, geometric singular perturbation methods,

blow-up, and homoclinic bifurcation theory in such a way that global transitions between different solutions can

be captured. These techniques likely have wide applicability into these more complicated bifurcation scenarios,

and this will be the subject of future work. Furthermore, we remark that these methods are not limited to the

study of bursting solutions or periodic orbits in ODEs; for example, similar methods were used with success in

constructing transitions between single and double traveling pulse solutions in the FitzHugh–Nagumo system [3].

Acknowledgments. The author gratefully acknowledges support through NSF grant DMS–1815315.

A Estimates near the saddle homoclinic point

In this section, we present a proof of Lemma 3.11. We first quote the following result regarding the nature of

solutions to the boundary value problem with entry/exit conditions in the sections Σh
A,Σ

h
B .

Proposition A.1 ([34, Theorem 2.1]). Fix ∆ > 0 small. There exists K0, η > 0 such that the following holds.

For any sufficiently small ε > 0, any T > 0 and any |Y ∗| ≤ δY , there exists a solution (A,B, Y )(ξ;Y ∗, T )

to (3.32) with (A,B, Y )(0) ∈ Σh
A and (A,B, Y )(T ) ∈ Σh

B with Y (T ;Y ∗, T ) = Y ∗. Furthermore

|A(ξ;Y ∗, T )| ≤ K0e
−ηξ

|B(ξ;Y ∗, T )| ≤ K0e
η(ξ−T )

|Y (ξ;Y ∗, T )− Φ(ξ, Y ∗, T )| ≤ K0εe
−ηT

(A.1)

where Φ(ξ, Y ∗, T ) denotes the solution of Ẏ = εG1(Y, k, ε) satisfying Y (T ) = Y ∗. The partial derivatives of

(A,B, Y )(ξ;Y ∗, T ) with respect to ξ, Y ∗, T up to order r satisfy the same estimates.

Remark A.2. We remark on the appearance of the factor of ε appearing in the estimates (A.1) for the solution

Y (ξ;Y ∗, T ) which is not present in [34, Theorem 2.1]. This is due to the fact that the Y -dynamics are of O(ε),
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in contrast to the more general case in [34], where there is no small parameter and hence the center dynamics

are O(1).

Proof of Lemma 3.11. We use the formulation of Proposition A.1 to prove the estimates on the local map Πloc.

We fix ∆ > 0 and assume 0 < δY , δ � ∆ are taken sufficiently small.

For a solution (A,B, Y )(ξ;Y ∗, T ) of Proposition A.1, we set Ã(Y ∗, T ) := A(T ;Y ∗, T ) and B̃(Y ∗, T ) := B(0;Y ∗, T ) =

O(e−ηT ). The map Πloc is then determined by

Bloc(R, Y
∗) = B̃(Y ∗, T )

Yloc(R, Y
∗) = Y (0;Y ∗, T ).

(A.2)

where R is defined via the relation ∆Rρ = Ã(Y ∗, T ), and the exponent ρ is as yet to be determined. Let

Φ(ξ, Y ∗, T ) denotes the solution of Ẏ = εG1(Y, k, ε) satisfying Y (T ) = Y ∗; in particular, Φ(ξ, Y ∗, T ) satisfies the

integral equation

Φ(ξ, Y ∗, T ) = Y ∗ +

∫ ξ

T

εG1(Φ(ξ, Y ∗, T ), k, ε)dξ, (A.3)

and we have the estimates

Φ(0, Y ∗, T ) = Y ∗ + εγT (1 +O(∆))

∂Y ∗Φ(ξ, Y ∗, T ) = 1 +O(∆)

∂TΦ(ξ, Y ∗, T ) = O(ε)

(A.4)

We now define the functions

α̃0(Y ∗, T ) :=

∫ T

0

F1(0, 0,Φ(ξ, Y ∗, T ), k, ε)dξ

=

∫ T

0

α+O(Φ, ε)dξ

β̃0(Y ∗, T ) :=

∫ T

0

F2(0, 0,Φ(ξ, Y ∗, T ), k, ε)dξ

=

∫ T

0

β +O(Φ, ε)dξ,

(A.5)

where

∂Y ∗ α̃0(Y ∗, T ) = O(T )

∂T α̃0(Y ∗, T ) = α+O(∆)

∂Y ∗ β̃0(Y ∗, T ) = O(T )

∂T β̃0(Y ∗, T ) = β +O(∆)

(A.6)

We further define the functions

α̃(Y ∗, T ) :=

∫ T

0

F1 (A(ξ;Y ∗, T ), B(ξ;Y ∗, T ), Y (ξ;Y ∗, T ), k, ε) dξ

β̃(Y ∗, T ) :=

∫ T

0

F2 (A(ξ;Y ∗, T ), B(ξ;Y ∗, T ), Y (ξ;Y ∗, T ), k, ε) dξ.

(A.7)

We use the estimates in Proposition A.1 combined with directly integrating the equations (3.32) in reverse time

and obtain

Ã = ∆ exp (−α̃(Y ∗, T ))

B̃ = ∆ exp
(
−β̃(Y ∗, T )

)
.

(A.8)
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Using these expressions along with the estimates (A.1), we have that

|α̃(Y ∗, T )− α̃0(Y ∗, T )| = O(∆)

|β̃(Y ∗, T )− β̃0(Y ∗, T )| = O(∆)
(A.9)

and the partial derivatives of these expressions with respect to Y ∗, T are also O(∆).

The ultimate goal is to express the quantities B̃ and Y (0;Y ∗, T ) in terms of the quantities R, Y ∗, where we

define

R =

(
Ã

∆

)β̃0/α̃0

. (A.10)

To achieve this, we recall (A.8) combined with (A.9)

Ã = ∆ exp (−α̃0(Y ∗, T ) +O(∆))

= ∆ exp (−α̃0(Y ∗, T )) (1 +O(∆)),
(A.11)

where the derivatives of the O(∆) remainder terms with respect to Y ∗, T are also O(∆). Hence

R =

(
Ã

∆

)β̃0/α̃0

= exp
(
−β̃0(Y ∗, T )

)
(1 +O(∆))β̃0/α̃0 .

(A.12)

This relation can be used to solve for T = T (R, Y ∗), obtaining

T (R, Y ∗) = − logR

β
(1 +O(∆)). (A.13)

Note, due to the exponent β̃0/α̃0 appearing in the remainder term of (A.12), the derivatives of the remainder

terms in (A.13) with respect to R, Y ∗ no longer satisfy the same estimates. However, we are still able to estimate

the first order partial derivatives

∂RT (R, Y ∗) = − 1

βR
(1 +O(∆))

∂Y ∗T (R, Y ∗) = O(logR),

(A.14)

by implicitly differentiating (A.12).

We set Bloc(R, Y
∗) := B̃ and determine

B̃ = ∆ exp
(
−β̃0(Y ∗, T )

)
(1 +O(∆))

= ∆R(1 +O(∆)),
(A.15)

where the derivatives of the O(∆) remainder terms with respect to Y ∗, T are also O(∆), and using the expres-

sions (A.14), we obtain

∂RBloc(R, Y
∗) = ∆(1 +O(∆))

∂Y ∗Bloc(R, Y
∗) = O(R logR).

(A.16)

Next, using (A.1), (A.4), and (A.14), and setting Yloc(R, Y
∗) := Y (0) we have that

Yloc(R, Y
∗) = Y ∗ − εγ logR

β
(1 +O(∆))

∂RYloc(R, Y
∗) = − εγ

βR
(1 +O(∆))

∂Y ∗Yloc(R, Y
∗) = 1 +O(∆)

(A.17)
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Finally, we define ρ(R, Y ∗) := α̃0/β̃0, and using (A.5) and (A.14), we have

ρ(R, Y ∗) = α/β +O(∆)

∂Rρ(R, Y ∗) = O
(

∆

R logR

)

∂Y ∗ρ(R, Y ∗) = O(1),

(A.18)

which completes the proof of the estimates (3.41).
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