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Abstract of “ Fast Pulses with Oscillatory Tails in the FitzHugh–Nagumo System ”
by Paul Carter, Ph.D., Brown University, May 2016

The FitzHugh–Nagumo equations are known to admit fast traveling pulses that

have monotone tails and arise as the concatenation of Nagumo fronts and backs

in an appropriate singular limit, where a parameter ε goes to zero. These pulses

are known to be nonlinearly stable with respect to the underlying PDE. Numerical

studies indicate that the FitzHugh–Nagumo system exhibits stable traveling pulses

with oscillatory tails. In this work, the existence and stability of such pulses is

proved analytically in the singular perturbation limit near parameter values where

the FitzHugh–Nagumo system exhibits folds. The existence proof utilizes geometric

blow-up techniques combined with the exchange lemma: the main challenge is to

understand the passage near two fold points on the slow manifold where normal

hyperbolicity fails. For the stability result, similar to the case of monotone tails,

stability is decided by the location of a nontrivial eigenvalue near the origin of the

PDE linearization about the traveling pulse. We prove that this real eigenvalue is

always negative. However, the expression that governs the sign of this eigenvalue for

oscillatory pulses differs from that for monotone pulses, and we show indeed that the

nontrivial eigenvalue in the monotone case scales with ε, while the relevant scaling

in the oscillatory case is ε2/3. Finally a mechanism is proposed that explains the

transition from single to double pulses that was observed in earlier numerical studies,

and this transition is constructed analytically using geometric singular perturbation

theory and blow-up techniques.
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Introduction
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1.1 The FitzHugh–Nagumo equation

The FitzHugh-Nagumo equation is a system of differential equations which arose

as a simplification of the Hodgkin-Huxley model [28] for the propagation of nerve

impulses in axons. The model FitzHugh [19] originally considered is given by

du

dt
= u(u− a)(1− u)− w

dw

dt
= δ(u− γw),

(1.1)

where 0 < a < 1
2
, 0 < δ � 1, and γ > 0. Here u represents the electrical potential

across the axonal membrane, and w is an aggregate recovery variable. This system

was introduced as a means of capturing the essentials of excitability and generation of

action potentials in a system more amenable to mathematical analysis than the more

realistic, but complex Hodgkin-Huxley equations describing spatially homogeneous

excitations in the case of a “space-clamped” axon. See [36] for an introduction

to (1.1) and the relation to properties of the Hodgkin-Huxley equations.

Nagumo, Arimoto, and Yoshizawa [43] later introduced another version based on

FitzHugh’s model, a reaction-diffusion partial differential equation (PDE) given by

ut = uxx + f(u)− w,

wt = δ(u− γw),

(1.2)

where f(u) = u(u − a)(1 − u), 0 < a < 1
2
, 0 < δ � 1, and γ > 0. With the

diffusion term added, the system admits propagating solutions, dependent on time

t and distance x along the axon.

The system (1.2) has since become a paradigm for singularly perturbed PDEs:
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many of its features and solutions have been studied in great detail over the past

decades (see [25] for an overview). Nerve impulses correspond to traveling waves that

propagate with constant speed without changing their profile, and the FitzHugh-

Nagumo system (1.2) indeed supports many different localized traveling waves, or

pulses. It is this version of the FitzHugh-Nagumo equations that we consider in this

work.

To find traveling waves, we search for solutions of the form (u,w)(x, t) = (u,w)(x+

ct) for wavespeed c > 0. Finding such solutions to (1.2) is equivalent to finding

bounded solutions of the following system of ODEs

du

dξ
= v

dv

dξ
= cv − f(u) + w

dw

dξ
= ε(u− γw)

(1.3)

where ξ = x+ ct is the traveling wave variable, and 0 < ε = δ/c. We assume ε� 1

so that we may view (1.3) as a singular perturbation problem in the parameter ε.

In addition, we take γ > 0 sufficiently small so that (u, v, w) = (0, 0, 0) is the only

equilibrium of the system.

It is well known that for each 0 < a < 1/2 and each sufficiently small ε > 0, (1.2)

admits both slow and fast traveling pulse solutions. Equivalently, in (1.3) this cor-

responds to the existence of orbits homoclinic to the only equilibrium (u, v, w) =

(0, 0, 0) with constant wave speeds c. Slow pulses have wave speeds close to zero and

arise as regular perturbations from the limit ε→ 0. Fast pulses, on the other hand,

have speeds that are bounded away from zero as ε→ 0: their profiles do not arise as

a regular perturbation from the ε = 0 limit. The existence result for fast pulses has

been obtained using a number of different techniques: classical singular perturba-



4

c

a

✏ 1/2

Figure 1.1: Shown is the bifurcation diagram indicating the known regions of existence for pulses
in (1.2). Pulses on the upper branch are referred to as “fast” pulses, while those along the lower
branch are called “slow” pulses. These two branches coalesce near the point (c, a, ε) = (0, 1/2, 0).

tion theory [26], Conley index [6], and geometric singular perturbation theory [34].

This last viewpoint is the one we shall adopt. The main idea of geometric singular

perturbation theory [18] is to use the small parameter ε to separate the analysis

of the system (1.3) into slow and fast components. These components are studied

separately and pieced together to construct solutions to the full system. An outline

of this construction for fast pulses is revisited in greater detail in §2.

A schematic bifurcation diagram depicting the existence results for pulses is

shown in Figure 1.1. The existence region is composed of two branches: the upper

branch represents the fast pulses, and the lower branch represents the slow pulses.

It has been shown [37] that near the point (c, a, ε) = (0, 1/2, 0), these two branches

coalesce and form a surface as shown.

While the slow pulses are known to be unstable in the PDE (1.2), it was proved

independently by Jones [32] and Yanagida [54] that the fast pulses (with monotone

tails) are stable for each fixed 0 < a < 1
2

provided ε > 0 is sufficiently small.

The idea behind the stability proofs published in [32, 54] is as follows: first, (1.2)

is linearized about a fast pulse, and the eigenvalue problem associated with the

resulting linear operator is then analysed to see whether it has any eigenvalues with
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u(x, t) = u(x + ct)

c

x

u(x, t) = u(x + ct)

c

x

Figure 1.2: Shown are profiles of a fast pulse with monotone tail and fast pulse with oscillatory
tail obtained numerically for the parameter values (c, a, ε) = (0.593, 0.069, 0.0036) and (c, a, ε) =
(0.689, 0.002, 0.0036), respectively.

positive real part. Using an Evans-function analysis, it was shown in [32, 54] that

there are at most two eigenvalues near or to the right of the imaginary axis: one of

these eigenvalues stays at the origin due to translational invariance of the family of

pulses (obtained by shifting the profile in space). The key was then to show that

the second critical eigenvalue has a negative sign. In [32, 54], this was established

using a parity argument by proving that the derivative of the Evans function at 0

is strictly positive, which, in turn, follows from geometric properties of the pulse

profile in the limit ε → 0. We mention that these results were extended in [14] to

the long-wavelength spatially-periodic wave trains that accompany the fast pulses in

the FitzHugh-Nagumo equation.

Both slow and fast pulses as described above have monotone tails as x → ±∞.

However, numerical simulations of (1.2) reveal that it also admits fast traveling pulses

with small amplitude, exponentially decaying oscillatory tails: this observation is

interesting as it opens up the possibility of constructing multi-pulses, which consist

of several well-separated copies of the original pulses that are glued together and

propagate without changes of speed and profile [30, §5.1.2]. The region in which the

oscillatory tails is observed is in the upper left corner of the bifurcation diagram in

Figure 1.1, near the point (c, a, ε) = (1/
√

2, 0, 0). Figure 1.2 shows profiles a fast

monotone and fast oscillatory pulse obtained numerically.
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(a) Homoclinic C-curve: c vs. a
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(b) Homoclinic banana: L2-norm vs. a

Figure 1.3: Plotted are the homoclinic C-curve and banana obtained by continuing the pulse
solution in the parameters (a, c) for ε = 0.021. The red square and green circle refer to the
locations of the oscillatory pulse and double pulse of Figure 1.4, respectively.

Further to this, when continuing a traveling pulse numerically in the parameters

(c, a) for fixed ε, the continuation traces out a C-shaped (or rather, backwards C-

shaped) curve. This is to be expected when considering an ε = const slice of the

bifurcation diagram in Figure 1.1. When approaching the upper left corner of this

bifurcation diagram, the pulses develop oscillations in the tails as described above,

but the curve does not terminate; rather the curve turns back sharply, and the

oscillations in the tails of the pulses grow into a secondary pulse resembling the

primary pulse. The curve then retraces itself, and the secondary pulse transitions

back into a single pulse near the lower left corner of the bifurcation diagram. Plotting

the parameter a versus the L2-norm of the solution shows that this C-curve is indeed

composed of two curves forming a so-called homoclinic banana. This homoclinic

C-curve and banana are shown in Figure 1.3, and a single and double pulse on either

side of this sharp transition are shown in Figure 1.4.

The ultimate goal of this thesis is to explore these phenomena analytically. We

first prove extensions of the above existence and stability results for fast pulses

which also encompass the onset of oscillations in the tails of the pulses. We then

consider the homoclinic banana, and analytically construct a one-parameter family
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(a) Shown is a pulse with oscillatory
tail for (c, a, ε) = (0.005, 0.608, 0.021).
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(b) Shown is a double pulse for
(c, a, ε) = (0.001, 0.612, 0.021).

Figure 1.4: Plotted are examples of an oscillatory pulse and a double pulse along the homoclinic
C-curve. The colored shapes refer to their location along the homoclinic C-curve and banana of
Figure 1.3.

of solutions describing the transition from the single to double pulse.

1.2 Outline and overview of results

We begin in §2 with an overview of the classical construction of fast pulses using

geometric singular perturbation theory. We also outline how and where this approach

breaks down when moving into the regime in which oscillatory tails are expected.

Existence. In §3, we prove the existence of traveling pulses with oscillatory tails.

The general strategy behind the proof is similar to that of the classical existence

result for fast pulses using geometric singular perturbation theory and the exchange

lemma, albeit with a number of additional technical challenges due to the nature of

the (c, a, ε) ≈ (1/
√

2, 0, 0) limit in which normal hyperbolicity is lost at two points

on the critical manifold: these challenges will be described more precisely in §2.

Related difficulties have also been encountered in other constructions of traveling

wave solutions, e.g. in [5, 17], and we will discuss in §2.2 below how these results
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differ from ours.

The results of §3 were published as joint work with B. Sandstede in [8].

Stability. In §4, we turn to investigating the stability of the traveling pulses with

oscillatory tails, and we prove that the pulses with oscillatory tails are stable. In

particular, we will show that, as in the monotone tail case, their stability is again

determined by the location of two eigenvalues near the origin, and we will show that

the nonzero critical eigenvalue has always negative real part. While the result is the

expected one, the stability criterion that ensures negativity of the critical eigenvalue

is actually very different from the criterion for monotone pulses. Furthermore, the

nonzero eigenvalue scales differently in the monotone and oscillatory regimes: we

show that the critical eigenvalue is of order ε for monotone pulses, while there are

oscillatory pulses for which the eigenvalue scales with ε2/3 as ε→ 0.

In contrast to [32, 54], our proof is not based on Evans functions but relies instead

on Lin’s method [31, 41, 48] to construct potential eigenfunctions of the linearization

for each potential eigenvalue λ near and to the right of the imaginary axis. We show

that we can construct a piecewise continuous eigenfunction with exactly two jumps

for each choice of λ: finding proper eigenvalues then reduces to finding values of

λ for which the two jumps vanish. While we restrict ourselves to the FitzHugh-

Nagumo system, the approach applies more generally to stability problems of pulses

in singularly perturbed reaction-diffusion systems.

We also comment on the presence of the second critical eigenvalue that determines

stability. The fast traveling pulses are constructed by gluing pieces of the nullcline

w = u(u − a)(1 − u) together with traveling fronts and backs of the FitzHugh-
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Nagumo system with ε = 0. These pulses will develop oscillatory tails when a ≈ 0:

this coincides with the region where the traveling fronts and backs jump off from the

maxima and minima of the nullcline w = u(u−a)(1−u) (we refer to Figure 2.7 below

for an illustration). Depending on exactly how the back jumps off the maximum of

the nullcline, the nontrivial second eigenvalue is either present or not: in previous

work [5, 29] the stability of similar types of traveling pulses is considered, but the

critical eigenvalue is not present and the pulses are therefore automatically stable.

We comment in more detail in §6 on the differences between [5, 29] and the present

work.

The results of §4 were submitted for publication as joint work with B. de Rijk

and B. Sandstede in [7].

Transition. The geometric framework of the existence proof for pulses with os-

cillatory tails in §3 also provides insight into the mechanism responsible for the

continuation of the branch of fast pulses with oscillatory tails via the homoclinic

banana described above. In §5 we propose a geometric explanation and give an ana-

lytical construction describing the transition of a single fast pulse into a double pulse

resembling two copies of the primary pulse.

At the present time, the results of §5 appear only in this thesis.

Finally, in §6, we give a brief discussion of the results and some directions for

future work.



Chapter Two

Background
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2.1 Previously known existence results for pulses

It is known that for each 0 < a < 1/2 and each sufficiently small ε > 0, there exists

c > 0 such that the ODE

du

dξ
= v

dv

dξ
= cv − f(u) + w

dw

dξ
= ε(u− γw)

(1.1)

admits an orbit homoclinic to (u, v, w) = (0, 0, 0), the only equilibrium of the full

system. In this section, we describe a proof of this result using geometric singular

perturbation theory [18] and the exchange lemma [33], in the spirit of [34]. Many of

the arguments carry over to the case of oscillatory tails, and we indicate where these

arguments fail and more work is needed to establish this extension.

To keep similar notation to the relevant literature for geometric singular pertur-

bation theory results, we abuse notation and denote the independent variable in (1.1)

by t and write the system as

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw),

(1.2)

where ˙ = d
dt

. We separately consider (1.2) above, which we call the fast system,

and the system below obtained by rescaling time as τ = εt, which we call the slow
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system:

εu′ = v

εv′ = cv − f(u) + w

w′ = (u− γw),

(1.3)

where ′ denotes d
dτ

. The two systems (1.2) and (1.3) are equivalent for any ε > 0.

The idea of geometric singular perturbation theory is to determine properties of the

ε > 0 system by piecing together information from the simpler equations obtained

by separately considering the fast and slow systems in the singular limit ε = 0.

We first set ε = 0 in (1.2), and we obtain the layer problem

u̇ = v

v̇ = cv − f(u) + w

ẇ = 0,

(1.4)

so that w becomes a parameter for the flow and M0(c, a) = {(u, v, w) : v = 0, w =

f(u)} is a set of equilibria (though the critical manifold does not depend on c, we

keep track of this anyways for convenience later). Considering this system in the

plane w = 0, we obtain the Nagumo system

u̇ = v

v̇ = cv − f(u).

(1.5)

It can be shown that for each 0 ≤ a ≤ 1/2, for c = c∗(a) =
√

2(1/2− a), this system

possesses a heteroclinic connection ϕf (the Nagumo front) between the critical points

(u, v) = (0, 0) and (u, v) = (1, 0). In (1.4), this manifests as a connection between

the left and right branches of M0(c, a) in the plane w = 0. By symmetry, there
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w
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0 1

M0

φb

φf

Figure 2.1: Shown is the fast subsystem for ε = 0 and 0 < a < 1/2.

exists w∗(a) such that there is a connection ϕb (which we call the Nagumo back) in

the plane w = w∗(a) between the right and left branches of M0(c, a) traveling with

the same speed c = c∗(a). The layer problem is shown in Figure 2.1. We will use the

notation Mr
0(c, a) and M`

0(c, a) to denote the right and left branches of M0(c, a),

respectively.

Similarly, by setting ε = 0 in (1.3), we obtain the reduced problem

0 = v

0 = cv − f(u) + w

w′ = (u− γw),

(1.6)

where the flow is now restricted to the set M0(c, a) with flow determined by the

equation for w. This is shown in Figure 2.2.

Combining elements of both the fast and slow subsystems, we see that there is a

singular ε = 0 “pulse” obtained by following ϕf , then up Mr
0(c, a), back across ϕb,

then down M`
0(c, a). This exists purely as a formal object as the two subsystems

are not equivalent to (1.2) for ε = 0. This singular structure is shown in Figure 2.3.
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w = f(u) = u(u − a)(1 − u)

Figure 2.2: Shown is the slow subsystem for ε = 0 and 0 < a < 1/2.
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M`
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0

Figure 2.3: Shown is the singular pulse for ε = 0.
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We now use Fenichel theory and the exchange lemma to construct a pulse for

ε > 0 as a perturbation of this singular structure. The first thing to note is that for

any 0 < a < 1/2 the Nagumo front ϕf and Nagumo back ϕb leave and arrive at points

on segments ofMr
0(c, a) andM`

0(c, a) which are normally hyperbolic. Therefore such

segments persist for ε > 0 as locally invariant manifoldsMr
ε(c, a) andM`

ε(c, a). Also,

the stable manifold Ws(M`
0(c, a)), consisting of the union of the stable fibers of the

equilibria lying on M`
0(c, a), also persists for ε > 0 as a two-dimensional manifold

Ws,`
ε (c, a). By Fenichel fibering, we in fact have that Ws,`

ε (c, a) = Ws
ε (0; c, a), the

stable manifold of the origin.

In addition, the origin has a one-dimensional unstable manifoldWu
0 (0; c, a) which

persists for ε > 0 as Wu
ε (0; c, a). The idea is to track Wu

ε (0; c, a) forwards and track

Ws
ε (0; c, a) backwards and show that there is an intersection provided we adjust

c ≈ c∗(a) appropriately. The difficulty in this procedure comes from trying to track

these manifolds in a neighborhood of the right branch Mr
ε(c, a), where the flow

spends time of order ε−1. The exchange lemma is used to describe the flow in this

region.

Since we are only concerned with a normally hyperbolic segment ofMr
0(c, a), as

stated before it perturbs to a manifoldMr
ε(c, a). In addition its stable and unstable

manifolds, Ws(Mr
0(c, a)) and Wu(Mr

0(c, a)) also perturb to locally invariant mani-

folds Ws,r
ε (c, a) and Wu,r

ε (c, a). Also, in a neighborhood of Mr
ε(c, a), there exists a

smooth change of coordinates in which the flow takes a very simple form, the Fenichel
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Wu
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Z

X Y

Ws
ǫ (0)

Figure 2.4: Shown is the setup for the exchange lemma.

normal form [18, 33]:

X ′ = −A(X, Y, Z, c, a, ε)X

Y ′ = B(X, Y, Z, c, a, ε)Y

Z ′ = ε(1 + E(X, Y, Z, c, a, ε)XY ),

(1.7)

where Mr
ε(c, a) is given by X = Y = 0, and Wu,r

ε (c, a) and Ws,r
ε (c, a) are given by

X = 0 and Y = 0, respectively, and the functions A and B are bounded below by

some constant η > 0. The exchange lemma [33] then states that for sufficiently small

∆ > 0 and ε > 0, any sufficiently large T , and any Z0, there exists a solution to (1.7)

satisfying X(0) = ∆, Z(0) = Z0, and Y (T ) = ∆ and the norms |X(T )|, |Y (0)|,and

|Z(T )− Z0 − εT | are of order e−ηT . The setup is shown in Figure 2.4.

The idea is now to follow Wu
ε (0; c, a) and Ws

ε (0; c, a) up to this neighborhood of

Mr
ε(c, a) and determine how they behave at X = ∆ and Y = ∆. This gives a system

of equations in c, T, ε which we can now solve to connect Wu
ε (0; c, a) and Ws

ε (0; c, a)

using the solution given by the exchange lemma, completing the construction of the

pulse which is shown in Figure 2.5.
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Figure 2.5: Shown is the construction of the pulse solution.

c

a

ǫ 1/2

c = c∗(a)

Figure 2.6: Shown is the bifurcation diagram indicating the known regions of existence for pulses
in (1.2). Pulses on the upper branch are referred to as “fast” pulses, while those along the lower
branch are called “slow” pulses. These two branches coalesce near the point (c, a, ε) = (0, 1/2, 0).

The existence results for pulses in the FitzHugh–Nagumo system are collected in

the bifurcation diagram in Figure 2.6 where the green surface denotes the existence

region for pulses. The pulses constructed above for c ≈ c∗(a) > 0 are called “fast”

pulses and the region of existence is given by the upper branch. For each 0 < a < 1/2,

there are also “slow” pulses which bifurcate for small c, ε > 0, and the region of

existence of such pulses is given by the lower branch. It is also known [37] that near

the point (c, a, ε) = (0, 1/2, 0), these two branches coalesce and form a surface as

shown.
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2.2 Motivation and complications for a ≈ 0

Numerical evidence suggests that when one of the fast pulses constructed above is

continued in (c, a) for fixed ε, the tail of the pulse becomes oscillatory as a→ 0, i.e.

as one moves towards the upper left corner of the bifurcation diagram of Figure 2.6.

Pulses with oscillatory tails correspond to homoclinic orbits of the travelling wave

ODE (1.2) for which the origin is a saddle-focus with one strongly unstable eigen-

value and two weakly stable complex conjugate (non-real) eigenvalues: such homo-

clinic orbits are often referred to as Shilnikov saddle-focus homoclinic orbits. The

numerical observation that pulses with oscillatory tails exist is of interest, because

such pulses are typically accompanied by infinitely many distinct N -pulses for each

given N ≥ 2 [30, §5.1.2]: here, an N -pulse is a travelling pulse that resembles N well

separated copies of the original pulse.

The goal of this current work is to prove the existence of pulses with oscillatory

tails analytically by studying the branch of fast pulses in the regime near the sin-

gular point (c, a, ε) = (1/
√

2, 0, 0) in the bifurcation diagram. We will accomplish

this by looking for pulses which arise as perturbations from the singular ε = 0 struc-

ture for the case of (c, a) = (1/
√

2, 0), which is shown in Figure 2.7. We note that

the existence of pulses with oscillatory tails has been shown [27] previously for the

FitzHugh–Nagumo system, but the manner of proof does not allow for the construc-

tion of multipulses due to the difficulty in obtaining a transversality condition with

respect to the wave speed c. Our existence proof guarantees this transversality and

also provides sufficiently information to determine the stability of the pulses (see §4).

Proceeding as in the case of fast waves, we wish to find an intersection between

the stable and unstable manifolds of the origin. Let Ia = [−a0, a0] for some small
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Figure 2.7: Shown is the singular pulse for ε = 0 in the case of (c, a) = (1/
√

2, 0).

a0 > 0. In the plane w = 0, the fast system for a ∈ Ia reduces to

u̇ = v

v̇ = cv − u(u− a)(1− u).

(2.1)

As stated previously, for a > 0 this system possesses Nagumo front type solutions

connecting u = 0 to u = 1 for any c = c∗(a). For −a0 < a < 0 with a0 sufficiently

small, this system possesses front type solutions for any c > 1/
√

2(1 + a) connecting

u = 0 to u = 1. For the critical value c = c∗(a) =
√

2(1/2 − a) the front leaves the

origin along the strong unstable manifold of the origin, and for all other values of c,

the front leaves the origin along a weak unstable direction. Our primary concern is

the case of a = 0, in which (2.1) reduces to a Fisher–KPP type equation

u̇ = v

v̇ = cv − u2(1− u).

(2.2)

Again, it is known that this system possesses front type solutions connecting u = 0

to u = 1 for any c ≥ 1/
√

2. For the critical value c = 1/
√

2 the front leaves

the origin along the strong unstable manifold of the origin, and for c > 1/
√

2, the

front leaves the origin along a center manifold. We are concerned with the case of
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(c, a) = (1/
√

2, 0) in which, as is the case with the Nagumo front, the singular fast

front solution leaves the origin along the strong unstable manifold; here the solution

is given explicitly by

uf (t) =
1

2

(
tanh

(
1

2
√

2
t

)
+ 1

)

vf (t) =
1√
2
uf (t)(1− uf (t)).

(2.3)

Note that by symmetry, for (c, a) = (1/
√

2, 0), the fast singular back solution also

leaves the upper right fold point along the strong unstable direction.

Thus from Fenichel theory, the origin has a strong unstable manifold Wu
0 (0; c, a)

for c ∈ Ic, a ∈ Ia, and ε = 0 which persists as an invariant manifold Wu
ε (0; c, a) for

a, c in the same range and ε ∈ [0, ε0], some ε0. Here Ic is a fixed closed interval which

contains the set {c∗(a) : a ∈ Ia} in its interior. Recall c∗(a) is the wavespeed for

which the front solution in the strong unstable manifold exists for this choice of a,

and c∗(0) = 1/
√

2. We note that for −a0 < a < 0 with a0 sufficiently small, though

the origin sits on the unstable middle branch of the critical manifold, it still has a

well defined strong unstable manifold.

Taking any piece ofMr
0(c, a) which is normally hyperbolic, i.e. away from the fold

point, Fenichel theory again ensures that this persists a locally invariant manifold

Mr
ε(c, a) for ε ∈ (0, ε0]. Similarly outside of a small fixed neighborhood of the fold,

Mr
0(c, a) has stable and unstable manifolds Ws(Mr

0(c, a)) and Wu(Mr
0(c, a)) which

persist as locally invariant manifolds Ws,r
ε (c, a) and Wu,r

ε (c, a).

We follow Wu
ε (0; c, a) along the front into a neighborhood of the right branch

Mr
ε(c, a), and using the exchange lemma, we can follow Wu

ε (0; c, a) along Mr
ε(c, a),

but only up to a fixed neighborhood of the fold point. Here the exchange lemma
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breaks down.

Another issue is that the origin does not have a well defined stable manifold as in

the case of 0 < a < 1/2. For a = 0, the origin sits on the fold of the critical manifold

M0(c, a) and thus does not lie in the region where the branch M`
0(c, a) is normally

hyperbolic. Therefore, we cannot use the results of Fenichel as before to deduce that

any section of M`
0(c, a) containing the origin persists as an invariant manifold for

ε > 0. In the same vein, we cannot deduce that Ws,`
ε (c, a) = Ws

ε (0; c, a).

However, outside any small fixed neighborhood of the origin, Fenichel theory

applies, and we know thatM`
0(c, a) and its stable manifoldWs(M`

0(c, a)) perturb to

invariant manifoldsM`
ε(c, a) andWs,`

ε (c, a) which enter this small fixed neighborhood

of the origin. In addition, the origin remains an equilibrium for ε > 0, so it remains to

find conditions which ensure thatM`
ε(c, a) and nearby trajectories onWs(M`

0(c, a))

in fact converge to zero. This is discussed in §3.5. It is important to note in this case

that the manifolds M`
ε(c, a) and Ws(M`

0(c, a)) are not unique and are only defined

up to errors exponentially small in 1/ε. The forthcoming analysis is valid for any such

choice of these manifolds and, in §3.5, we show that under certain conditions it is

possible to chooseM`
ε(c, a) andWs(M`

0(c, a)) so that they in fact lie onWs
ε (0; c, a).

We now follow the manifold Ws,`
ε (c, a) backwards along the back up to a small

neighborhood of the fold point, where again the theory breaks down. Thus we may

be able to find a connection between Wu
ε (0; c, a) and Ws,`

ε (c, a) up to understanding

the flow near the fold point. The flow in this region and the interaction with the

exchange lemma is discussed in §3.3 and §3.4.

Figure 2.8 summarizes what is given by the usual Fenichel theory arguments,

which apply outside of small neighborhoods of the two fold points at which the
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critical manifold is not normally hyperbolic.

We note that there have been other studies of constructing singular solutions

passing near non-hyperbolic fold points. In [5], for instance, a pulse solution was

constructed in a model of cardiac tissue: in this model, the fast ‘back’ portion of the

pulse also originated from a non-hyperbolic fold point as in the case for FitzHugh–

Nagumo above. Both models exhibit a Fisher–KPP type equation as described above

when viewing the layer problem in the plane containing the singular fast ‘back’

solution. One difference between these two cases is that, in [5], only wavespeeds c >

1/
√

2 are considered, which means that the back solution leaves the fold point along

the center manifold: in particular, the desired pulse solution can be constructed by

following a continuation of the slow manifold in the center manifold of the fold point.

A second difference is that the origin of the model considered in [5] is hyperbolic,

instead of being a second fold point as in the situation discussed in this work. The

setup discussed in [17] is similar to the one studied in [5] in that a condition is

imposed on the wavespeed that ensures that the singular back solution leaves the

fold along a center manifold rather than a strong unstable fiber.

In our case, we consider the critical wavespeed c = 1/
√

2 in which the back leaves

along a strong unstable fiber. As in [5], we will use the blow up techniques of [38]

to construct the desired pulse solution. However, a number of refinements of the

results of [38] are needed to track the solution in a neighborhood of the fold point

as the solution exits this neighborhood along a strong unstable fiber as opposed to

remaining on the center manifold. This will be described in more detail in §3.3

and §3.4.
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Figure 2.8: Shown are the regions of difficulty for the case of a ≈ 0.



Chapter Three

Existence of fast pulses with

oscillatory tails
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3.1 Introduction

In this chapter, we prove the existence of traveling pulse solutions to the PDE

ut = uxx + f(u)− w,

wt = δ(u− γw),

(1.1)

which exhibit oscillatory tails. Equivalently we search for homoclinic solutions of

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw),

(1.2)

with wave speed c > 0. Recall that we take f(u) = u(u − a)(1 − u), 0 < a < 1
2
,

0 < ε = δ/c� 1, and γ > 0 sufficiently small so that (u, v, w) = (0, 0, 0) is the only

equilibrium of (1.2).

The main result of this chapter, Theorem 3.1, guarantees the existence of a surface

of solutions near (c, a, ε) = (1/
√

2, 0, 0) containing pulses with both monotone and

oscillatory tails. The chapter is structured as follows. In §3.2, we state Theorem 3.1

and briefly outline its proof and the relation to oscillations in the tails of the pulses.

The remainder of the chapter (§3.3-3.5) is then devoted to the proof of Theorem 3.1.

3.2 Statement of main result

We start by collecting a few results which follow from Fenichel theory. Define the

closed intervals Ia = [−a0, a0] for some small a0 > 0 and Ic = {c∗(a) : a ∈ Ia}; recall
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c∗(a) is the wavespeed for which the Nagumo front exists for this choice of a. Then

for sufficiently small ε0, standard geometric singular perturbation theory gives the

following:

(i) The origin has a strong unstable manifold Wu
0 (0; c, a) for c ∈ Ic, a ∈ Ia, and

ε = 0 which persists for a, c in the same range and ε ∈ [0, ε0].

(ii) We consider the critical manifold defined by {(u, v, w) : v = 0, w = f(u)}. For

each a ∈ Ia, we consider the right branch of the critical manifoldMr
0(c, a) up to

a neighborhood of the knee for ε = 0. This manifold persists as a slow manifold

Mr
ε(c, a) for ε ∈ [0, ε0]. In addition, Mr

0(c, a) possesses stable and unstable

manifolds Ws(Mr
0(c, a)) and Wu(Mr

0(c, a)) which also persist for ε ∈ [0, ε0] as

invariant manifolds which we denote by Ws,r
ε (c, a) and Wu,r

ε (c, a).

(iii) In addition, we consider the left branch of the critical manifoldM`
0(c, a) up to a

neighborhood of the origin for ε = 0. This manifold persists as a slow manifold

M`
ε(c, a) for ε ∈ [0, ε0]. In addition, M`

0(c, a) possesses a stable manifold

Ws(M`
0(c, a)) which also persists for ε ∈ [0, ε0] as an invariant manifold which

we denote by Ws,`
ε (c, a).

The goal of this chapter is to prove the following theorem.

Theorem 3.1. There exists K∗, µ > 0 such that the following holds. For each

K > K∗, there exists a0, ε0 > 0 such that for each (a, ε) ∈ (0, a0)× (0, ε0) satisfying

ε < Ka2, there exists c = c(a, ε) given by

c(a, ε) =
√

2

(
1

2
− a
)
− µε+O(ε(|a|+ ε)),

such that (1.1) admits a traveling pulse solution. Furthermore, for ε > K∗a2, the

tail of the pulse is oscillatory.
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c
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ǫ 1/2

u(x, t) = u(x + ct)

c

x

u(x, t) = u(x + ct)

c

x

Figure 3.1: Shown is a schematic bifurcation diagram depicting the branch of pulses guaranteed by
Theorem 3.1. The monotone pulse and oscillatory pulse shown were computed numerically for the
parameter values (c, a, ε) = (0.593, 0.069, 0.0036) and (c, a, ε) = (0.689, 0.002, 0.0036), respectively.

We note here that this result extends the classical existence result by guaran-

teeing, at least near the point (c, a, ε) ≈ (1/
√

2, 0, 0), a surface of solutions which

contains both pulses with monotone tails and pulses with oscillatory tails (see Fig-

ure 3.1).

In §3.4.5, the wave speed of the pulse is computed as

c(a, ε) = c∗(a)− µε+O(ε(|a|+ ε)), (2.1)

where µ > 0. Figure 3.2 shows another schematic view of the surface of solutions

guaranteed by the theorem in the bifurcation diagram for the parameters (c, a, ε).

We emphasize that this theorem does indeed guarantee the existence of the desired

branch of pulses with oscillatory tails. The onset of the oscillations in the tail of the

pulse is due to a transition occurring in the linearization of (1.2) about the origin in

which the two stable real eigenvalues collide and emerge as a complex conjugate pair

as a decreases for fixed ε. If a pulse/homoclinic orbit is present when eigenvalues

changes in this fashion, then this situation is referred to as a Belyakov transition [30,

§5.1.4]: all N -pulses that accompany a Shilnikov homoclinic orbit terminate near
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the Belyakov transition point. The linearization of (1.2) about the origin is given by

J =




0 1 0

a c 1

ε 0 −εγ



. (2.2)

We can compute the location of the Belyakov transition for small (a, ε) by finding

real eigenvalues which are double roots of the characteristic polynomial of J . Thus,

we determine for which (ε, a) both the characteristic polynomial and its derivative

vanish, and find that this holds when

ε =
a2

4c
+O(a3) . (2.3)

This gives the location of the transition and allows us to choose the quantity K∗ >

1
4c∗(0)

for which the statement in Theorem 3.1 holds for all sufficiently small (a, ε).

Then by taking K sufficiently large in Theorem 3.1, we see that the surface of

pulses in caε-space which are given by the theorem encompasses both sides of this

Belyakov transition and therefore captures both the monotone and oscillatory tails

(see Figure 3.2).

The proof of Theorem 3.1 is presented in three parts:

(i) In §3.3, we present an analysis of the flow in a small neighborhood of the upper

right fold point.

(ii) In §3.4, using the exchange lemma together with the analysis of §3.3, we show

that for each a ∈ Ia and ε ∈ (0, ε0), there exists c = c(a, ε) such thatWu
ε (0; c, a)

connects to Ws,`
ε (c, a) after passing near the upper right fold point.
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u(x, t) = u(x + ct)

c
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c − c∗(a)

a

ǫ
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c(a, ǫ)

u(x, t) = u(x + ct)

c

x

Figure 3.2: Schematic bifurcation diagram for the parameters (c, a, ε). Here the green surface is
the region of existence of pulses as in Theorem 3.1; in the grey region, Theorem 3.1 does not apply.
The red curve denotes the location of the Belyakov transition which occurs at the origin.

(iii) In §3.5, we show that for each (a, ε) satisfying the relation in the statement of

Theorem 3.1, the manifoldM`
ε(c, a) and nearby solutions on Ws,`

ε (c, a) in fact

converge to the equilibrium, completing the construction of the pulse.

3.3 Tracking around the fold

3.3.1 Preparation of equations

We append an equation for the parameter ε to (1.2) and arrive at the system

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw)

ε̇ = 0.

(3.1)
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For (c, a) ∈ Ic×Ia, the fold point is given by the fixed point (u, v, w, ε) = (u∗, 0, w∗, 0)

of (3.1) where

u∗ =
1

3

(
a+ 1 +

√
a2 − a+ 1

)
, (3.2)

and w∗ = f(u∗). The linearization of (3.1) about this point is

J =




0 1 0 0

0 c 1 0

0 0 0 u∗ − γw∗

0 0 0 0




. (3.3)

This matrix has one positive eigenvalue λ = c with eigenvector (1, c, 0, 0) as well as

an eigenvalue λ = 0 with algebraic multiplicity three and geometric multiplicity one.

The associated eigenvector is (1, 0, 0, 0) and generalized eigenvectors are (0, 1,−c, 0)

and (0, 0, u∗ − γw∗,−c). By making the coordinate transformation

z1 = u− u∗ − v

c
− w − w∗

c2

z2 = −w − w
∗

c

z3 =
v

c
+
w − w∗
c2

,

(3.4)
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we arrive at the system

ż1 = z2 +
−1

c

(√
a2 − a+ 1

)
(z1 + z3)2 − 1

c
(z1 + z3)3

− ε

c2
(z1 + z3 + cγz2 + u∗ − γw∗)

ż2 = −ε
c
(z1 + z3 + cγz2 + u∗ − γw∗)

ż3 = cz3 +
1

c

(√
a2 − a+ 1

)
(z1 + z3)2 +

1

c
(z1 + z3)3

+
ε

c2
(z1 + z3 + cγz2 + u∗ − γw∗)

ε̇ = 0,

(3.5)

which, for ε = 0, is in Jordan normal form for the three dynamic variables (z1, z2, z3).

To understand the dynamics near the fold point, we separate the nonhyperbolic dy-

namics which occur on a three-dimensional center manifold. In a small neighborhood

of the fold point, this manifold can be represented as a graph

z3 = F (z1, z2, ε)

= β0z1 + β1z2 + β2z
2
1 + O[ε, z1z2, z

2
2 , z

3
1 ].

(3.6)

We can directly compute the coefficients βi, and we find that

β0 = β1 = 0, β2 =
−1

c2

(√
a2 − a+ 1

)
. (3.7)

We now make the following change of coordinates

x =
−1

c

(√
a2 − a+ 1

)
z1

y =
−1

c

(√
a2 − a+ 1

)
z2,

(3.8)
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which gives the flow on the center manifold in the coordinates (x, y, ε) as

ẋ = y + x2 +O(ε, xy, y2, x3)

ẏ = ε

[
1

c2

(√
a2 − a+ 1

)
(u∗ − γw∗) +O(x, y, ε)

]

ε̇ = 0.

(3.9)

Making one further coordinate transformation in the variable z3 to straighten out

the unstable fibers and one further rescaling of (x, y, t) to rectify the flow in the

y-direction, we arrive at the full system

ẋ = y + x2 +O(ε, xy, y2, x3)

ẏ = ε (1 +O(x, y, ε))

ż = z (θ0 +O(x, y, z, ε))

ε̇ = 0,

(3.10)

where θ0 > 0 uniformly in (c, a) ∈ Ic × Ia.

Let Vf ⊂ R3 be a small fixed neighborhood of (x, y, z) = (0, 0, 0) where the above

computations are valid. Define the neighborhood Uf by

Uf = {(x, y, z, c, a) ∈ Vf × Ic × Ia} , (3.11)

and denote the change of coordinates from (x, y, z, c, a) to the original (u, v, w, c, a)

coordinates by Φf : Uf → Of where Of is the corresponding neighborhood of the

fold in (u, v, w)-coordinates for (c, a) ∈ Ic × Ia. We note that in the neighborhood

Uf the equations for the variables (x, y) are in the canonical form for a fold point as
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in [38], that is, we have

ẋ = y + x2 + h(x, y, ε, c, a)

ẏ = εg(x, y, ε, c, a)

ż = z (θ0 +O(x, y, z, ε))

ε̇ = 0,

(3.12)

where

h(x, y, ε, c, a) = O(ε, xy, y2, x3)

g(x, y, ε, c, a) = 1 +O(x, y, ε).

(3.13)

We assume that the neighborhood Vf has been chosen small enough so that the

function g(x, y, ε, c, a) is bounded away from zero, say gm < g(x, y, ε, c, a) < gM with

gm > 0. We have thus factored out the one hyperbolic direction (given by z) and

the flow consists of the flow on a three-dimensional center manifold, parametrized by

(x, y, ε) and the one-dimensional flow along the fast unstable fibers (the z-direction).

3.3.2 Tracking solutions around the fold point: existing the-

ory

Here we describe the existing theory for extending geometric singular perturbation

theory to a fold point. Consider the two-dimensional system

ẋ = y + x2 + h(x, y, ε, c, a)

ẏ = εg(x, y, ε, c, a),

(3.14)
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Figure 3.3: Shown is the setup of (3.14) for the passage near the fold point as in [38]: note that
the positive x-axis points to the left, so that the attracting branch S+

0 (c, a) corresponding to x < 0
is on the right.

with parameters (ε, c, a). We collect a few relevant results from [38]. For ε = 0, this

system possesses a critical manifold given by {(x, y) : y + x2 + h(x, y, 0, c, a) = 0},

which in a sufficiently small neighborhood of the origin is shaped as a parabola

opening downwards. The branch of this parabola corresponding to x < 0, which

we denote by S+
0 (c, a), is attracting and normally hyperbolic away from the fold

point. Thus by Fenichel theory, this critical manifold persists as an attracting slow

manifold S+
ε (c, a) for sufficiently small ε > 0 and consists of a single solution. This

slow manifold is unique up to exponentially small errors. In [38], this slow manifold

is tracked around the knee where normal hyperbolicity is lost. The set up is shown

in Figure 3.3; note that the orientation is chosen so that the positive x-axis points

to the left.

For sufficiently small ρ > 0 (to be chosen) and an appropriate interval J , define

the following sections ∆in(ρ) = {(x,−ρ2) : x ∈ J} and ∆out(ρ) = {(ρ, y) : y ∈ R}.

Then we have the following

Theorem 3.2 ([38, Theorem 2.1]). For each sufficiently small ρ > 0, there exists

ε0 > 0 such that for each (c, a) ∈ Ic× Ia and ε ∈ (0, ε0), the manifold S+
ε (c, a) passes

through ∆out(ρ) at a point (ρ, ỹε(c, a)) where ỹε(c, a) = O(ε2/3).
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This theorem describes how the slow manifold exits a neighborhood of the fold

point but not the nature of the passage near the fold point. Since the solution we

are trying to construct will leave the neighborhood Uf along a strong unstable fiber

before reaching ∆out, we need to extend the results of [38] to derive estimates which

hold throughout this neighborhood, not just at the entry/exit sections.

3.3.3 Tracking solutions in a neighborhood of the fold point

For our purposes, we actually need to be able to say a bit more about the nature

of S+
ε (c, a) as well as nearby solutions between the two sections ∆in(ρ) and ∆out(ρ).

We can think of the slow manifold S+
ε (c, a) as being a one-dimensional slice of a

two-dimensional critical manifold M+(c, a) = ∪ε<ε0S+
ε (c, a) of the three-dimensional

(x, y, ε) subsystem of (3.12). It will sometimes be useful to consider the manifold

M+(c, a) instead as we utilize a number of different coordinate systems in the analysis

below.

Let x̃ε(c, a) denote the x-value at which the manifold S+
ε (c, a) intersects the

section ∆in(ρ) and define the following set for small σ, ρ, δ to be chosen later:

Σ+
i ={(x̃ε(c, a) + x0,−ρ2, ε, c, a) :

0 ≤ |x0| < σρε, ε ∈ (0, ρ3δ), (c, a) ∈ Ic × Ia}.
(3.15)

We also define the exit set

Σ+
o = {(ρ, y, ε, c, a) : y ∈ R, ε ∈ (0, ρ3δ), (c, a) ∈ Ic × Ia}. (3.16)

Between the two sections Σ+
i and Σ+

o , the slow manifold S+
ε (c, a) consists of a single
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solution γε(t; c, a) which can be written as

γε(t; c, a) = (xε(t; c, a), yε(t; c, a), ε, c, a), (3.17)

with γε(0; c, a) ∈ Σ+
i and γε(τε; c, a) ∈ Σ+

o for some time τε = τε(c, a).

We define the C1 function s0(x; c, a) so that between ∆in(ρ) and ∆out(ρ), y =

s0(x; c, a) is the graph of the singular solution obtained by following S+
0 (c, a) to

(x, y) = (0, 0) then continuing on the fast fiber defined by y = 0.

The following Proposition 3.3.1 and Corollary 3.3.3, which will be proved in §3.3.7

and §3.3.8 below, are the main results of this section. Proposition 3.3.1 gives esti-

mates on the flow of (3.12) in the center manifold z = 0 between the sections Σ+
i

and Σ+
o . Corollary 3.3.3 then describes the implications for the full four dimensional

flow of (3.12) where the dynamics of the basepoints of the unstable fibers are given

by the flow on the center manifold.

Proposition 3.3.1. Consider the flow of (3.12) in the three dimensional center

manifold z = 0. There exists δ > 0 such that for all sufficiently small choices of

σ, ρ, all solutions starting in Σ+
i cross Σ+

o . Furthermore, there exists k̃ > 0 such that

the following holds. Given a solution γ(t) = (x(t), y(t), ε, c, a) with γ(0) ∈ Σ+
i , let τ

denote the first time at which γ(τ) ∈ Σ+
o . Then

(i) ẋ(t) > k̃ε for t ∈ [0, τ ]

In addition (see Remark 3.3.2 below), for each (c, a) ∈ Ic × Ia, we can represent the

manifold S+
ε (c, a) as a graph (x, sε(x; c, a), ε) for x ∈ [xε(0; c, a), ρ] where sε(x; c, a)

is an invertible function of x and
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(ii) |sε(x; c, a)− s0(x; c, a)| = O(ε2/3)

(iii)
∣∣dsε
dx

(x; c, a)− ds0
dx

(x; c, a)
∣∣ = O(ε1/3)

on the interval [xε(0; c, a), ρ].

Remark 3.3.2. The above result shows that there exists k̃ > 0 such that for each

(c, a) ∈ Ic × Ia, we have ẋε(t; c, a) > k̃ε for t ∈ [0, τε(c, a)]. Note that due to

the bounds on the function g(x, y, ε, c, a) in system (3.12), there is a similar lower

bound ẏε(t; c, a) ≥ gmε. Thus we can represent the manifold S+
ε (c, a) as a graph

(x, sε(x; c, a), ε) for x ∈ [xε(0; c, a), ρ] where sε(x; c, a) is an invertible function of x

on the interval [xε(0; c, a), ρ]. Since this trajectory is contained in the neighborhood

Vf , there exists an upper bound for the derivative

ẋ = y + x2 + h(x, y, ε, c, a) ≤ K̃. (3.18)

We therefore have the following bounds on the derivatives dsε
dx

(x; c, a) and d(s−1
ε )
dy

(y; c, a)

gmε

K̃
≤ dsε

dx
(x; c, a) ≤ gM

k̃

k̃

gM
≤ d(s−1

ε )

dy
(y; c, a) ≤ K̃

gmε
.

(3.19)

We now fix ρ, σ small enough to satisfy Proposition 3.3.1. We have the following

Corollary 3.3.3. There exists xf , ε0 > 0 such that for each sufficiently small ∆z,

each

(ε, c, a, xf ) ∈ (0, ε0)× Ic × Ia × [−xf , xf ] (3.20)

and each 0 ≤ |xi| < σρε there exists zi = zi(∆z, ε, xi, xf , c, a), yf = yf (ε, xi, xf , c, a),

time T = T (ε, xi, xf , c, a), and a solution ϕ(t; ε, xi, xf , c, a) to (3.12) satisfying
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(i) ϕ(0; ε, xi, xf , c, a) = (x̃ε(c, a) + xi,−ρ2, zi, ε)

(ii) ϕ(T ; ε, xi, xf , c, a) = (xf , sε(xf ; c, a)− yf ,∆z, ε)

where |yf | = O(xi), |Dλ0yf | = O(xi/ε), |Dλ1...λnT | = O(ε−(n+1)) and zi = O(e−ηT ),

some η > 0, for λj = {xi, xf , c, a}, j = 0, . . . , n.

Remark 3.3.4. Corollary 3.3.3 solves a boundary value problem for (3.12) in the

following sense. For each sufficiently small xi,∆z, xf , the result guarantees the exis-

tence of a solution to (3.12) whose basepoint in the center manifold is distance xi in

the x-direction from S+
ε (c, a) in Σ+

i and whose strong unstable z component reaches

∆z at x = xf . Also, the result gives estimates on the derivatives of the initial unsta-

ble component zi in Σ+
i , the time T spent until z = ∆z, and the distance y = yf in

the y-direction from S+
ε (c, a) when (x, z) = (xf ,∆z).

To prove these results we will use blow up techniques as in [38], and the proofs

are given in §3.3.7 and §3.3.8, respectively. The blow up is essentially a rescaling

which “blows up” the degenerate point (x, y, ε) = (0, 0, 0) to a 2-sphere. The blow

up transformation is given by

x = r̄x̄, y = −r̄2ȳ, ε = r̄3ε̄. (3.21)

Defining Bf = S2 × [0, r̄0] for some sufficiently small r̄0, we consider the blow up as

a mapping B → R3 with (x̄, ȳ, ε̄) ∈ S2 and r̄ ∈ [0, r̄0]. The point (x, y, ε) = (0, 0, 0)

is now represented as a copy of S2 (i.e. r̄ = 0) in the blow up transformation. To

study the flow on the manifold Bf and track solutions near S+
ε (c, a) around the fold,

there are three relevant coordinate charts. Keeping the same notation as in [38], the
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Figure 3.4: Shown is the set up for the coordinate charts Ki, i = 1, 2, 3.

first is the chart K1 which uses the coordinates

x = r1x1, y = −r2
1, ε = r3

1ε1, (3.22)

the second chart K2 uses the coordinates

x = r2x2, y = −r2
2y2, ε = r3

2, (3.23)

and the third chart K3 uses the coordinates

x = r3, y = −r2
3y3, ε = r3

3ε3. (3.24)

The setup for the coordinate charts is shown in Figure 3.4. With these three sets of

coordinates, a short calculation gives the following

Lemma 3.3.5. The transition map κ12 : K1 → K2 between the coordinates in K1

and K2 is given by

x2 =
x1

ε
1/3
1

, y2 =
1

ε
2/3
1

, r2 = r1ε
1/3
1 , for ε1 > 0, (3.25)

and the transition map κ23 : K2 → K3 between the coordinates in K2 and K3 is given
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by

r3 = r2x2, y3 =
y2

x2
2

, ε3 =
1

x3
2

, for x2 > 0. (3.26)

3.3.4 Dynamics in K1

The desingularized equations in the new variables are given by

x′1 = −1 + x2
1 +

1

2
ε1x1 +O(r1)

r′1 =
1

2
r1ε1 (−1 +O(r1))

ε′1 =
3

2
ε2

1 (1 +O(r1)) ,

(3.27)

where ′ = d
dt1

= 1
r1

d
dt

denotes differentiation with respect to a rescaled time variable

t1. Here we collect a few results from [38]. Firstly, there are two invariant subspaces

for the dynamics of (3.27): the plane r1 = 0 and the plane ε1 = 0. Their intersection

is the invariant line l1 = {(x1, 0, 0) : x1 ∈ R}, and the dynamics on l1 evolve according

to x′1 = −1 + x2
1. There are two equilibria pa = (−1, 0, 0) and pr = (1, 0, 0). The

equilibrium we are interested in, pa has eigenvalue −2 for the flow along l1. In the

plane ε1 = 0, the dynamics are given by

x′1 = −1 + x2
1 +O(r1)

r′1 = 0.

(3.28)

This system has a normally hyperbolic curve of equilibria S+
0,1(c, a) emanating from

pa which exactly corresponds to the branch S+
0 (c, a) of the critical manifold S in

the original coordinates. Along S+
0,1(c, a) the linearization of (3.28) has one zero

eigenvalue and one eigenvalue close to −2 for small r1.
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In the invariant plane r1 = 0, the dynamics are given by

x′1 = −1 + x2
1 +

1

2
ε1x1

ε′1 =
3

2
ε2

1.

(3.29)

Here we still have the equilibrium pa which now has an additional zero eigenvalue due

to the second equation. The corresponding eigenvector is (−1, 4) and hence there

exists a one-dimensional center manifold N+
1 (c, a) at pa along which ε1 increases.

Note that the branch of N+
1 (c, a) in the half space ε1 > 0 is unique.

Restricting attention to the set

D1 = {(x1, r1, ε1) : x1 ∈ R, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ δ}, (3.30)

we have the following result from [38]

Proposition 3.3.6 ([38, Proposition 2.6]). For any (c, a) ∈ Ic × Ia and any suffi-

ciently small ρ, δ > 0, the following assertions hold for the dynamics of (3.27):

(i) There exists an attracting center manifold M+
1 (c, a) at pa which contains the

line of equilibria S+
0,1(c, a) and the center manifold N+

1 (c, a). In D1, M+
1 (c, a)

is given as a graph x1 = h+(r1, ε1, c, a) = −1 +O(r1, ε1) with

−3/2 < h+(r1, ε1, c, a) < −1/2 on D1. (3.31)

The branch of N+
1 (c, a) in r1 = 0, ε > 0 is unique. (Note that the manifold

M+
1 (c, a) is precisely the manifold M+(c, a) in the K1 coordinates.)

(ii) There exists a stable invariant foliation F s(c, a) with base M+
1 (c, a) and one-

dimensional fibers. For any η > −2, for any sufficiently small ρ, δ, the con-



42

S+
0,1

Ma
1

Σout
1

Σin
1

x1

r1

ǫ1

pa

Figure 3.5: Shown is the set up in the chart K1.

traction along F s(c, a) during a time interval [0, T ] is stronger than eηT .

Making the change of variables x̃1 = x1− h+(r1, ε1, c, a), we arrive at the system

x̃′1 = x̃1 (−2 + x̃1 +O(r1, ε1))

r′1 =
1

2
r1ε1 (−1 +O(r1))

ε′1 =
3

2
ε2

1 (1 +O(r1)) .

(3.32)

In the chart K1, the section Σ+
i is given by

Σin
1 = {(x1, r1, ε1) : 0 < ε1 < δ, 0 ≤ |x̃1| < σρ3ε1, r1 = ρ}. (3.33)

We define the exit section

Σout
1 = {(x1, r1, ε1) : ε1 = δ, 0 ≤ |x̃1| < σr3

1δ, 0 < r1 ≤ ρ}. (3.34)

The set up is shown in Figure 3.5. We have the following

Lemma 3.3.7. Consider the system (3.32). There exists k1 > 0 such that for

all (c, a) ∈ Ic × Ia and all sufficiently small ρ, δ, σ > 0, the following holds. Let

γ1(t) = (x1(t), r1(t), ε1(t)) denote a solution with γ1(0) ∈ Σin
1 . Then γ1 reaches Σout

1 .
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In addition, letting τ1 denote the first time at which γ1(τ1) ∈ Σout
1 , we have

dx

dt1
= r1

dx1

dt1
+ x1

dr1

dt1

= r1 (x̃1 + h+(r1, ε1, c, a))′ + r′1 (x̃1 + h+(r1, ε1, c, a))

> k1ρr1ε1, for t ∈ [0, τ1].

(3.35)

Proof. Consider a solution γ1(t) = (x1(t), r1(t), ε1(t)) with γ1(0) ∈ Σin
1 . We note that

for sufficiently small ρ, δ, since r3
1ε1 is a constant of the motion, |x̃1| is decreasing,

and γ1 does indeed exit Σout
1 .

To prove (3.35), we compute

r1 (x̃1 + h+(r1, ε1, c, a))′ + r′1 (x̃1 + h+(r1, ε1, c, a))

= r1x̃
′
1 +

1

2
r1ε1(1− x̃1) +O(r2

1ε1, r1ε
2
1).

(3.36)

Since r3
1ε1 is a constant of the motion and |x̃1| is decreasing, |x̃1| < σr3

1ε1. Also,

from (3.32), we have x̃′1 = x̃1 (−2 + x̃1 +O(r1, ε1)) so that

r1 (x̃1 + h+(r1, ε1, c, a))′ + r′1 (x̃1 + h+(r1, ε1, c, a))

= r1x̃1(−2 + x̃1) +
1

2
r1ε1(1− x̃1) +O(r2

1ε1, r1ε
2
1)

=
1

2
r1ε1(1 +O(r1, ε1)).

(3.37)

Thus there exists k1 > 0 such that for all sufficiently small ρ, δ, the relation (3.35)

holds.
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3.3.5 Dynamics in K3

In the chart K3, the equations in the new variables are given by

ṙ3 = r2
3F (r3, y3, ε3, c, a)

ẏ3 = r3 [ε3(−1 +O(r3))− 2y3F (r3, y3, ε3, c, a)]

ε̇3 = −3r3ε3F (r3, y3, ε3, c, a),

(3.38)

where F (r3, y3, ε3, c, a) = 1− y3 +O(r3). For small β > 0, consider the set

Σin
3 = {(r3, y3, ε3) : 0 < r3 < ρ, y3 ∈ [−β, β], ε3 = δ}, (3.39)

The analysis in [38] shows that Σin
3 is carried by the flow of (3.38) to the set

Σout
3 = {(r3, y3, ε3) : r3 = ρ, y3 ∈ [−β, β], ε3 ∈ (0, δ)}. (3.40)

What we take from this is that for some fixed k3 � 1, for all sufficiently small

β, ρ, δ, between the sections Σin
3 and Σout

3 we have F (r3, y3, ε3) > k3δ
2/3 and thus

ṙ3 > r2
3k3δ

2/3. So for a trajectory starting at t = 0 in Σin
3 with initial r3(0) = r0, we

have ṙ3 > r2
0k3δ

2/3. Since ε3 = δ in Σin
3 and ε = r3

3ε3 is a constant of the flow, this

implies ṙ3 > ε2/3k3.

We can also compute an upper bound for the time spent between Σin
3 and Σout

3 .

By integrating the estimate ṙ3 > r2
3k3δ

2/3 from 0 to t and using the relation ε = r3
0δ,

we obtain that r3(t) > ε1/3

δ1/3−ε1/3δ2/3k3t
. Thus any trajectory crossing Σin

3 reaches Σout
3

in time t < 1
k3

(
1

ε1/3δ1/3
− 1

ρ

)
. We sum this up in the following

Lemma 3.3.8. For any (c, a) ∈ Ic×Ia and all sufficiently small ρ, δ, β, any trajectory

entering Σin
3 exits Σout

3 in time t < 1
k3

(
1

ε1/3δ1/3
− 1

ρ

)
, and between these two sections,
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ṙ3 > ε2/3k3.

We now fix β small enough so as to satisfy Lemma 3.3.8.

3.3.6 Dynamics in K2

In the chart K2, the desingularized equations in the new variables are given by

x′2 = −y2 + x2
2 +O(r2)

y′2 = −1 +O(r2)

r′2 = 0,

(3.41)

where ′ = d
dt2

= 1
r2

d
dt

denotes differentiation with respect to a rescaled time variable

t1 = r2t. For r2 = 0, this reduces to the Riccati equation

x′2 = −y2 + x2
2

y′2 = −1,

(3.42)

whose solutions can be expressed in terms of special functions. We quote the relevant

results:

Proposition 3.3.9 ([42, §II.9]). The system (3.42) has the following properties:

(i) There exists a special solution γ2,0(t) = (x2,0(t), y2,0(t)) which can be represented

as a graph y2,0(t) = s2,0(x2,0(t)) for an invertible function s2,0 which satisfies

s2,0(x) >
(
x2 + 1

2x

)
for x < 0 and s2,0(x) < x2 for all x. In addition,

s2,0(x) = −Ω0 + 1/x+O(1/x3) as x→∞,
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where Ω0 is the smallest positive zero of

J−1/3(2z3/2/3) + J1/3(2z3/2/3),

where J−1/3, J1/3 are Bessel functions of the first kind.

(ii) The special solution γ2,0(t) = (x2,0(t), y2,0(t)) satisfies x′2,0(t), x′′2,0(t) > 0 for all

t and x2,0(t)→ ±∞ as t→ ±∞.

We now fix δ small enough to satisfy the results of §3.3.4 and §3.3.5 as well as

taking 2Ω0δ
2/3 < β, where β is the small constant fixed at the end of §3.3.5. The

lemma below follows from a regular perturbation argument.

Lemma 3.3.10. The special solution γ2,0 has the following properties:

(i) Let τ1, τ2 be the times at which y2,0(τ1) = δ−2/3 and x2,0(τ2) = δ−1/3. Then

there exists k2 such that x′2,0(t) > 3k2 for t ∈ [τ1, τ2].

(ii) There exists r∗2 > 0 such that for any (c, a) ∈ Ic × Ia and any 0 < r2 < r∗2, the

special solution γ2,0 persists as a solution

γ2,r2(t; c, a) = (x2,r2(t; c, a), y2,r2(t; c, a), r2)

of (3.41), and solution similarly can be represented as a graph y = s2,r2(x; c, a)

for an invertible function s2,r2(x; c, a) which is C1-O(r2) close to s2,0(x) on the

interval x ∈ [s−1
2,r2

(δ−2/3; c, a), δ−1/3]. Furthermore, we have x′2,r2(t; c, a) > 2k2

for x ∈ [s−1
2,r2

(δ−2/3; c, a), δ−1/3].
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Figure 3.6: Shown is the set up in the chart K2.

Remark 3.3.11. We note that the set

M+
2 (c, a) :={(x2,r2 , s2,r2(x2,r2 ; c, a), r2) :

x2,r2 ∈ [s−1
2,r2

(δ−2/3; c, a), δ−1/3], 0 < r2 < r∗2}
(3.43)

is in fact a piece of the manifold M+(c, a) in the K2 coordinates.

In the K2 coordinates, we have that κ12 (Σout
1 ) is contained in the set

Σin
2 ={(x2, y2, r2) :

0 ≤ |x2 − s−1
2,r2

(δ−2/3; c, a)| < σρ3δ2/3, y2 = δ−2/3, 0 < r2 ≤ ρδ1/3}.
(3.44)

We also define the exit set

Σout
2 = {(x2, y2, r2) : x2 = δ−1/3, 0 < r2 ≤ ρδ1/3}. (3.45)

The set up is shown in Figure 3.6. We have the following

Lemma 3.3.12. For any (c, a) ∈ Ic×Ia and any sufficiently small σ, ρ, any solution

γ2(t) = (x2(t), y2(t), r2) satisfying γ(0) ∈ Σin
2 will reach Σout

2 and between these two

sections, this solution satisfies x′2(t) > k2 and |y2(t)− s2,r2(x2(t); c, a)| ≤ Ω0.
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Proof. For sufficiently small ρ < δ−1/3r∗2, we can appeal to Lemma 3.3.10 (ii), so that

for any r2 < ρδ1/3, the special solution γ2,r2 does in fact reach Σout
2 with x′2,r2(t) > 2k2

between Σin
2 and Σout

2 . We can also ensure that y′2 > −1/2.

Now consider any solution γ2(t) = (x2(t), y2(t), r2) with γ(0) ∈ Σin
2 . By taking σ

small, we can control how close γ2 and γ2,r2 are in Σin
2 . Thus we can ensure that γ2

reaches Σout
2 and x′2(t) > k2 between Σin

2 and Σout
2 .

By shrinking σ if necessary, it is also possible to control the difference |y2(t) −

s2,r2(x2(t); c, a)|.

3.3.7 Proof of Proposition 3.3.1

The following argument holds for any ρ, σ small enough to satisfy the analysis

in §3.3.4, §3.3.5, and §3.3.6 (the parameters β and δ were already fixed in §3.3.5

and §3.3.6, respectively).

To prove (i), we follow the section Σ+
i , utilizing the results of the analysis in the

previous sections. We consider a solution γ(t) = (x(t), y(t), ε, c, a) which starts in

Σ+
i . As outlined in §3.3.4, in the K1 coordinates, Σ+

i is given by the section Σin
1 . The

section Σin
1 is carried to Σout

1 by the flow and between these two sections, using (3.35)
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we can also compute

dx

dt
=
dr1

dt
x1 + r1

dx1

dt

= r1

(
dr1

dt1
x1 + r1

dx1

dt1

)

> k1ρr
2
1ε1

> k1ε.

(3.46)

As noted in §3.3.6, κ12 (Σout
1 ) ⊆ Σin

2 . Between the two sections Σin
2 and Σout

2 ,

Lemma 3.3.12 gives

dx

dt
= r2

dx2

dt

= r2
2

dx2

dt2

> k2r
2
2

> k2ε
2/3,

(3.47)

and in addition, by the choice of 2Ω0δ
2/3 < β in §3.3.6, we have that κ23 (Σout

2 )

is contained in the set Σin
3 . In chart K3, Lemma 3.3.8 implies that ẋ(t) > k3ε

2/3

between Σin
3 and Σout

3 . Taking k̃ < min{ki : i = 1, 2, 3} gives ẋ(t) > k̃ε between Σin

and Σout, which completes the proof of (i).

It remains to prove the estimates (ii) and (iii) for the function sε(x; c, a). In the

chart K1, S+
0 (c, a) is given by the graph x1 = h+(r1, 0, c, a) = −1 + O(r1), and for

small positive ε, between the sections Σin
1 and Σout

1 , S+
ε (c, a) lies on the manifold

defined by the graph

x1 = h+(r1, ε1, c, a) = h+(r1, 0, c, a) +O(ε1). (3.48)
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We now compute ds0
dx

(x; c, a) and dsε
dx

(x; c, a) as

ds0

dx
(x; c, a) =

dy/dr1

dx/dr1

=
2r1

h+(r1, 0, c, a) + r1∂r1h+(r1, 0, c, a)

= r1 (−2 +O(r1))

dsε
dx

(x; c, a) =
dy/dr1

dx/dr1

=
2r1

h+(r1, 0, c, a) + r1∂r1h+(r1, 0, c, a) +O(ε1)

=
ds0

dx
(x; c, a) +O(r1ε1).

(3.49)

Between Σin
1 and Σout

1 , we have that r1 ≥ (ε/δ)1/3. This implies that between Σin
1

and Σout
1 , we have

dsε
dx

(x; c, a)− ds0

dx
(x; c, a) = O(ε1/3). (3.50)

To estimate |sε(x; c, a)− s0(x; c, a)|, we write

s0(x; c, a) = sε(x; c, a) +

∫ 1

0

ds0

dx
(x+ t(x̄− x); c, a) · (x− x̄) dt, (3.51)

where x̄ = s−1
0 (sε(x; c, a); c, a). By (3.49), we have

ds0

dx
(x; c, a) = r1(−2 +O(r1))

=
r1x1(−2 +O(r1))

h+(r1, ε1, c, a)

= O(x),

(3.52)

by (3.31). Therefore

s0(x; c, a) = sε(x; c, a) +O(x(x− x̄), (x− x̄)2). (3.53)
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By (3.48), we have that (x− x̄) = O(r1ε1) which gives

|sε(x; c, a)− s0(x; c, a)| = O(r2
1ε1)

= O(ε2/3),

(3.54)

where again we used the fact that between Σin
1 and Σout

1 , we have that r1 ≥ (ε/δ)1/3.

In the chart K2, the function sε(x; c, a) is given by −r2
2s2,r2(xr

−1
2 ; c, a). By

Lemma 3.3.10 (ii), we have that

sε(x; c, a) = −r2
2s2,r2(xr

−1
2 ; c, a) = O(ε2/3). (3.55)

and

dsε
dx

(x; c, a) = −r2
ds2,r2

dx
(xr−1

2 ; c, a) = O(ε1/3), (3.56)

between Σin
2 and Σout

2 . Since s0(x; c, a) = O(x2) near x = 0, we have that in this

region in the chart K2, s0(x; c, a) satisfies s0(x; c, a) = O(ε2/3) and ds0
dx

(x; c, a) =

O(ε1/3).

Once the trajectory exits the chart K2 via Σout
2 , we are in a region of positive x

where s0(x; c, a) = ds0
dx

(x; c, a) = 0, and we can determine the dynamics in the chart

K3. From above, we know that in the chart K3, the y-coordinate changes by no

more than O(ε2/3) so that sε(x; c, a) = O(ε2/3). Also, in the chart K3, we have that
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ẋ > k3ε
2/3 which gives

dsε
dx

(x; c, a) =
ẏ

ẋ

≤ gMε

k3ε2/3

= O(ε1/3).

(3.57)

This completes the proof of (ii) and (iii).

3.3.8 Proof of Corollary 3.3.3

Except for the estimates on T, yf , the result follows directly from the statement of

Proposition 3.3.1 and the implicit function theorem. To obtain the estimates on the

time of flight T , we write

T (ε, xi, xf , c, a) =

∫ xf

x̃ε(c,a)+xi

1

ẋ
dx. (3.58)

By Proposition 3.3.1 (i), we have that T = O(ε−1). Since the vector field is smooth,

we can differentiate (3.58) and using Proposition 3.3.1 (i), we obtain the required

bounds on the derivatives of T with respect to xi, xf , c, a.

To obtain yf = O(xi), we look at the evolution of ỹ = y − sε(x; c, a). We first

note that since the graph y = sε(x; c, a) defines a solution to (3.14), we can plug in

this solution to get

d

dt
sε(x; c, a) = εg(x, sε(x; c, a), ε, c, a). (3.59)
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Plugging y = ỹ + sε(x; c, a) into (3.14) and using (3.59) gives

˙̃y = ε (g(x, ỹ + sε(x; c, a), ε, c, a)− g(x, sε(x; c, a), ε, c, a))

− s′ε(x; c, a)ỹ (1 +O(ε, x, sε(x; c, a), ỹ))

=

∫ 1

0

εgy(x, sỹ + sε(x; c, a), ε, c, a)ỹ ds

− s′ε(x; c, a)ỹ (1 +O(ε, x, sε(x; c, a), ỹ)) ,

(3.60)

and hence ỹ solves a differential equation of the form

˙̃y = H(x, ỹ, ε; c, a)ỹ, (3.61)

where

H(x, ỹ, ε; c, a) ≤ H1ε, (3.62)

for some constant H1. Therefore ỹ can grow with rate at most O(ε), and we can

deduce that

|yf | = |ỹ(T )| ≤ |ỹ(0)| eH1εT , (3.63)

which, by using the bound on T above, we can reduce to

|yf | ≤ H2 |ỹ(0)| , (3.64)
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for some constant H2. To determine ỹ(0), we write

|ỹ(0)| = |sε(xε(c, a) + xi; c, a)− sε(xε(c, a); c, a)|

=

∣∣∣∣
∫ 1

0

dsε
dx

(xε(c, a) + sxi; c, a) · xi ds
∣∣∣∣

≤ gM

k̃
|xi| ,

(3.65)

where we used (3.19).

To obtain the bound on Dyf , we integrate (3.60) to obtain

yf = ỹ(T ) =

∫ T (ε,xi,xf ,c,a)

0

∫ 1

0

εgy(x, sỹ + sε(x; c, a), ε, c, a)ỹ(t) ds dt. (3.66)

Using the fact that the function g is smooth and the estimates on T and DT above,

we obtain the desired estimate for the first derivative of yf with respect to xi, xf , c, a.

The bound on zi comes directly from the equations, but to ensure that zi and its

derivatives are exponentially small in 1/ε, it is necessary to find a lower bound for

the time of flight T . We now write

T (ε, xi, xf , c, a) =

∫ yf

−ρ2

1

ẏ
dy

≥ 1

gMε

(
yf + ρ2

)
.

(3.67)

We note that by Proposition 3.3.1 (ii) and the analysis above using the fact that

|xi| ≤ σε, we have yf = s0(xf ; c, a) + O(ε2/3). Since xf ∈ [−x̄f , x̄f ], we have

s0(xf ; c, a) ≥ s0(−x̄f ; c, a). So we can deduce the existence of τ0 such that for all

sufficiently small x̄f and for all sufficiently small ε,

T (ε, xi, xf , c, a) ≥ τ0

ε
. (3.68)
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3.4 Tying together the exchange lemma and fold

analysis

3.4.1 Setup and transversality

To find connections between the strong unstable manifold Wu
ε (0; c, a) of the origin

and the stable manifold Ws,`
ε (c, a) of the left segment of the slow manifold, we will

need two transversality results. The first describes transversality of the manifolds

Wu
0 (0; c, a) and Ws(Mr

0(c, a)) with respect to varying the wave speed parameter c.

Proposition 3.4.1. There exists ε0 > 0 and µ > 0 such that for each a ∈ Ia

and ε ∈ [0, ε0], the manifold
⋃
c∈IcWu

ε (0; c, a) intersects
⋃
c∈IcWs,r

ε (c, a) transversely

in uvwc-space with the intersection occurring at c = c̃(a, ε) for a smooth function

c̃ : Ia × [0, ε0]→ Ic where c̃(a, ε) = c∗(a)− µε+O(ε(|a|+ ε)).

Proof. We aim to show that the manifold defined by
⋃
c∈IcWu

0 (0; c, a) intersects
⋃
c∈IcWs(Mr

0(c, a)) transversely in uvwc-space at c = c∗(a) and that this transverse

intersection persists for ε ∈ [0, ε0]. To do this, we note that for each a ∈ Ia, there is an

intersection of these manifolds occurring along the Nagumo front ϕf for c = c∗(a), ε =

0 in the plane w = 0. It suffices to show that the intersection at (c, a, ε) = (c∗(0), 0, 0)

is transverse with respect to varying the wave speed c, so that for all sufficiently small

a ∈ Ia and ε > 0, we can solve for an intersection at c = c(a, ε). This amounts to a

Melnikov computation along the Nagumo front ϕf .
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For each a ∈ Ia, we consider the planar system

u̇ = v

v̇ = cv − f(u),

(4.1)

obtained by considering (1.2) with w = ε = 0. As stated above, for (c, a) = (c∗(0), 0),

this system possesses a heteroclinic connection ϕf (t) = (uf (t), vf (t)) (the Nagumo

front) between the critical points (u, v) = (0, 0) = p0 and (u, v) = (1, 0) = p1 that lies

in the intersection of Wu(p0) and Ws(p1). We now compute the distance between

Wu(p0) and Ws(p1) to first order in c − c∗(0). We consider the adjoint equation of

the linearization of (4.1) about the Nagumo front ϕf given by

ψ̇ =




0
df

du
(uf (t))

−1 −c∗(0)


ψ. (4.2)

Let ψf be a nonzero bounded solution of (4.2), and let F0 denote the right hand side

of (4.1). Then

M c
f =

∫ ∞

−∞
DcF0(ϕf (t)) · ψf (t) dt (4.3)

measures the distance between Wu(p0) and Ws(p1) to first order in c− c∗(0). Thus

it remains to show that M c
f is nonzero. Up to multiplication by a constant, we have

that ψf (t) = e−c
∗(0)t(−v̇f (t), u̇f (t)) = e−c

∗(0)t(−v̇f (t), vf (t)) which gives

M c
f =

∫ ∞

−∞
e−c

∗(0)tvf (t)
2 dt > 0, (4.4)

as required.

Similarly, we may also compute the distance betweenWu(p0) andWs(p1) to first
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order in a as

Ma
f =

∫ ∞

−∞
DaF0(ϕf (t)) · ψf (t) dt

=

∫ ∞

−∞
e−c

∗(0)tvf (t)uf (t)(1− uf (t)) dt.
(4.5)

Using the explicit expressions

uf (t) =
1

2

(
tanh

(
1

2
√

2
t

)
+ 1

)

vf (t) =
1√
2
uf (t)(1− uf (t)),

for the Nagumo front for a = 0 from §2.2, we see that the Nagumo front satisfies the

relation vf (t) = 1√
2
uf (t)(1− uf (t)). Hence

Ma
f =
√

2M c
f . (4.6)

To understand how the intersection of Wu
0 (0; c∗(0), 0) and Ws(Mr

0(c∗(0), 0))

breaks as we vary ε, we now consider the full three-dimensional system (1.2)

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw).

Note that the function (uf (t), vf (t), 0) obtained by appending w = 0 to the Nagumo

front ϕf (t) is a solution to this system for ε = a = 0 and c = c∗(0). We consider the
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adjoint equation of the linearization of (1.2) about this solution given by

Ψ̇ =




0
df

du
(uf (t)) 0

−1 −c∗(0) 0

0 −1 0




Ψ. (4.7)

The space of solutions to (4.7) that grow at most algebraically is two-dimensional

and spanned by

Ψ1 =

(
−e−c∗(0)tv̇f (t), e

−c∗(0)tu̇f (t),

∫ t

0

−e−c∗(0)svf (s) ds

)
(4.8)

and Ψ2 = (0, 0, 1). The function

Ψ =

(
−e−c∗(0)tv̇f (t), e

−c∗(0)tu̇f (t),

∫ ∞

t

e−c
∗(0)svf (s) ds

)
(4.9)

is the unique such solution to (4.7) (up to multiplication by a constant) satisfying

Ψ(t) → 0 as t → ∞. Let F1 denote the right hand side of (1.2); then by Melnikov

theory, we can describe the distance between Wu
ε (c, a) and Ws,r

ε (c, a) to first order

in ε by the integral:

M ε
f =

∫ ∞

−∞
DεF1(uf (t), vf (t), 0) ·Ψ(t) dt

=

∫ ∞

−∞

(∫ ∞

t

e−c
∗(0)svf (s) ds

)
uf (t) dt > 0.

(4.10)

The distance function d(c, a, ε) which defines the separation betweenWu
ε (0; c, a) and

Ws,r
ε (c, a) can now be expanded as

d(c, a, ε) = M c
f (c− c∗(0) +

√
2a) +M ε

fε+O
(
(|c− c∗(0)|+ a+ ε)2) . (4.11)

To find an intersection betweenWu
ε (0; c, a) andWs,r

ε (c, a), we now solve the equation
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d(c, a, ε) = 0 for c and obtain c = c̃(a, ε) = c∗(a) − µε + O(ε(|a| + ε)) where µ :=

M ε
f/M

c
f > 0 due to (4.4) and (4.10), and we used the fact that

√
2a = c∗(0)− c∗(a).

The lack of O(a2) terms in the expression for c̃(a, ε) is due to the fact that for ε = 0

the intersection occurs at c = c∗(a).

The second result needed is transversality of Ws(M`
0(c, a)) and Wu(Mr

0(c, a))

along the back for a = 0. The problem here is that Mr
0(c, a) is not actually nor-

mally hyperbolic at the fold and therefore Fenichel theory does not ensure smooth

persistence of the manifold Wu(Mr
0(c, a)) in this region for ε > 0: we will have to

appeal to results from §3.3 to obtain the necessary transversality.

To start with, in the neighborhood Of , in the center manifold near the fold

point, we extend the right branch Mr
0(c, a) of the critical manifold by concatenat-

ing it with the fast unstable fiber leaving the fold point (see the description of the

function s0(x; c, a) in §3.3.3) and call this new manifold Mr,+
0 (c, a). It now makes

sense to define Wu(Mr,+
0 (c, a)) as the union of the strong unstable fibers of this sin-

gular trajectory. The advantage is now that Proposition 3.3.1 shows thatMr,+
0 (c, a)

persists as a trajectory Mr,+
ε (c, a) which is C1-O(ε1/3) close to Mr,+

0 (c, a). We can

then define Wu,r
ε (c, a) to be the union of the strong unstable fibers of this perturbed

solution. We are ready to state the following result.

Proposition 3.4.2. For each (c, a) ∈ Ic × Ia, the manifolds Ws(M`
0(c, a)) and

Wu(Mr,+
0 (c, a)) intersect transversely in uvwc-space along the Nagumo back ϕb, and

this transverse intersection persists for ε ∈ [0, ε0]. Furthermore, for each (c, a, ε) ∈

Ic × Ia × [0, ε0], the manifold Ws,`
ε (c, a) intersects Wu,r

ε (c, a) transversely.

Proof. We note that past the fold point,Mr,+
0 (c, a) lies in a plane of constant w since

in this region Mr,+
0 (c, a) is described by the fast ε = 0 flow. Thus we proceed as in
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the proof of Proposition 3.4.1, though now we show transversality of the manifolds

Ws(M`
0(c, a)) and Wu(Mr

0(c, a)) with respect to w, which is a parameter for the

fast ε = 0 flow.

It suffices to prove transversality at (ε, a) = (0, 0). By the C1 dependence of the

manifolds with respect to a, this transversality persists for a ∈ Ia. The fact that

this transversality persists for small ε > 0 follows from the C1-O(ε1/3) closeness of

Mr,+
ε (c, a) andMr,+

0 (c, a). This implies thatWu(Mr,+
0 (c, a)) andWu,r

ε (c, a) are also

C1-O(ε1/3) close.

To continue, we consider the planar system

u̇ = v

v̇ = cv − f(u) + w,

(4.12)

obtained by considering (1.2) with a = ε = 0. For c = c∗(0) and w = w∗(0), this

system possesses a heteroclinic connection ϕb(t) = (ub(t), vb(t)) (the Nagumo back)

between the critical points (u, v) = (u1, 0) = q1 and (u, v) = (u0, 0) = q0 where u0

and u1 are the smallest and largest zeros of w∗(0)−f(u), respectively. That is, there

exists an intersection of Wu(q1) and Ws(q0) defined by the connection ϕb.

Thus the manifolds Ws(M`
0(c∗(0), 0)) and Wu(Mr

0(c∗(0), 0)) intersect in the full

system along the Nagumo back ϕb. SinceMr,+
0 (c∗(0), 0) lies in the plane w = w∗(0)

past the fold point (and thus so do its fast fibers since the fast flow is confined to

w = const planes), we have thatWu(Mr
0(c∗(0), 0)) is tangent to the plane w = w∗(0)

along ϕb. In (4.12), from regular perturbation theory, the stable manifold of the

leftmost equilibrium (given by the trajectory ϕb at w = w∗(0)) breaks smoothly in

w and thus Ws(M`
0(c∗(0), 0)) is transverse to planes w = const; in particular this

gives the necessary transversality of Ws(M`
0(c∗(0), 0)) and Wu(Mr

0(c∗(0), 0)).
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We therefore obtain the desired transversality of Ws,`
ε (c, a) and Wu,r

ε (c, a) for all

(c, a, ε) ∈ Ic × Ia × [0, ε0].

3.4.2 Exchange lemma

In this section we use the exchange lemma of [51] to track the manifold Wu
ε (0; c, a)

near the right branch Mr
ε(c, a) of the slow manifold up to a fixed neighborhood of

the fold point. The analysis of §3.3 defines a fixed neighborhood Of of the fold point

in uvw-coordinates for (c, a) ∈ Ic × Ia in which the flow is well understood. The

neighborhood Of corresponds to the neighborhood Uf in xyzca-coordinates in which

the section Σ+
i defines points along trajectories satisfying the desired estimates.

We may assume that the manifoldMr
ε(c, a) extends into this neighborhood past

the section Σ+
i but ends before the fold (in Uf note thatMr

ε(c, a), where defined, coin-

cides with S+
ε (c, a) up to errors exponentially small in 1/ε due to the non-uniqueness

of the center manifold in §3.3). HereMr
ε(c, a) is normally hyperbolic, and thus there

exists a Cr+1 Fenichel normal form for the equations in a neighborhood ofMr
ε(c, a):

X ′ = −A(X, Y, Z, c, a, ε)X

Y ′ = B(X, Y, Z, c, a, ε)Y

Z ′ = ε(1 + E(X, Y, Z, c, a, ε)XY )

c′ = 0

a′ = 0,

(4.13)

where the functions A and B are positive and bounded away from 0 uniformly in all

variables. These equations are valid in a neighborhood Ue of Mr
ε(c, a), c ∈ Ic, a ∈

Ia which we assume to be given by X, Y ∈ (−∆,∆) for some small ∆ > 0 and
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(Z, c, a) ∈ V = (−∆, Z0 +∆)× Ic× Ia for appropriate Z0 > ∆. In Ue, for each c, a, ε,

the manifold Mr
ε(c, a) is given by X = Y = 0. Similarly the manifolds Wu,r

ε (c, a)

and Ws,r
ε (c, a) are given by X = 0 and Y = 0 respectively. We denote the change

of coordinates from (X, Y, Z, c, a) to the (u, v, w, c, a) coordinates by Φe : Ue → Oe

where Oe is the corresponding neighborhood of Mr
ε(c, a) in (u, v, w)-coordinates for

(c, a) ∈ Ic× Ia. Since Oe is by construction a neighborhood of a normally hyperbolic

segment ofMr
ε(c, a) which extends into Of , there is an overlap of the neighborhoods

Oe and Of where the fold analysis is valid. We now comment on the constants ∆, Z0:

sinceMr
ε(c, a) extends past the section Σ+

i in the neighborhood Uf , for ∆ sufficiently

small, we can think of Z0 as being the height in the Ue coordinates at whichMr
ε(c, a)

hits Σ+
i for (c, a, ε) = (c∗(0), 0, 0); see §3.4.3 for details.

We note that due to the non-uniqueness of the center manifold in §3.3, the

coordinate descriptions of the manifolds Mr
ε(c, a), Wu,r

ε (c, a), and Ws,r
ε (c, a) in the

two neighborhoods Oe and Of are only equal up to errors exponentially small in 1/ε.

Since these errors are taken into account in the analysis below, for simplicity we will

use the same notation for these manifolds in the different coordinate systems.

For each ε ∈ [0, ε0] we define the two-dimensional incoming manifold

N in
ε =

( ⋃

c∈Ic,a∈Ia

Wu
ε (0; c, a)

)
∩ {X = ∆}, (4.14)

which, under the flow of (4.13) becomes a manifold N∗ε of dimension three. Define

A = {(Y, Z, a) : Y ∈ (−∆,∆), Z ∈ (Z0 −∆, Z0 + ∆), a ∈ Ia}. (4.15)

The necessary transversality of the incoming manifold N in
ε with {Y = 0} is given by

Proposition 3.4.1. The generalized exchange lemma now gives the following
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Theorem 3.3 ([51, Theorem 3.1]). There exist functions X̃, W̃ : A × [0, ε0] → R

which satisfy

(i) For ε > 0, the set

{(X, Y, Z, a, c) : (Y, Z, a) ∈ A, X = X̃(Y, Z, a, ε), c = c̃(a, ε) + W̃ (Y, Z, a, ε)}

is contained in N∗ε .

(ii) X̃(Y, Z, a, 0) = 0, W̃ (Y, Z, a, 0) = 0, W̃ (0, Z, a, ε) = 0

(iii) There exists q > 0 such that |DjX̃|, |DjW̃ | = O(e−q/ε) for any 0 ≤ j ≤ r.

We comment on the interpretation of Theorem 3.3. For each choice of a, height

Z and unstable component Y lying in A, provided the offset c − c̃(a, ε) is adjusted

by the quantity W̃ (Y, Z, a, ε), the theorem guarantees a solution which starts in N in
ε

which hits the point (X, Y, Z, a, c) where X = X̃(Y, Z, a, c). In (ii), the property

W̃ (0, Z, a, ε) = 0 refers to the fact that for c = c̃(a, ε), the manifold Wu
ε (0; c, a) in

fact lies in the stable foliation Y = 0, which was proved in Proposition 3.4.1. The

final properties X̃(Y, Z, a, 0) = 0, W̃ (Y, Z, a, 0) = 0, and property (iii) state that the

functions X̃, W̃ → 0 uniformly in the limit ε → 0, and that this convergence is in

fact exponential in derivatives up to order r.

3.4.3 Setup in Ue

We will use Theorem 3.3 to describe the flow up to a neighborhood of the fold point,

then we will use the results of §3.3. We first place a section Σin in the neighborhood
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Uf of the fold point which we define by

Σin ={(x, y, z, c, a, ε) ∈ Uf :

y = −ρ2, |x− x̃0(c∗(0), 0)| ≤ ∆′, z ∈ [−∆′,∆′], (c, a, ε) ∈ I},
(4.16)

for some small choice of ∆′ where I = Ic × Ia × [0, ε0]. As described above, there

is an of overlap of the regions described by Uf and the neighborhood Ue where the

Fenichel normal form is valid. We denote the change of coordinates between these

neighborhoods by Φef : Φ−1
e (Oe ∩ Of ) ⊆ Ue → Uf where Φef = Φ−1

f ◦ Φe. From the

construction the section Φ−1
ef (Σin) will be given by a section in XY Z-space transverse

to the sets X = const and Y = const. We can therefore represent Φ−1
ef (Σin) in

XY Z-space as Φ−1
ef (Σin) = {(X, Y, Z, c, a, ε) : Z = ψ(X, Y, c, a, ε)} for some smooth

function

ψ : [−∆,∆]× [−∆,∆]× I → [−∆ + Z0,∆ + Z0], (4.17)

where we assume that Z0 has been chosen so that ψ(0, 0, c∗(0), 0, 0) = Z0. It is

important to note that since Mr
ε(c, a) and S+

ε (c, a) are equal up to exponentially

small errors in the Uf coordinates, Φef(0, 0, Z, c, a, ε) maps onto S+
ε (c, a) up to errors

exponentially small in 1/ε. Figure 3.7 shows the setup as well as the passage of a

trajectory according to the exchange lemma. Figure 3.8 shows the continuation of

this trajectory past the fold. The idea is to show that for each a ∈ Ia and each

ε ∈ (0, ε0), we can find c such that this solution connects Wu
ε (0; c, a) to Ws,`

ε (c, a) as

shown.
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Mr
ǫ

Wu
ǫ (0)

X Y

Z

Figure 3.7: Shown is the set up of the exchange lemma (Theorem 3.3).

Mr
ǫ

Mr
0

x y

Ws,ℓ
ǫ

Σin

Figure 3.8: Shown is the flow near the fold point.
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3.4.4 Entering Uf via the Exchange lemma

We now use the exchange lemma to solve for solutions which cross Φ−1
ef (Σin). For

each Y ∈ [−∆,∆], a ∈ Ia, and ε ∈ (0, ε0], we can find a solution which reaches the

point

(X, Y, ψ(X, Y, c, a, ε), c, a) ∈ Φ−1
ef (Σin) (4.18)

provided we can solve

X = X̃(Y, ψ(X, Y, c, a, ε), a, ε)

c = c̃(a, ε) + W̃ (Y, ψ(X, Y, c, a, ε), a, ε)

(4.19)

in terms of (Y, a, ε) where X̃, W̃ are the functions from Theorem 3.3. Using the fact

that ψ is smooth and that X̃, W̃ and their derivatives are O(e−q/ε), we can solve by

the implicit function theorem for (X, c− c̃(a, ε)) near (0, 0) in terms of the variables

(Y, a, ε) to obtain

X = X∗(Y, a, ε)

c = c̃(a, ε) +W ∗(Y, a, ε),

(4.20)

where the smooth functions X∗,W ∗ and their derivatives are O(e−q/ε), where we

may need to take q smaller. To sum up, we have just shown the following:

Proposition 3.4.3. For each Y ∈ [−∆,∆], a ∈ Ia, and ε ∈ (0, ε0], we can find a

solution which reaches the point

(X, Y, ψ(X, Y, c, a, ε), c, a) ∈ Φ−1
ef (Σin), (4.21)

where X = X∗(Y, a, ε) and c = c̃(a, ε) +W ∗(Y, a, ε). The functions X∗ and W ∗ and
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their derivatives are O(e−q/ε).

3.4.5 Connecting to Ws,`
ε (c, a): analysis in Uf

What we conclude from Proposition 3.4.3 is that for any sufficiently small choice of

(Y, a, ε) we can find a solution which enters a neighborhood of the fold at a distance

Y from Ws,r
ε (c, a) along the unstable fibers provided c is adjusted from c̃(a, ε) by

O(e−q/ε). In addition the distance from Wu,r
ε (c, a) is O(e−q/ε). By applying the

smooth transition map Φef, it is convenient to rewrite Proposition 3.4.3 in the Uf

coordinates as shown in the following.

Proposition 3.4.4. For each z ∈ [−∆′,∆′], a ∈ Ia, and ε ∈ (0, ε0], we can find a

solution which reaches the point

(x,−ρ2, z, c, a) ∈ Σin, (4.22)

where x = x̃ε(c, a) + x∗(z, a, ε) and c = c̃(a, ε) + w∗(z, a, ε). The functions x∗, w∗

and their derivatives are O(e−q/ε).

Remark 3.4.5. Though the manifolds Ws,r
ε (c, a) and Wu,r

ε (c, a) are not unique, the

errors we incur by transforming to the Uf coordinates are exponentially small in 1/ε

and can be absorbed in the functions x∗, w∗ without changing the result.

We will use this result along with the center manifold analysis of §3.3 to find

such a solution for each (a, ε) which connects to Ws,`
ε (c, a). We first determine the

location of Ws,`
ε (c, a) in the neighborhood Uf . From Proposition 3.4.2, we know

that Ws(M`
0(c∗(0), 0)) intersects Wu(Mr,+

0 (c∗(0), 0)) transversely for ε = 0 along

the Nagumo back ϕb, and this intersection persists for (c, a, ε) ∈ Ic × Ia × (0, ε0).
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This means thatWs,`
ε (c, a) will transversely intersect the manifoldWu,r

ε (c, a) which is

composed of the union of the unstable fibers of the continuation of the slow manifold

Mr,+
ε (c, a) found in §3.3. We therefore place an exit section Σout defined by

Σout = {(x, y, z, c, a, ε) ∈ Uf : z = ∆′}. (4.23)

For (c, a, ε) ∈ Ic × Ia × (0, ε0), the intersection of Ws,`
ε (c, a) and Wu,r

ε (c, a) occurs at

a point

(x, y, z, c, a, ε) = (x`(c, a, ε), sε(x`(c, a, ε); c, a),∆′, c, a, ε) ∈ Σout, (4.24)

and thus we may expand Ws,`
ε (c, a) in Σout as

(x, y − sε(x; c, a)) = (x`(c, a, ε) +O(ỹ, ε), ỹ), ỹ ∈ [−∆y,∆y], (4.25)

for some small ∆y. Now using Corollary 3.3.3, we aim to find a solution to match

with Ws,`
ε (c, a) at z = ∆′. From Corollary 3.3.3 for each (ε, c, a, xi, xf ), we get a

solution ϕ(t; ε, xi, xf , c, a) and time of flight T (ε, xi, xf , c, a) satisfying

ϕ(0; ε, xi, xf , c, a) = (x̃ε(c, a) + xi,−ρ2, zi, ε)

ϕ(T ; ε, xi, xf , c, a) = (xf , sε(xf ; c, a)− yf ,∆′, ε).
(4.26)

Thus finding a connection betweenWu
ε (0; c, a) andWs,`

ε (c, a) for a given (a, ε) amounts
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to solving the following system of equations

xi = x∗(z, a, ε)

c = c̃(a, ε) + w∗(z, a, ε)

xf = x`(c, a, ε) +O(ỹ, ε)

yf (xi, xf , ε, a, c) = ỹ

zi(∆
′, xi, xf , ε, a, c) = z,

(4.27)

for all variables in terms of (a, ε).

We start by substituting xi = x∗(z, a, ε) into the equation for ỹ. Using the fact

that x∗(z, a, ε) = O(e−q/ε) and the estimates yf = O(xi) and Dyf = O(xi/ε) from

Corollary 3.3.3, we can solve for ỹ = ỹ(z, a, ε) by the implicit function theorem

where ỹ, Dỹ = O(e−q/ε), where q may need to be taken smaller. We now substitute

everything into the equation for z. Using the estimates on zi from Corollary 3.3.3

and the estimates on ỹ above, we can then solve for z = z(a, ε) (and subsequently

all other variables) by the implicit function theorem.

In particular, we note that the wave speed c is given by

c(a, ε) = c̃(a, ε) +O(e−q/ε)

= c∗(a)− µε+O(ε(|a|+ ε)),

(4.28)

where µ > 0 is the constant from Proposition 3.4.1, and we have absorbed the

exponentially small terms in the O(ε2) term.
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3.5 Convergence of M l
ε(c, a) to the equilibrium

The analysis of §3.3 and §3.4 shows that for each a ∈ Ia and for any sufficiently small

ε, there exists a wave speed c such that the manifoldWu
ε (0; c, a) intersectsWs,`

ε (c, a).

Upon entering a neighborhood of the origin, this trajectory will be exponentially close

to the perturbed slow manifold M`
ε(c, a). It remains to show that M`

ε(c, a) and as

well as nearby trajectories on Ws,`
ε (c, a) in fact converge to the equilibrium at the

origin. This result is not immediate, as for a = 0, the origin is on the lower left

knee where M`
0(c, a) is not normally hyperbolic. In this section, a center manifold

analysis of the origin produces conditions on (a, ε) which ensure this result.

3.5.1 Preparation of equations

To study the stability properties of the equilibrium at (u, v, w) = (0, 0, 0) of (1.2) for

small ε, a, we append equations for a and ε to (1.2) and obtain

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw)

ȧ = 0

ε̇ = 0.

(5.1)

For a = ε = 0, the origin coincides with the lower left knee on the critical manifold.

System (5.1) has the family of equilibria (u, 0, f(u), a, 0) where u varies near 0. We

are interested in the lower left knee of w = f(u) as a function of a. For (c, a) ∈ Ic×Ia,
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the knee is given by the family (u†(a), 0, w†(a), a, 0) where

u†(a) =
1

3

(
a+ 1−

√
a2 − a+ 1

)

w†(a) = f(u†(a)).

(5.2)

The linearization of (5.1) about the knee at (a, ε) = 0 is given by

J =




0 1 0 0 0

0 c 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




. (5.3)

There is one positive eigenvalue λ = c with eigenvector (1, c, 0, 0, 0) and a quadruple

zero eigenvalue. By making the coordinate transformation

z1 = u− u† − v

c
− w − w†

c2

z2 = −w − w
†

c

z3 =
v

c
+
w − w†
c2

,

(5.4)
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we arrive at the system

ż1 = z2 +
1

c

(√
a2 − a+ 1

)
(z1 + z3)2 − 1

c
(z1 + z3)3

− ε

c2
(z1 + z3 + cγz2 + u† − γw†)

ż2 = −ε
c
(z1 + z3 + cγz2 + u† − γw†)

ż3 = cz3 −
1

c

(√
a2 − a+ 1

)
(z1 + z3)2 +

1

c
(z1 + z3)3

+
ε

c2
(z1 + z3 + cγz2 + u† − γw†)

ȧ = 0

ε̇ = 0,

(5.5)

which, for ε = 0, is in Jordan normal form for the three dynamic variables (z1, z2, z3).

To understand the dynamics near the fold point, we separate the nonhyperbolic dy-

namics which occur on a four-dimensional center manifold. In a small neighborhood

of the fold point, this manifold can be represented as a graph

z3 = F (z1, z2, ε)

= β0z1 + β1z2 + β2z
2
1 + O[ε, z1z2, z

2
2 , z

3
1 ].

(5.6)

We can directly compute the coefficients βi, and we find that

β0 = β1 = 0, β2 =
1

c2

(√
a2 − a+ 1

)
=

1

c2
+O(a). (5.7)

We now make the following change of coordinates

x =
1

c1/2

(√
a2 − a+ 1

)
z1

y = −
(√

a2 − a+ 1
)
z2

α =
a

2c1/2
,

(5.8)
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and rescale time by c−1/2 which gives the flow on the center manifold in the coordi-

nates (x, y, α, ε) as

ẋ = −y (1 +O(x, y, α, ε)) + x2 (1 +O(x, y, α, ε)) + εO(x, y, α, ε)

ẏ = ε [x (1 +O(x, y, α, ε)) + α (1 +O(x, y, α, ε)) +O(y)]

α̇ = 0

ε̇ = 0.

(5.9)

Making one further coordinate transformation in the variable z3 to straighten out

the unstable fibers, we arrive at the full system

ẋ = −y + x2 +O(ε, xy, y2, x3)

ẏ = ε [x (1 +O(x, y, α, ε)) + α (1 +O(x, y, α, ε)) +O(y)]

ż = z
(
c3/2 +O(x, y, z, ε)

)

α̇ = 0

ε̇ = 0.

(5.10)

We note that the (x, y) coordinates are in the canonical form for a canard point

(compare [38]), that is,

ẋ = −yh1(x, y, α, ε, c) + x2h2(x, y, α, ε, c) + εh3(x, y, α, ε, c)

ẏ = ε (xh4(x, y, α, ε, c) + αh5(x, y, α, ε, c) + yh6(x, y, α, ε, c))

ż = z
(
c3/2 +O(x, y, z, ε)

)

α̇ = 0

ε̇ = 0,

(5.11)
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where we have

h3(x, y, α, ε, c) = O(x, y, α, ε)

hj(x, y, α, ε, c) = 1 +O(x, y, α, ε), j = 1, 2, 4, 5.

(5.12)

We have now separated the hyperbolic dynamics (given by the z-coordinate) from

the nonhyperbolic dynamics which are isolated on a four-dimensional center manifold

parameterized by the variables (x, y, ε, α) on which the origin is a canard point in

the sense of [38]. Geometrically, in a singularly perturbed system a canard point

is characterized by a folded critical manifold with one attracting and one repelling

branch and a singular “canard” trajectory traveling down the attracting branch and

continuing up the repelling branch (see Figure 3.9). Such points are associated with

“canard explosion” phenomena in which small scale oscillations near the equilibrium

undergo a rapid transformation in an exponentially small region in parameter space

and emerge as large relaxation cycles [39]. We note that Figure 5.4 in §5.2 provides

a visualization of what such a canard explosion looks like, though in this case the

solutions depicted are homoclinic pulse solutions rather than periodic orbits; we refer

to §5.2 for a more detailed discussion.

3.5.2 Tracking M l
ε(c, a) close to the canard point - blowup

and rescaling

From Fenichel theory, we know that away from the canard point, the left branch

M l
0(c, a) of the critical manifold perturbs to a slow manifold M l

ε(c, a) for small ε > 0

(see Figure 3.9). This slow manifold is unique up to errors exponentially small in

1/ε; as the preceding analysis is valid for any such choice of M l
ε(c, a), we may now

fix a choice of M l
ε(c, a) which lies in the center manifold z = 0. In addition, there
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Mℓ
0Mℓ

ǫ

∆in

x

y

Figure 3.9: Shown is the flow near the canard point for ε = α = 0. Away from the canard point,
the left branch M l

0(c, a) of the critical manifold perturbs smoothly to a slow manifold M l
ε(c, a) for

small ε > 0.

is a stable equilibrium p0 = p0(α) for the slow flow on M l
0(c, a) for α > 0. The goal

of this section is to show that under suitable conditions on ε and α, p0 persists as

a stable equilibrium pε(α), and the perturbed slow manifold M l
ε(c, a) and nearby

trajectories converge to pε.

To do this, the idea will be to track a section ∆in(ρ, σ) = {(x, y) : |x + ρ| ≤

σρ, y = ρ2} (see Figure 3.9) for some small ρ, σ > 0 and show that all trajectories

crossing this section converge to the equilibrium. We have the following

Proposition 3.5.1. Consider the section ∆in(ρ, σ) for the system (5.11) in the cen-

ter manifold z = 0. For each K > 0, there exists ρ̃, σ̃, ε̃, α̃ such that for (ρ, σ, ε, α) ∈

D and c ∈ Ic, there is a stable equilibrium for (5.11), where D is given by

D ={(ρ, σ, ε, α) :

ρ ∈ (0, ρ̃), σ ∈ (0, σ̃), 0 < ε < ρ2ε̃, 0 < α < ρα̃, 0 < ε < Kα2}.
(5.13)

Furthermore, under these conditions, all trajectories passing through ∆in(ρ, σ) con-

verge to the equilibrium.

From this we have the following
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Corollary 3.5.2. For each K > 0, there exists a choice of the parameters ρ, σ, a0, ε0

such that for all (c, a, ε) ∈ Ic × (0, a0) × (0, ε0) satisfying ε < Ka2, the manifold

M`
ε(c, a) crosses the section ∆in(ρ, σ) and thus converges to the equilibrium.

Remark 3.5.3. The aim of Corollary 3.5.2 is to prove convergence of the tails of

the pulses constructed in §3.3 and §3.4. Thus far, we have found an intersection of

Wu
ε (0; c, a) with Ws,`

ε (c, a); this trajectory will therefore be exponentially attracted to

the perturbed slow manifoldM`
ε(c, a) upon entering a neighborhood of the origin. The

manifold Ws,`
ε (c, a), however, is only unique up to errors exponentially small in 1/ε,

though the justification for the intersection holds for any such choice of Ws,`
ε (c, a).

Therefore, we may now fixWs,`
ε (c, a) to be the manifold formed by evolving the section

∆in(ρ, σ) in backwards time in the center manifold z = 0.

We now fix an arbitrary K > 0. The section ∆in(ρ, σ) will be tracked using

blowup methods as in [38]. Restricting to the center manifold z = 0, we proceed as

in §3.3, though now the blow up transformation is given by

x = r̄x̄, y = r̄2ȳ, α = r̄ᾱ, ε = r̄2ε̄, (5.14)

defined on the manifold Bc = S2× [0, r̄0]× [−ᾱ0, ᾱ0] for sufficiently small r̄0, ᾱ0 with

(x̄, ȳ, ε̄) ∈ S2. There are three relevant coordinate charts which will be needed for

the analysis of the flow on the manifold Bc. Keeping the same notation as in [38]

and [39], the first is the chart K1 which uses the coordinates

x = r1x1, y = r2
1, α = r1α1, ε = r2

1ε1, (5.15)

the second chart K2 uses the coordinates

x = r2x2, y = r2
2y2, α = r2α2, ε = r2

2, (5.16)
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and the third chart K4 uses the coordinates

x = r4x4, y = r2
4y4, α = r4, ε = r2

4ε4. (5.17)

With these three sets of coordinates, a short calculation gives the following

Lemma 3.5.4. The transition map κ12 : K1 → K2 between the coordinates in K1

and K2 is given by

x2 =
x1

ε
1/2
1

, y2 =
1

ε1

, α2 =
α1

ε
1/2
1

, r2 = r1ε
1/2
1 , for ε1 > 0, (5.18)

and the transition map κ14 : K1 → K4 between the coordinates in K1 and K4 is given

by

x4 =
x1

α1

, y4 =
1

α2
1

, ε4 =
ε1

α2
1

, r4 = r1α1, for α1 > 0. (5.19)

3.5.3 Dynamics in K1

Here we outline the relevant dynamics in K1 as described in [38]. After desingular-

izing the equations in the new variables, we arrive at the following system

x′1 = −1 + x2
1 −

1

2
ε1x1F (x1, r1, ε1, α1, c) +O(r1)

r′1 =
1

2
r1ε1F (x1, r1, ε1, α1, c)

ε′1 = −ε2
1F (x1, r1, ε1, α1, c)

α′1 = −1

2
α1ε1F (x1, r1, ε1, α1, c),

(5.20)
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where

F (x1, r1, ε1, α1, c) = x1 + α1 +O(r1). (5.21)

Here we collect a few results from [38]. The hyperplanes r1 = 0, ε1 = 0, α1 = 0 are

all invariant. Their intersection is the invariant line l1 = {(x1, 0, 0, 0) : x1 ∈ R},

and the dynamics on l1 evolve according to x′1 = −1 + x2
1. There are two equilibria

pa = (−1, 0, 0, 0) and pr = (1, 0, 0, 0). The equilibrium we are interested in, pa has

eigenvalue −2 for the flow along l1. There is a normally hyperbolic curve of equilibria

S+
0,1(c) emanating from pa which exactly corresponds to the manifoldM`

0(c, 0) in the

original coordinates. Restricting attention to the set

D1 = {(x1, r1, ε1) : −2 < x1 < 2, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ ε̃, −α̃ ≤ α1 ≤ α̃}, (5.22)

we have the following result which will be useful in obtaining an expression for

M`
ε(c, a):

Proposition 3.5.5 ([38, Proposition 3.4]). Consider the system (5.20). For any

c ∈ Ic and all sufficiently small ρ, ε̃, α̃ > 0, there exists a three-dimensional attracting

center manifold M+
1 (c) at pa which contains the line of equilibria S+

0,1(c). In D1,

M+
1 (c) is given as a graph x1 = h+(r1, ε1, α1, c) = −1 +O(r1, ε1, α1).

We now consider the following section

Σin
1 :=

{
(x1, r1, ε1, α1) : |1 + x1| < σ, 0 < ε1 ≤ Kα2

1, 0 < α1 ≤ α̃, r1 = ρ
}
,

where σ, α̃, ρ will be chosen appropriately. It is clear that in the chart K1, ∆in(ρ, σ)

is contained in the section Σin
1 for ε and α in the desired range, hence the goal will

be to track the evolution of Σin
1 . To accomplish this, we consider two subsets of Σin

1
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defined by

Σin
14 :=

{
(x1, r1, ε1, α1) : |1 + x1| < σ, 0 < ε1 ≤ 2δα2

1, 0 < α1 ≤ α̃, r1 = ρ
}

Σin
12 :=

{
(x1, r1, ε1, α1) : |1 + x1| < σ, δα2

1 < ε1 ≤ Kα2
1, 0 < ε1 ≤ ε̃, r1 = ρ

}
,

where δ and ε̃� δ will be chosen appropriately small. The evolution of Σin
14 and Σin

12

will be governed by the dynamics of the charts K4 and K2, respectively.

We now consider the two exit sections defined by

Σout
14 :=

{
(x1, r1, ε1, α1) : |1 + x1| < σ, 0 < ε1 ≤ 2δα̃2, 0 ≤ r1 ≤ ρ, α1 = α̃

}

Σout
12 :=

{
(x1, r1, ε1, α1) : |1 + x1| < σ,

ε̃

K
< α2

1 ≤
ε̃

δ
, 0 ≤ r1 ≤ ρ, ε1 = ε̃

}
.

The following lemma describes the flow in the chart K1 for (5.20).

Lemma 3.5.6. There exists α̃ > 0 and k∗1 > 0 such that the following hold for all

c ∈ Ic:

(i) For any ρ, σ, δ < k∗1, the flow maps Σin
14 into Σout

14 .

(ii) Fix δ < k∗1. There exists ε̃∗1 < δ such that for any ε̃ < ε̃∗1 and any ρ, σ < k∗1,

the flow maps Σin
12 into Σout

12 .

Thus once α̃ > 0 and k∗1 > 0 are fixed as in the above lemma, it is possible to

define the transition map Π14 : Σin
14 → Σout

14 for any ρ, σ, δ < k∗1. Once δ < k∗1 is

fixed, we may then also define the transition map Π12 : Σin
12 → Σout

12 . Hence we first

determine the evolution of Π14

(
Σin

14

)
⊆ Σout

14 in the chart K4 in order to choose δ

appropriately. Then it will be possible to consider the evolution of Π12

(
Σin

12

)
⊆ Σout

12

in the chart K2.
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3.5.4 Dynamics in K4

Fix α̃ as in Lemma 3.5.6. We desingularize the equations in the new variables and

arrive at the following system

x′4 = −y4 + x2
4 +O(r4)

y′4 = ε4 (1 + x4 +O(r4))

r′4 = 0

ε′4 = 0.

(5.23)

We think of this system as a singularly perturbed system with two slow variables y4

and r4, one fast variable x4, and singular perturbation parameter ε4.

It is possible to define a critical manifold S0(r4) in each fixed r4 slice for r4 ∈ [0, r∗4]

for some small r∗4. At r4 = 0 this critical manifold can be taken as any segment of

the curve y4 = x2
4 for x4 in any negative compact interval bounded away from 0,

say for x4 ∈ [−x`4,−xr4] where we can take x`4 > 2/α̃ and 0 < xr4 < 1/2. For each

fixed r4 ∈ [0, r∗4], there is a similar critical manifold for the same range of x4. Define

M0 to be the union of the curves S0(r4) over r4 ∈ [0, r∗4]. Then M0 is a compact

two-dimensional critical manifold for ε4 = 0 for the full three-dimensional system.

In addition, provided r∗4 is sufficiently small, for each fixed r4 the slow flow on S0(r4)

has a stable equilibrium p0(r4) with p0(0) = (−1, 1). Figure 3.10 shows the setup for

ε4 = 0.

In addition M0 has a stable manifoldWs(M0) consisting of the planes y4 = const.
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y4

x4

r4

p0(r4)

M0

Σin
4

Figure 3.10: Shown is the critical manifold M0 in chart K4 for ε4 = 0. Also shown is the ε4 = 0
curve of equilibria p0(r4) for the slow flow on M0. The section Σin

4 as in the proof of Proposition 3.5.1
is also shown.

In particular, we consider the subset of Ws(M0) defined by

W0 ={(x4, y4, ε4, r4) :

x4 ∈ [−x`4,−xr4], y4 ∈ [(xr4)2, (x`4)2], ε4 = 0, r4 ∈ [0, r∗4]}.
(5.24)

It follows from Fenichel theory that the critical manifold M0 and its stable man-

ifold Ws(M0) perturb smoothly for small ε4 > 0 to invariant manifolds Mε4 and

Ws(Mε4). Further, the equilibria p0(r4) persist as stable equilibria pε4(r4), and in

each fixed r4 slice, all orbits lying on Ws(Mε4) converge to pε4(r4). The dynamics

for ε4 > 0 are shown in Figure 3.11. In particular, there exists ε̃∗4 > 0 such that

for 0 < ε4 < ε̃∗4, the set W0 perturbs to a set Wε4 , all points of which converge to

pε4(r4).

Using the transition map κ14 (5.19), we have in chart K4 that κ14 (Σout
14 ) is con-
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y4

x4

r4

Mǫ4

pǫ4(r4)

Figure 3.11: Shown is the perturbed slow manifold Mε4 in chart K4 for ε4 > 0. All trajectories
on Ws(Mε4) converge to pε4(r4).

tained in the set

Σin
4 =

{
(x4, y4, ε4, r4) :

∣∣∣∣
1

α̃
+ x4

∣∣∣∣ <
σ

α̃
,

0 ≤ ε4 ≤ 2δ, 0 < r4 ≤ ρα̃, y4 =
1

α̃2

}
,

(5.25)

which is shown in Figure 3.10 for ε4 = 0.

We can now prove the following

Lemma 3.5.7. There exists k∗4 such that for any ρ, δ < k∗4 and any σ < 1/2, there

exists a curve of equilibria pε4(r4) such that all trajectories crossing the section Σin
4

converge to pε4(r4).

Proof. For any ρ < r∗4/α̃ and any σ < 1/2, the set Σin
4 ∩ {ε4 = 0} lies in W0. Thus

by taking δ < ε̃∗4/2, we have that all trajectories passing through Σin
4 converge to the

unique equilibrium on the slow manifold Mε4(r4) for each r4 ∈ (0, ρα̃). Thus taking

k∗4 < min
(
r∗4
α̃
,
ε̃∗4
2

)
proves the result.
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3.5.5 Dynamics in K2

We now fix δ < min(k∗1, k
∗
4) and desingularize the equations in the K2 coordinates to

arrive at the following system

x′2 = −y2 + x2
2 +O(r2)

y′2 = x2 + α2 +O(r2)

r′2 = 0

α′2 = 0.

(5.26)

Making the change of variables x̃2 = x2 + α2 and ỹ2 = y2 − α2
2, we arrive at the

system

x̃′2 = −ỹ2 + x̃2
2 − 2x̃2α2 +O(r2)

ỹ′2 = x̃2 +O(r2)

r′2 = 0

α′2 = 0 .

(5.27)

For r2 = α2 = 0, the system is integrable with constant of motion

H(x̃2, ỹ2) =
1

2
e−2ỹ2

(
ỹ2 − x̃2

2 +
1

2

)
. (5.28)

The function H has a continuous family of closed level curves

Γh = {(x̃2, ỹ2) : H(x̃2, ỹ2) = h}, h ∈ (0, 1/4) (5.29)

contained in the interior of the parabola ỹ2 = x̃2
2 − 1/2, which is the level curve for

h = 0 (see Figure 3.12).
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Σin
2

x̃2

ỹ2

Γh

(a) α2 = 0

Σin
2

ỹ2

x̃2

(b) α2 > 0

Figure 3.12: Shown are the dynamics in the chart K2 as well as the section Σin
2 for the cases

of α2 = 0 and α2 > 0. For α2 = 0, the orbits are given by the level curves Γh for the function
H(x̃2, ỹ2).

For r2 = 0, we have that

dH

dt
= 2e−2ỹ2α2x̃

2
2, (5.30)

so that for positive α2, all trajectories in the interior of the parabola ỹ2 = x̃2
2 − 1/2

converge to the unique equilibrium (x̃2, ỹ2) = (0, 0) corresponding to the maximum

value h = 1/4. For sufficiently small r2, this equilibrium persists, and we denote it

by p2(r2) with p2(0) = (0, 0).

Using the transition map κ12 (5.18), we have in chart K2 that κ12 (Σout
12 ) is con-

tained in the set

Σin
2 =

{
(x2, y2, α2, r2) :

∣∣∣∣
1

ε̃1/2
+ x2

∣∣∣∣ <
σ

ε̃1/2
,

1

K1/2
≤ α2 ≤

1

δ1/2
, 0 < r2 ≤ ρ2ε̃, y2 =

1

ε̃

}
,

(5.31)
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which in the coordinates (x̃2, ỹ2) is the set

Σin
2 =

{
(x̃2, ỹ2, α2, r2) :

∣∣∣∣
1

ε̃1/2
+ x̃2 − α2

∣∣∣∣ <
σ

ε̃1/2

1

K1/2
≤ α2 ≤

1

δ1/2
, 0 ≤ r2 ≤ ρ2ε̃, ỹ2 =

1

ε̃
− α2

2

}
.

(5.32)

We assume that ε̃ < 1/K so that Σin
2 lies in a region of positive ỹ2. We also define

the set

Σin
2,0 = Σin

2 ∩ {r2 = 0}. (5.33)

We can now prove the following

Lemma 3.5.8. There exists ε̃∗2 > 0 such that the following holds. For each ε̃ < ε̃∗2,

there exists k∗2 > 0 such that for ρ < k∗2 and σ < 1/2, all trajectories crossing the

section Σin
2 converge to the equilibrium p2(r2) of (5.26).

Proof. It suffices to show that for σ small enough, all trajectories crossing Σin
2,0

eventually enter the interior of the parabola ỹ2 = x̃2
2 − 1/2 when r2 = 0 for any

α2 ∈ [1/K1/2, 1/δ1/2]. By a regular perturbation argument, this also holds for small

r2 > 0. Thus by taking ρ sufficiently small we can ensure all points in Σin
2 converge

to p2(r2).

For r2 = 0 and α2 ∈ [1/K1/2, 1/δ1/2], we consider the flow for points in the set

Σin
2,0 ∩{x̃2

2 > ỹ2 + 1/2} (as the other points already lie in the interior of the parabola

ỹ2 = x̃2
2− 1/2). Note that all such points satisfy x̃2 < −1/

√
2. In this region for any

α2 ∈ [1/K1/2, 1/δ1/2], we have

x̃′2 >
1

2
+

(
1

2K

)1/2

, (5.34)
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so that any orbit starting in Σin
2 either reaches x̃2 = −1/

√
2 in finite time or enters

the interior of the parabola ỹ2 = x̃2
2 − 1/2. The idea will be to show that all orbits

starting in Σin
2,0 enter the interior of the parabola before reaching x0 = −1/

√
2. For

an orbit starting in Σin
2 ∩ {x̃2

2 > ỹ2 + 1/2} at t = 0 with x̃2(0) = x0, which reaches

x̃2 = −1/
√

2 at time t = t0, the condition that this orbit has crossed ỹ2 = x̃2
2 − 1/2

is satisfied if ỹ2(t0) > 0. We have

ỹ2(t0) = ỹ2(0) +

∫ t0

0

ỹ′2(t) dt

= ỹ2(0) +

∫ t0

0

x̃2(t) dt

= ỹ2(0) +

∫ t0

0

x̃2(t)
−ỹ2(t) + x̃2

2(t)− 2α2x̃2(t)

−ỹ2(t) + x̃2
2(t)− 2α2x̃2(t)

dt

> ỹ2(0) +

∫ t0

0

−(−ỹ2(t) + x̃2
2(t)− 2α2x̃2(t))

2α2

dt

= ỹ2(0) +

∫ −1/
√

2

x0

− 1

2α2

dx̃2

=
1

ε̃
− α2

2 +
1

2α2

(
x0 +

1√
2

)
.

(5.35)

Thus the condition is satisfied if

1

2α2

(
x0 +

1√
2

)
+

1

ε̃
− α2

2 > 0 (5.36)

for any initial condition x0 of a trajectory in Σin
2 ∩ {x̃2

2 > ỹ2 + 1/2} and any α2 ∈

[1/K1/2, 1/δ1/2]. In particular, this holds for any σ < 1/2 and any ε̃ < min
(
δ3, 1

2
√
K

)
.

Therefore we set ε̃∗2 = min
(
δ3, 1

2
√
K

)
.

Now fix any ε̃ < ε̃∗2. Then all points in Σin
2,0 converge to the equilibrium for

r2 = 0, and there exists r∗2 such that this continues to be true for 0 < r2 < r∗2

and any σ < 1/2. Thus for any ρ < (r∗2/ε̃)
1/2, all points in Σin

2 converge to the

equilibrium. So we set k∗2 = (r∗2/ε̃)
1/2.
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Proof of Proposition 3.5.1. To prove the main result, we just need to choose con-

stants appropriately and identify ∆in(ρ, σ) in the chart K1. We fix α̃ and k∗1 as in

Lemma 3.5.6. Then for ρ, σ, δ < k∗1 we have that Π14

(
Σin

14

)
⊆ Σout

14 , and thus we

may apply Lemma 3.5.7 from §3.5.4. Therefore for any ρ, δ < min(k∗1, k
∗
4) and any

σ < min(k∗1, 1/2), all points in Σin
14 converge to the equilibrium.

We now fix δ < min(k∗1, k
∗
4). By Lemma 3.5.6 (ii) for any ε̃ < ε̃∗1 and any ρ, σ < k∗1,

we have that Π12

(
Σin

12

)
⊆ Σout

12 and we may apply Lemma 3.5.8 of §3.5.5. We fix

ε̃ < min(ε̃∗1, ε̃
∗
2). Then Lemma 3.5.8 gives k∗2 such that for any ρ < min(k∗1, k

∗
2) and

any σ < min(k∗1, 1/2), all points in Σin
12 converge to the equilibrium.

Taking ρ̃ < min(k∗1, k
∗
2, k
∗
4) and σ̃ < min(k∗1, 1/2), we have the following. For

each ρ < ρ̃ and σ < σ̃, the union of ∆in(ρ, σ) over α ∈ (0, ρα̃), ε ∈ (0, ρ2ε̃) and

0 < ε ≤ Kα2 is contained in the union of the sections Σin
12 ∪ Σin

14, and we can apply

Lemmas 3.5.7 and 3.5.8 as just described.

With these choices of α̃, ε̃, ρ̃, σ̃, the result holds on all of D.

Proof of Corollary 3.5.2. Fix K > 0. Proposition 3.5.1 then gives ρ̃, σ̃, ε̃, α̃ such that

for all (ρ, σ, ε, α) ∈ D, any trajectory crossing ∆in(ρ, σ) converges to the equilibrium.

We therefore need to show that the parameters can be chosen in such a way as

to continue to satisfy Proposition 3.5.1 with M`
ε(c, a) crossing ∆in(ρ, σ). Using

Proposition 3.5.5, we can obtain an expression for M`
ε(c, a) at y = r2

1 = ρ2:

x = ρx1 = −ρ+O(ρα1, ρε1, ρ
2)

= −ρ+O
(
α,
ε

ρ
, ρ2

)
.

(5.37)

For M`
ε(c, a) to hit ∆in(ρ, σ), we need |x + ρ| ≤ σρ. Provided α < ρ2 and ε < ρ3,
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we have that M`
ε(c, a) reaches y = ρ2 at

x = −ρ+O(ρ2). (5.38)

So fix any σ < σ̃. Then for any sufficiently small ρ, we can ensure thatM`
ε(c, a) hits

∆in(ρ, σ). Fix such a value of ρ. Now take ε0 = min(ρ3, ρ2ε̃) and choose a0 so that

a0c
−1/2 < min(ρ2, ρα̃) for all c ∈ Ic. Then the result follows from Proposition 3.5.1.



Chapter Four

Stability of traveling pulses
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4.1 Introduction

The goal of this chapter is to prove the stability of the pulses with oscillatory tails

of Theorem 3.1 which were constructed in §3.

This chapter is organized as follows. The next section is devoted to an overview

of our main results, including their precise statements which are contained in Theo-

rems 4.2 and 4.4. In §4.3, we collect and prove pointwise estimates of the pulses in

the limit ε→ 0 that will be crucial in our stability analysis, which will be carried out

in §4.4 for the essential spectrum and in §4.5 for the point spectrum of the lineariza-

tion about the pulses: these results are then collected in §4.6 to prove Theorems 4.2

and 4.4 and conclude stability. We illustrate our results with numerical simulations

in §4.7.

4.2 Overview of main results

We consider the FitzHugh-Nagumo system

ut = uxx + f(u)− w,

wt = ε(u− γw),

(2.1)

where f(u) = f(u; a) = u(u − a)(1 − u), 0 < a < 1
2

and 0 < ε � 1. Moreover, we

take 0 < γ < 4 such that (2.1) has a single equilibrium rest state (u,w) = (0, 0).

Using geometric singular perturbation theory [18] and the exchange lemma [33] one

can construct traveling-pulse solutions to (2.1):

Theorem 4.1 ([8, 34]). There exists K∗ > 0 such that for each κ > 0 and K > K∗
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the following holds. There exists ε0 > 0 such that for each (a, ε) ∈ [0, 1
2
− κ]× (0, ε0)

satisfying ε < Ka2 system (2.1) admits a traveling-pulse solution φ̂a,ε(x, t) := φ̃a,ε(x+

c̆t) with wave speed c̆ = c̆(a, ε) approximated (a-uniformly) by

c̆ =
√

2
(

1
2
− a
)

+O(ε).

Furthermore, if we have in addition ε > K∗a2, then the tail of the pulse is oscillatory.

This theorem encompasses two different existence results: the well known classical

existence result [34] in the region where 0 < ε � a < 1
2
, and the extension [8] to

the regime 0 < a, ε � 1, where the onset of oscillations in the tails of the pulses

is observed. In the following, we refer to these two regimes as the hyperbolic and

nonhyperbolic regimes, respectively, due to the use of (non)-hyperbolic geometric

singular perturbation theory in the respective existence proofs.

Remark 4.2.1. The singular perturbation parameter ε from §3 has been rescaled by

ε→ c̆ε. For the purposes of the forthcoming stability analysis, it is more convenient

to work with this rescaled parameter, though we emphasize that the results do not

depend on this distinction due to the fact that c̆ can be bounded below by a positive

constant uniformly in (a, ε).

In the co-moving frame ξ = x + c̆t, the solution φ̃a,ε(ξ) = (ua,ε(ξ), wa,ε(ξ)) is a

stationary solution to

ut = uξξ − c̆uξ + f(u)− w,

wt = −c̆wξ + ε(u− γw).

(2.2)

We are interested in the stability of the traveling pulse φ̂a,ε(x, t) as solution to (2.1)

or equivalently the stability of φ̃a,ε(ξ) as solution to (2.2). Linearizing (2.2) about
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φ̃a,ε(ξ) yields a linear differential operator La,ε on Cub(R,R2) given by

La,ε




u

w


 =




uξξ − c̆uξ + f ′(ua,ε(ξ))u− w

−c̆wξ + ε(u− γw)


 .

The stability of the pulse is determined by the spectrum of La,ε, i.e. the values λ ∈ C

for which the operator La,ε − λ is not invertible. The associated eigenvalue problem

La,εψ = λψ can be written as the ODE

ψξ = A0(ξ, λ)ψ,

A0(ξ, λ) = A0(ξ, λ; a, ε) :=




0 1 0

λ− f ′(ua,ε(ξ)) c̆ 1

ε
c̆

0 −λ+εγ
c̆



.

(2.3)

Invertibility of La,ε − λ can fail in two ways [49]: either the asymptotic matrix

Â0(λ) = Â0(λ; a, ε) :=




0 1 0

λ+ a c̆ 1

ε
c̆

0 −λ+εγ
c̆



,

of system (2.3) is nonhyperbolic (λ is in the essential spectrum), or there exists a

nontrivial exponentially localized solution to (2.3) (λ is in the point spectrum). In

the latter case we call λ an eigenvalue of La,ε or of (2.3). The spaces of exponentially

localized solutions to (La,ε − λ)ψ = 0 or to (2.3) are referred to as eigenspaces and

its nontrivial elements are called eigenfunctions. This brings us to our main result.

Theorem 4.2. There exists b0, ε0 > 0 such that the following holds. In the setting

of Theorem 4.1, let φ̃a,ε(ξ) denote a traveling-pulse solution to (2.2) for 0 < ε < ε0
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with associated linear operator La,ε. The spectrum of La,ε is contained in

{0} ∪ {λ ∈ C : Re(λ) ≤ −εb0}.

More precisely, the essential spectrum of La,ε is contained in the half plane Re(λ) ≤

−εγ. The point spectrum of La,ε to the right hand side of the essential spectrum

consists of the simple translational eigenvalue λ0 = 0 and at most one other real

eigenvalue λ1 = λ1(a, ε) < 0.

Theorem 4.2 will be proved in §4.6. Combining Theorem 4.2 with [15] and [16,

Theorem 2] yields nonlinear stability of the traveling pulse φ̃a,ε(ξ).

Theorem 4.3. In the setting of Theorem 4.2, the traveling pulse φ̃a,ε(ξ) is non-

linearly stable in the following sense. There exists d > 0 such that, if φ(ξ, t) is a

solution to (2.2) satisfying ‖φ(ξ, 0)− φ̃a,ε(ξ)‖ ≤ d, then there exists ξ0 ∈ R such that

‖φ(ξ + ξ0, t)− φ̃a,ε(ξ)‖ → 0 as t→∞.

In specific cases we have more information about the critical eigenvalue λ1 of La,ε.

In the hyperbolic regime, where a is bounded below by an ε-independent constant

a0 > 0, the nontrivial eigenvalue λ1 can be approximated explicitly to leading order

O(ε). In the nonhyperbolic regime we have 0 < a, ε � 1; if we restrict ourselves to

a wedge K0a
3 < ε < Ka2, then the second eigenvalue λ1 can be approximated to

leading order O(ε2/3) by an a-independent expression in terms of Bessel functions.

Thus, regarding the potential other eigenvalue λ1 we have the following result.

Theorem 4.4. In the setting of Theorem 4.2, we have the following:

(i) (Hyperbolic regime) For each a0 > 0 there exists ε0 > 0 such that for each

(a, ε) ∈ [a0,
1
2
−κ]×(0, ε0) the potential eigenvalue λ1 < 0 of La,ε is approximated
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(a-uniformly) by

λ1 = −M1ε+O
(
|ε log ε|2

)
,

where M1 = M1(a) > 0 can be determined explicitly; see (6.1). If the condition

M1 < γ + a−1 is satisfied, then λ1 is contained in the point spectrum of La,ε
and lies to the right hand side of the essential spectrum.

(ii) (Non-hyperbolic regime) There exists ε0 > 0 and K0, k0 > 1 such that, if (a, ε) ∈

(0, 1
2
− κ]× (0, ε0) satisfies K0a

3 < ε, then the eigenvalue λ1 < 0 of La,ε lies to

the right hand side of the essential spectrum and satisfies

ε2/3/k0 < λ1 < k0ε
2/3.

In particular, if (a, ε) ∈ (0, 1
2
−κ]×(0, ε0) satisfies K0a

3 < ε1+α for some α > 0,

then λ1 is approximated (a- and α-uniformly) by

λ1 = −(18− 4γ)2/3 ζ0

3
ε2/3 +O

(
ε(2+α)/3

)
, (2.4)

where ζ0 ∈ R is the smallest positive solution to the equation

J−2/3

(
2
3
ζ3/2

)
= J2/3

(
2
3
ζ3/2

)
,

where Jr denote Bessel functions of the first kind.

The regions in (c, a, ε)-parameter space considered in Theorems 4.1 and 4.4 are

shown in Figure 4.1. We emphasize that Theorem 4.4 (ii) covers the regime ε > K∗a2

of oscillatory tails. Theorem 4.4 will be proved in §4.6.
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c � c̆0(a)

c̆(a, ✏)

a

✏

a0

✏0

1/2

u

⇠

⇠

u

Figure 4.1: Shown is a schematic bifurcation diagram of the regions in (c, a, ε)-parameter space
considered in Theorems 4.1 and 4.4. The green surface denotes the region of existence of pulses
in the nonhyperbolic regime, and the blue surface represents the hyperbolic regime. The solid red
curve ε = K∗a2 represents the transition from monotone to oscillatory behavior in the tails of the
pulses. The dashed red curve denotes ε = K0a

3; the region above this curve gives the parameter
values for which the results of Theorem 4.4 (ii) are valid.

4.3 Pointwise approximation of pulse solutions

The traveling-pulse solutions in Theorem 4.1 arise from a concatenation of solutions

to a series of reduced systems in the singular limit ε → 0. It is essential for the

forthcoming stability analysis to determine in what sense the pulse solutions are

approximated by the singular limit structure. This can be understood best in the

setting of the traveling-wave ODE

uξ = v,

vξ = cv − f(u) + w,

wξ =
ε

c
(u− γw),

(3.1)

which is obtained from (2.1) by substituting the Ansatz (u,w)(x, t) = (u,w)(x+ ct)

for wave speed c > 0 and putting ξ = x+ ct. We consider a pulse solution φ̃a,ε(ξ) =

(ua,ε(ξ), wa,ε(ξ)) as in Theorem 4.1. Equivalently, φa,ε(ξ) = (ua,ε(ξ), u
′
a,ε(ξ), wa,ε(ξ))

is a solution to (3.1) homoclinic to (u, v, w) = (0, 0, 0) with wave speed c = c̆(a, ε).
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The singular limit φa,0 of φa,ε can be understood via the fast/slow decomposition

of the traveling-wave ODE (3.1). Our main result of this section, Theorem 4.5,

provides pointwise estimates describing the closeness of φa,0 and φa,ε in R3. We

begin by defining the singular limit φa,0 and stating Theorem 4.5, followed by an

overview of the existence analysis in both the hyperbolic and nonhyperbolic regimes,

and finally the proof of Theorem 4.5.

4.3.1 Singular limit

We separately consider (3.1), which we call the fast system, and the system below

obtained by rescaling ξ̂ = εξ, which we call the slow system

εuξ̂ = v,

εvξ̂ = cv − f(u) + w,

wξ̂ =
1

c
(u− γw).

(3.2)

Note that (3.1) and (3.2) are equivalent for any ε > 0. Taking the singular limit

ε → 0 in each of (3.1) and (3.2) results in simpler lower dimensional systems from

which enough information can be obtained to determine the behavior in the full

system for 0 < ε� 1. We first set ε = 0 in (3.1) and obtain the layer problem

uξ = v,

vξ = cv − f(u) + w,

wξ = 0,

(3.3)
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so that w becomes a parameter for the flow, and the manifold

M0 := {(u, v, w) ∈ R3 : v = 0, w = f(u)},

defines a set of equilibria. Considering this layer problem in the plane w = 0 and for

c = c̆0(a) =
√

2(1
2
− a), we obtain the Nagumo system

uξ = v,

vξ = c̆0v − f(u).

(3.4)

For each 0 ≤ a ≤ 1/2, this system possesses a heteroclinic front solution φf(ξ) =

(uf(ξ), vf(ξ)) which connects the equilibria p0
f = (0, 0) and p1

f = (1, 0). In (3.3) this

manifests as a connection in the plane w = 0 between the left and right branches

of M0, when the wave speed c equals c̆0. In addition, there exists a heteroclinic

solution φb(ξ) = (ub(ξ), vb(ξ)) (the Nagumo back) to the system

uξ = v,

vξ = c̆0v − f(u) + w1
b,

(3.5)

which connects the equilibria p1
b = (u1

b, 0) and p0
b = (u0

b, 0), where u0
b = 1

3
(2a − 1)

and u1
b = 2

3
(1 +a) satisfy f(u0

b) = f(u1
b) = w1

b. Thus, for the same wave speed c = c̆0

there exists a connection between the left and right branches of M0 in system (3.3)

in the plane w = w1
b.

Remark 4.3.1. The front φf(ξ) can be determined explicitly by substituting the

Ansatz v = bu(u − 1), b ∈ R in the Nagumo equations (3.4). Subsequently, the

back φb(ξ) is established by using the symmetry of f(u) about its inflection point.
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We obtain

φf(ξ) =




u�(ξ + ξf,0)

u′�(ξ + ξf,0)


 ,

φb(ξ) =




2
3
(1 + a)− u�(ξ + ξb,0)

−u′�(ξ + ξb,0)


 ,

(3.6)

with

u�(ξ) :=
1

e−
1
2

√
2ξ + 1

, (3.7)

where ξb,0, ξf,0 ∈ R depends on the initial translation. We emphasize that we do not

use the explicit expressions in (3.6) to prove our main stability result Theorem 4.2.

However, they are useful to evaluate the leading order expressions for the second

eigenvalue close to 0; see Theorem 4.4. Here we make use of the explicit formulas

above with ξb,0, ξf,0 = 0, but we could have made any choice of initial translate.

We note that for any 0 < a < 1/2 the heteroclitic orbits φf and φb connect

equilibria which lie on normally hyperbolic segments of the right and left branches

of M0 given by

Mr
0 := {(u, 0, f(u)) : u ∈ [u1

b, 1]},

M`
0 := {(u, 0, f(u)) : u ∈ [u0

b, 0]},
(3.8)

respectively. However, for a = 0, φf and φb leave precisely at the fold points on the

critical manifold where normal hyperbolicity is lost (see Figure 4.2). This determines

the distinction in the singular structure between the hyperbolic and nonhyperbolic

cases. Furthermore, we note that for a = 1/2, φf and φb form a heteroclinic loop,

but we do not consider this case in this work; see [37].
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c = c̆0(a)

c

a

✏ 1/2

w

v

u

0 1
�b

�f

M`
0

Mr
0

w

v

u

0 1

�b

�f

M`
0

Mr
0

w

v

u

0 1

�b

�f

M`
0

Mr
0

Figure 4.2: Shown is the singular pulse for ε = 0 in the nonhyperbolic regime (left), the hyperbolic
regime (center), and the heteroclinic loop case [37] (right).

We now set ε = 0 in (3.2) and obtain the reduced problem

0 = v,

0 = cv − f(u) + w,

wξ̂ =
1

c
(u− γw),

where the flow is now restricted to the setM0 and the dynamics are determined by

the equation for w. Putting together the information from the layer problem and

reduced problem, there is for c = c̆0 a singular homoclinic orbit φa,0 obtained by

following φf , then up Mr
0, back across φb, then down M`

0; see Figure 4.2. Thus, we

define φa,0 as the singular concatenation

φa,0 := {(φf(ξ), 0) : ξ ∈ R} ∪
{

(φb(ξ), w1
b) : ξ ∈ R

}
∪Mr

0 ∪M`
0, (3.9)

where Mr
0 and M`

0 are defined in (3.8). Note that φa,0 exists purely as a formal

object as the two subsystems are not equivalent to (3.1) for ε = 0.
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4.3.2 Main approximation result

In the stability analysis we need to approximate the pulse φa,ε pointwise by its

singular limit φa,0. More specifically, we will cover the real line by four intervals

Jf , Jr, Jb and J`. For ξ-values in Jr or J` the pulse φa,ε(ξ) is close to the right or

left branches Mr
0 and M`

0 of the slow manifold M0, respectively. For ξ-values in Jf

or Jb the pulse φa,ε(ξ) is approximated by (some translate of) the front (φf(ξ), 0) or

back (φb(ξ), w1
b), respectively.

To determine suitable endpoints of the intervals Jf and Jb we need to find ξ ∈ R

such that φa,ε(ξ) can be approximated by one of the four non-smooth corners of

the concatenation φa,0; see Figure 4.3. By translational invariance, we can define

the ε → 0 limit of φa,ε(0) to be (φf(0), 0). Intuitively, one expects that, since the

dynamics on the slow manifold is of the order O(ε), a point φa,ε(Ξ(ε)) converges to

the lower-right corner of φa,0 as long as Ξ(ε)→∞ and εΞ(ε)→ 0 as ε→ 0; see also

Theorem 4.8. This motivates to choose the upper endpoint of Jf to be an a- and

ε-independent multiple of −log ε. In a similar fashion one can determine endpoints

for Jb.

We establish the following pointwise estimates for the traveling pulse φa,ε(ξ) along

the front and back and along the right and left branches of the slow manifold.

Theorem 4.5. For each sufficiently small a0, σ0 > 0 and each τ > 0, there exists

ε0 > 0 and C > 1 such that the following holds. Let φa,ε(ξ) be a traveling-pulse

solution as in Theorem 4.1 for 0 < ε < ε0, and define Ξτ (ε) := −τ log ε. There exist

ξ0, Za,ε > 0 with ξ0 independent of a and ε and 1/C ≤ εZa,ε ≤ C such that:
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(i) For ξ ∈ Jf := (−∞,Ξτ (ε)], φa,ε(ξ) is approximated by the front with

∣∣∣∣∣∣∣
φa,ε(ξ)−




φf(ξ)

0




∣∣∣∣∣∣∣
≤ CεΞτ (ε).

(ii) For ξ ∈ Jb := [Za,ε − Ξτ (ε), Za,ε + Ξτ (ε)], φa,ε(ξ) is approximated by the back

with

∣∣∣∣∣∣∣
φa,ε(ξ)−




φb(ξ − Za,ε)

w1
b




∣∣∣∣∣∣∣
≤ C





εΞτ (ε), if a ≥ a0,

ε2/3Ξτ (ε), if a < a0.

(iii) For ξ ∈ Jr := [ξ0, Za,ε − ξ0], φa,ε(ξ) is approximated by the right slow manifold

Mr
0 with

d(φa,ε(ξ),Mr
0) ≤ σ0.

(iv) For ξ ∈ J` := [Za,ε + ξ0,∞), φa,ε(ξ) is approximated by the left slow manifold

M`
0 with

d(φa,ε(ξ),M`
0) ≤ σ0.

As an immediate corollary, we obtain

Corollary 4.3.2. For each sufficiently small σ0 > 0, there exists ε0 > 0 such that the

following holds. Let φa,ε denote a pulse solution to (3.1) in the setting of Theorem 4.1

with 0 < ε < ε0. The Hausdorff distance between φa,ε and φa,0 as geometric objects

in R3 is smaller than σ0.
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0

M`
0

Za,✏ + ⌅⌧ (✏) Za,✏ � ⌅⌧ (✏)
⇠ = Za,✏

⇠ = 0
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�a,✏(⇠)

Figure 4.3: Shown is the pulse solution φa,ε(ξ) along with the singular Nagumo front φf and back
φb. The points φa,ε(Ξτ (ε)) and φa,ε(Za,ε ± Ξτ (ε)) approximate the intersection points of φf and
φb with Mr

0 and M`
0.

4.3.3 Overview of existence results

In this section, we give an overview of the existence results for the pulses considered

in this chapter which are necessary in proving Theorem 4.5.

Theorem 4.1 combines the classical existence result for fast pulses as well as an

extension to the regime of pulses with oscillatory tails proved in [8]. We begin by

introducing the classical existence result and its proof in the context of geometric

singular perturbation theory and then proceed by describing how to overcome the

difficulties encountered in the case 0 < a, ε � 1. We refer to these cases as the

hyperbolic and nonhyperbolic regimes, respectively.

Hyperbolic regime

The classical result is stated as follows
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Theorem 4.6. For each 0 < a < 1/2, there exists ε0 = ε0(a) > 0 such that for

0 < ε < ε0 system (2.1) admits a traveling-pulse solution with wave speed c̆ = c̆(a, ε)

satisfying

c̆(a, ε) =
√

2
(

1
2
− a
)

+O(ε).

The above result is well known and has been obtained using a variety of meth-

ods including classical singular perturbation theory [26] and the Conley index [6].

We describe a proof of this result similar to that in [34], using geometric singular

perturbation theory [18] and the exchange lemma [33].

It is possible to construct a pulse for ε > 0 as a perturbation of the singular struc-

ture φa,0 given by (3.9) as follows. By Fenichel theory the segments Mr
0 and M`

0

persist for ε > 0 as locally invariant manifolds Mr
ε and M`

ε. In addition, the mani-

folds Ws(Mr
0) and Wu(Mr

0) defined as the union of the stable and unstable fibers,

respectively, of Mr
0 persist as locally invariant manifolds Ws,r

ε and Wu,r
ε . Similarly

the stable and unstable foliations of M`
0 persist as locally invariant manifolds Ws,`

ε

and Wu,`
ε . By Fenichel fibering the manifold Ws,`

ε coincides with Ws
ε (0), the stable

manifold of the origin. The origin also has a one-dimensional unstable manifold

Wu
0 (0) which persists for ε > 0 as Wu

ε (0). By tracking Wu
ε (0) forwards and Ws

ε (0)

backwards, it is possible to find an intersection provided that c ≈ c̆0 is chosen appro-

priately. The exchange lemma is needed to track these manifolds in a neighborhood

of the right branch Mr
ε, where the flow spends time of order ε−1. There exists for

any r ∈ Z>0 an ε-independent open neighborhood UE of Mr
ε and a Cr-change of

coordinates Ψε : UE → R3, depending Cr-smoothly on ε, in which the flow is given
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by the Fenichel normal form [18, 33]

U ′ = −Λ(U, V,W ; c, a, ε)U,

V ′ = Γ(U, V,W ; c, a, ε)V,

W ′ = ε(1 +H(U, V,W ; c, a, ε)UV ),

(3.10)

where the functions Λ,Γ and H are Cr, and Λ and Γ are bounded below away from

zero. In the local coordinates Mr
ε is given by U = V = 0, and Wu,r

ε and Ws,r
ε are

given by U = 0 and V = 0, respectively. We assume that the Fenichel neighborhood

contains a box

Ψε(UE) ⊇ {(U, V,W ) : U, V ∈ [−∆,∆],W ∈ [−∆,W ∗ + ∆]} , (3.11)

for W ∗ > 0 and some small 0 < ∆ � W ∗, both independent of ε. The exchange

lemma [33] then states that for sufficiently small ∆ > 0 and ε > 0, any sufficiently

large T , and any |W0| < ∆, there exists a solution (U(ξ), V (ξ),W (ξ)) to (3.10) that

lies in Ψε(UE) for ξ ∈ [0, T ] and satisfies U(0) = ∆, W (0) = W0, and V (T ) = ∆ and

the norms |U(T )|, |V (0)|,and |W (T )−W0 − εW ∗| are of order e−qT for some q > 0,

independent of ε.

We now trackWu
ε (0) andWs

ε (0) up to the neighborhood UE ofMr
ε and determine

how they behave at U = ∆ and V = ∆. This gives a system of equations in c, T, ε

which can solved for c = c̆(a, ε) = c̆0(a) + O(ε) to connect Wu
ε (0) and Ws

ε (0) via a

solution given by the Exchange lemma, completing the construction of the pulse of

Theorem 4.6. The full pulse solution φa,ε is shown in Figure 4.3.
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Nonhyperbolic regime

We now move on to the case 0 < a, ε � 1. For certain values of the parameters

a, ε, the tails of the pulses develop small oscillations near the equilibrium. These

oscillatory tails are due to a Belyakov transition occurring in the linearization of (3.1)

about the origin where the two stable real eigenvalues collide and split as a complex

conjugate pair. In [8], it was shown that for sufficiently small a, ε > 0 this transition

occurs when

ε =
a2

4
+O

(
a3
)
, (3.12)

and the following result capturing the existence of pulses on either side of this tran-

sition was proved.

Theorem 4.7. [8, Theorem 1.1] There exists K∗, µ > 0 such that the following holds.

For each K > K∗, there exists a0, ε0 > 0 such that for each (a, ε) ∈ (0, a0) × (0, ε0)

satisfying ε < Ka2, system (2.1) admits a traveling-pulse solution with wave speed

c̆ = c̆(a, ε) given by

c̆(a, ε) =
√

2
(

1
2
− a
)
− µε+O(ε(a+ ε)).

Furthermore, for ε > K∗a2, the tail of the pulse is oscillatory.

Remark 4.3.3. In fact, by the identity (3.12), the constant K∗ > 0 in Theorem 4.7

can be any value larger than 1/4.

The difficulties in the proof of Theorem 4.7 arise from the fact that the pulses

are constructed as perturbations from the highly singular limit in which a = ε = 0

(see Figure 4.2). In this limit, the origin sits at the lower left fold on the critical
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manifold M0, and the Nagumo front and back solutions φf,b leave M`
0 and Mr

0

precisely at the folds where these manifolds are no longer normally hyperbolic. Near

such points, standard Fenichel theory and the exchange lemma break down, and

geometric blow-up techniques are used to track the flow in these regions.

However, away from the folds, standard geometric singular perturbation theory

applies, and many of the arguments from the classical case carry over. Outside

of neighborhoods of the two fold points, the manifolds Mr
0 and M`

0 persist for

ε > 0 as locally invariant manifolds Mr
ε and M`

ε as do their (un)stable foliations

Ws,`
ε ,Wu,`

ε ,Ws,r
ε ,Wu,r

ε . The origin has a strong unstable manifold Wu
ε (0) which per-

sists for ε > 0 and can be tracked along Mr
ε through the neighborhood UE given

in (3.11) via the exchange lemma into a neighborhood UF of the upper right fold

point. The stable foliation Ws,`
ε of the left branch can be tracked backwards from

a neighborhood of the equilibrium to a neighborhood of the upper right fold point.

Constructing the pulse solution then amounts to the following two technical difficul-

ties. First, one must find an intersection ofWu
ε (0) andWs,`

ε near the upper right fold

point. Second, since the exponentially attracting properties of the manifoldWs,`
ε are

only defined along a normally hyperbolic segment ofM`
ε, the flow can only be tracked

up to a neighborhood of the equilibrium at the origin. Hence additional arguments

are required to justify that the tails of the pulses in fact converge to the equilibrium

upon entering this neighborhood. Overcoming these difficulties is therefore reduced

to local analyses near the two fold points. We provide a few details regarding the

flow in these regions which will be useful in the forthcoming stability analysis.

We begin with the upper right fold point; by the exchange lemma the manifold

Wu
ε (0) is exponentially close toMr

ε upon entering an a- and ε-independent neighbor-

hood UF of the fold point. The goal is therefore to trackMr
ε and nearby trajectories

in this neighborhood. The fold point is given by the fixed point (u∗, 0, w∗) of the
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layer problem (3.3) where

u∗ = 1
3

(
a+ 1 +

√
a2 − a+ 1

)
,

and w∗ = f(u∗). The linearization of (3.3) about this fixed point has one positive

real eigenvalue c > 0 and a double zero eigenvalue, since f ′(u∗) = 0. As in [8] we can

perform for any r ∈ Z>0 a Cr-change of coordinates Φε : UF → R3 to (3.1), which

is Cr-smooth in c, a and ε for (c, a, ε)-values restricted to the set [c̆0(a0), c̆0(−a0)]×

[−a0, a0]×[−ε0, ε0], where a0, ε0 > 0 are chosen sufficiently small and c̆0(a) =
√

2(1
2
−

a). Applying Φε to the flow of (3.1) in the neighborhood UF of the fold point yields

x′ = θ0

(
y + x2 + h(x, y, ε; c, a)

)
,

y′ = θ0εg(x, y, ε; c, a),

z′ = z (c+O(x, y, z, ε)) ,

(3.13)

where

θ0 =
1

c

(
a2 − a+ 1

)1/6
(u∗ − γw∗)1/3 > 0, (3.14)

uniformly in |a| ≤ a0 and c ∈ [c̆0(a0), c̆0(−a0)], and h, g are Cr-functions satisfying

h(x, y, ε; c, a) = O(ε, xy, y2, x3),

g(x, y, ε; c, a) = 1 +O(x, y, ε),

uniformly in |a| ≤ a0 and c ∈ [c̆0(a0), c̆0(−a0)]. The coordinate transform Φε can be
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decomposed in a linear and nonlinear part

Φε




u

v

w




= N







u

v

w



−




u∗

0

w∗







+ Φ̃ε




u

v

w



,

where the nonlinearity Φ̃ε satisfies Φ̃ε(u
∗, 0, w∗) = ∂Φ̃ε(u

∗, 0, w∗) = 0 and the linear

part N is given by

N = ∂Φε




u∗

0

w∗




=




−β1
β1
c

β1
c2

0 0 β2
c

0 1
c

1
c2



,

where

β1 =
(
a2 − a+ 1

)1/3
(u∗ − γw∗)−1/3 > 0,

β2 = c
(
a2 − a+ 1

)1/6
(u∗ − γw∗)−2/3 > 0,

uniformly in |a| < a0 and c ∈ [c̆0(a0), c̆0(−a0)]. Finally, there exists a neighborhood

U ′F ⊂ R3 of 0, which is independent of c, a and ε, such that U ′F ⊂ Φε(UF ).

In the transformed system (3.13), the x, y-dynamics is decoupled from the dy-

namics in the z-direction along the straightened out strong unstable fibers. Thus, the

flow is fully described by the dynamics on the two-dimensional invariant manifold

z = 0 and by the one-dimensional dynamics along the fibers in the z-direction. On

the invariant manifold z = 0, for ε = 0 we see that the critical manifold is given by

{(x, y) : y+x2 +h(x, y, 0; c, a) = 0}, which is a approximately a downwards-opening

parabola. The branch of this parabola for x < 0 is attracting and corresponds to the

manifold Mr
0. We define Mr,+

0 to be the singular trajectory obtained by append-
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Mr,+
✏

⌃o

⌃i
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x

y

Mr,+
0

Figure 4.4: Shown is the flow on the invariant manifold z = 0 in the fold neighborhood UF . Note
that x increases to the left.

ing the fast trajectory given by the line {(x, 0) : x > 0} to the attracting branch

Mr
0 of the critical manifold. We note that Mr,+

0 can be represented as a graph

y = s0(x). In [8] it was shown that, for sufficiently small ε > 0, Mr,+
0 perturbs to

a trajectory Mr,+
ε on z = 0, represented as a graph y = sε(x), which is a-uniformly

C0 −O
(
ε2/3
)
-close to Mr,+

0 (see Figure 4.4).

In addition, we have the following estimates on the flow in the invariant manifold

z = 0. For each sufficiently small ρ, σ > 0, we define the following sections on z = 0.

Let x̃ε(c, a) denote the x-value at which the manifold Mr,+
ε intersects y = −ρ2, and

define

Σi
ε = Σi

ε(ρ, σ) := {(x̃ε(c, a) + x0,−ρ2) : 0 ≤ |x0| < σρε},

Σo = Σo(ρ) := {(ρ, y) : y ∈ R}.

Proposition 4.3.4. For each sufficiently small ρ, σ > 0, there exists a0, ε0 > 0

such that for (a, ε) ∈ (0, a0) × (0, ε0) the following holds. The flow of (3.13) on

the invariant manifold z = 0 maps Σi
ε(ρ, σ) into Σo(ρ). In addition, a trajectory Γ

starting at x = x̃ε(c, a) + x0 in Σi
ε satisfies

(i) Between Σi
ε and Σo we have that Γ is O(x0)-close to the manifold Mr,+

ε . In

particular, we have, along Γ between Σi
ε and Σo, the bound |y − sε(x)| < C|x0|
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for some constant C > 0 independent of a and ε.

(ii) There exist constants k, k̃ > 0, independent of ρ, σ, a and ε, such that, along

Γ between Σi
ε and Σo, we have x′ > (k̃/ρ)ε. Furthermore, define the function

Θ: (−Ω0,∞)→ R by

Θ(ζ) =





√
ζ
I−2/3

(
2
3
ζ3/2

)
−I2/3

(
2
3
ζ3/2

)
I1/3

(
2
3
ζ3/2

)
−I−1/3

(
2
3
ζ3/2

) , if ζ > 0

√−ζ J2/3
(

2
3

(−ζ)3/2
)
−J−2/3

(
2
3

(−ζ)3/2
)

J1/3

(
2
3

(−ζ)3/2
)

+J−1/3

(
2
3

(−ζ)3/2
) , if ζ ≤ 0

(3.15)

where Jr and Ir denote Bessel functions and modified Bessel functions of the

first kind, respectively, and Ω0 denotes the first positive zero of J1/3

(
2
3
ζ3/2

)
+

J−1/3

(
2
3
ζ3/2

)
. Then, Θ is smooth, strictly decreasing and invertible and along

Γ we approximate a-uniformly

x′ = θ0

(
x2 −Θ−1

(
xε−1/3

)
ε2/3
)

+O(ε), for 0 ≤ |x| < kε1/3,

where θ0 is defined in (3.14).

Proof. In [8], using geometric blow-up techniques it was shown that between the sec-

tions Σi
ε and Σo, the manifoldMr,+

ε is O
(
ε2/3
)
-close toMr,+

0 and can be represented

as the graph of an invertible function y = sε(x).

We consider the flow of (3.13) on the invariant manifold z = 0. We rescale t̄ = θ0ξ
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and append an equation for ε, arriving at the system

dx

dt̄
= y + x2 + h(x, y, ε; c, a),

dy

dt̄
= εg(x, y, ε; c, a),

dε

dt̄
= 0.

(3.16)

The blow up analysis in [8] makes use of three different rescalings in blow up charts

K1, K2, K3 to track solutions between Σi
ε and Σo. The chart K1 is described by the

coordinates

x = r1x1, y = −r2
1, ε = r3

1ε1, (3.17)

the second chart K2 uses the coordinates

x = r2x2, y = −r2
2y2, ε = r3

2, (3.18)

and the third chart K3 uses the coordinates

x = r3, y = −r2
3y3, ε = r3

3ε3. (3.19)

In each of the charts K1, K2, and K3, we define entry/exit sections

Σin
1 :=

{
(x1, r1, ε1) : 0 < ε1 < δ, 0 ≤

∣∣x1 − ρ−1s−1
ε (−ρ2)

∣∣ < σρ3ε1, r1 = ρ
}
,

Σout
1 :=

{
(x1, r1, ε1) : ε1 = δ, 0 ≤

∣∣x1 − r−1
1 s−1

ε (−r2
1)
∣∣ < σr3

1δ, 0 < r1 ≤ ρ
}
,

Σin
2 := {(x2, y2, r2) :

0 ≤
∣∣x2 − r−1

2 s−1
ε (−δ−2/3r2

2)
∣∣ < σρ3δ2/3, y2 = δ−2/3, 0 < r2 ≤ ρδ1/3

}
,

Σout
2 :=

{
(x2, y2, r2) : x2 = δ−1/3, 0 < r2 ≤ ρδ1/3

}
,

Σin
3 := {(r3, y3, ε3) : 0 < r3 < ρ, y3 ∈ [−β, β], ε3 = δ} ,

Σout
3 := {(r3, y3, ε3) : r3 = ρ, y3 ∈ [−β, β], ε3 ∈ (0, δ)} ,
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for sufficiently small β, δ, σ, ρ > 0 satisfying 2Ω0δ
2/3 < β, where Ω0 is the smallest

positive zero of

J−1/3

(
2
3
z3/2

)
+ J1/3

(
2
3
z3/2

)
,

with Jr Bessel functions of the first kind. The set {(x, y, ε) ∈ R3 : (x, y) ∈ Σi
ε(ρ, σ), ε ∈

(0, ρ3δ)} equals Σin
1 in the K1 coordinates (3.17). Moreover, Σout

3 is contained in the

set {(x, y, ε) ∈ R3 : (x, y) ∈ Σo}, when converting to the K3 coordinates (3.19). In [8,

§4], it was shown that the flow of (3.16) maps Σin
1 into Σout

3 via the sequence

Σin
1 −→ Σout

1 = Σin
2 −→ Σout

2 = Σin
3 −→ Σout

3 ,

taking into account the different coordinate systems to represent Σin
i and Σout

i for

i = 1, 2, 3. The estimates on the flow between the various sections obtained in [8]

enable us to prove (i) and (ii):

The proof of (i) follows from the proof of the estimates in [8, Corollary 4.1].

For (ii), we begin with the lower bound x′ > (k̃/ρ)ε. Between the sections Σin
1

and Σout
1 , the existence of such a k̃ > 0 follows from the proof of [8, Lemma 4.2]. In

addition by [8, Lemmata 4.3, 4.4], by possibly taking k̃ smaller, the flow satisfies

x′ = θ0
dx

dt̄
> k̃ε2/3 > (k̃/ρ)ε,

between the sections Σin
2 and Σout

3 .

Finally, for any sufficiently small k, for 0 ≤ |x| < kε1/3, we are concerned with the

flow in the chart K2 between the sections Σin
2 and Σout

2 . In the K2 coordinates (3.18),
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the flow takes the form

dx2

dt2
= −y2 + x2

2 +O(r2),

dy2

dt2
= −1 +O(r2),

dr2

dt2
= 0,

(3.20)

where t2 = r2t̄. We quote a few facts from [8, §4.6]. Between the sections Σin
2

and Σout
2 , the manifold Mr,+

ε can be represented as the graph (x2, s2(x2; r2)) of a

smooth invertible function y2 = s2(x2; r2) smoothly parameterized by r2 = ε1/3 with

s2(x2; r2) = s2(x2; 0) + O(r2). Furthermore, using results from [42, § II.9], we have

that s2(x2; 0) = Θ−1(x2), where the function Θ is defined in (3.15). The function

Θ is smooth, strictly decreasing and maps (−Ω0,∞) bijectively onto R. By part (i)

above, we deduce that along Γ between Σin
2 and Σout

2 , we have |y2−s2(x2; r2)| = O(r2).

Hence we compute

x′ = θ
dx

dt̄

= θ0r
2
2

dx2

dt2

= θ0r
2
2

(
x2

2 − y2

)
+O

(
r3

2

)

= θ0r
2
2

(
x2

2 −Θ−1(x2)
)

+O
(
r3

2

)

= θ0

(
x2 − ε2/3Θ−1

(
xε−1/3

))
+O(ε),

which concludes the proof of assertion (ii).

By tracking solutions close toMr,+
ε , it is possible to find a solution which connects
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Wu
ε (0) and Ws,`

ε near the fold. For small z0 > 0, we define the sections

Σin
ε = Σin

ε (ρ, σ, z0) := {(x, y, z) : (x, y) ∈ Σi
ε(ρ, σ), z ∈ [−z0, z0]},

Σout = Σout(z0) := U ′F ∩ {z = z0}.
(3.21)

We remark that for each sufficiently small ρ, σ, z0 > 0, it is always possible to choose

the fold neighborhood UF and the Fenichel neighborhood UE so that they intersect

in a region containing the section Σin
ε . We have the following by [8, Proposition 4.1,

Corollary 4.1 and §5.5].

Proposition 4.3.5. There exists µ > 0 such that for each sufficiently small σ, ρ, z0 >

0 there exists a0, ε0 > 0 such that the following holds. For each (a, ε) ∈ (0, a0) ×

(0, ε0), there exists c = c̆(a, ε) satisfying

c̆(a, ε) =
√

2
(

1
2
− a
)
− µε+O(ε(a+ ε)),

such that in system (3.1) the manifolds Wu
ε (0) and Ws,`

ε intersect. Denote by φa,ε(ξ)

the solution to (3.1) lying inWu
ε (0)∩Ws,`

ε . The solution Φε(φa,ε(ξ)) to system (3.13)

enters the fold neighborhood U ′F via the section Σin
ε (ρ, σ, z0) and exits via Σout(z0).

The intersection point of Φε(φa,ε(ξ)) with Σout is a-uniformly O(ε2/3)-close to the

intersection point between Σout and the back solution Φ0(ϕb(ξ), w1
b) to system (3.13)

at ε = 0.

We note that by taking ρ, σ, z0 > 0 smaller, it is possible to ensure that the

solutions considered in Proposition 4.3.5 pass as close to the fold as desired, at the

expense of possibly taking a0, ε0 smaller.

After finding an intersection between Wu
ε (0) and Ws,`

ε , it remains to show that

solutions on the manifold Ws,`
ε converge to the equilibrium. As previously stated,
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using standard geometric singular perturbation theory arguments, it is possible to

track Ws,`
ε into a neighborhood of the origin, but more work is required to show

that the tail of the pulse in fact converges to the equilibrium after entering this

neighborhood. We have the following result which follows from the analysis in [8,

§6].

Proposition 4.3.6. For each K > 0 and each sufficiently small σ0 > 0, there

exists a0, ε0, d0 > 0 such that the following holds. For each (a, ε) ∈ (0, a0) × (0, ε0)

satisfying ε < Ka2, the equilibrium (u, v, w) = (0, 0, 0) in system (3.1) is stable with

two-dimensional stable manifold Ws
ε (0). Furthermore, any solution on Ws,`

ε which

enters the ball B(0, σ0) at a distance d0 from M`
ε lies in the stable manifold Ws

ε (0)

and remains in B(0, σ0) until converging to the equilibrium.

Theorem 4.7 then follows from Propositions 4.3.5 and 4.3.6.

Main existence result

Combining Theorems 4.6 and 4.7, we obtain Theorem 4.1, repeated here for conve-

nience, which encompasses both the hyperbolic and nonhyperbolic regimes.

Theorem 4.1. There exists K∗ > 0 such that for each κ > 0 and K > K∗ the

following holds. There exists ε0 > 0 such that for each (a, ε) ∈ [0, 1
2
− κ] × (0, ε0)

satisfying ε < Ka2 system (2.1) admits a traveling-pulse solution φ̂a,ε(x, t) := φ̃a,ε(x+

c̆t) with wave speed c̆ = c̆(a, ε) a-uniformly approximated by

c̆ =
√

2
(

1
2
− a
)

+O(ε).

Furthermore, if we have in addition ε > K∗a2, then the tail of the pulse is oscillatory.
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Proof. We takeK∗ > 1
4

and fixK,κ satisfyingK > K∗ and κ > 0. From Theorem 4.7

we obtain constants a0, ε0 and a traveling pulse for each (a, ε) ∈ (0, a0) × (0, ε0)

satisfying ε < Ka2, where the pulses for K∗a2 < ε < Ka2 have oscillatory tails.

By shrinking ε0 > 0 further if necessary, Theorem 4.6 yields the existence of pulse

solutions for each (a, ε) ∈ [a0,
1
2
−κ]×(0, ε0), where we use that [a0,

1
2
−κ] is compact

to ensure ε0 > 0 is independent of a.

4.3.4 Proof of Theorem 4.5

In this section, we provide a proof of Theorem 4.5; we take care to separate the cases

corresponding to Theorem 4.6 and that of Theorem 4.7 in which the pulse passes by

upper fold.

The estimates in Theorem 4.5 follow from standard Fenichel theory and the fold

estimates along with the following argument from [14, 29]. Recall from §4.3.3 that in

the ε-independent neighborhood UE of Mr
ε, there exists a Cr-change of coordinates

Ψε : UE → R3 in which the flow is given by the Fenichel normal form (3.10). Here

we have that Mr
ε is given by U = V = 0, Wu,r

ε and Ws,r
ε are given by U = 0

and V = 0, respectively, and the open Fenichel neighborhood Ψε(UE) contains a

box {(U, V,W ) : U, V ∈ [−∆,∆],W ∈ [−∆,W ∗ + ∆]} for W ∗ > 0 and some small

0 < ∆ � W ∗, both independent of ε. We define the following entry and exit

manifolds

N1 := {(U, V,W ) : U = ∆, V ∈ [−∆,∆],W ∈ [−∆,∆]},

N2 := {(U, V,W ) : U, V ∈ [−∆,∆],W = W0},

for the flow around the corner where 0 < W0 < W ∗. We make use of the following
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theorem, based on a result in [14].

Theorem 4.8 ([14, Theorem 4.1]). Assume that Ξ(ε) is a continuous function of ε

into the reals satisfying

lim
ε→0

Ξ(ε) =∞, lim
ε→0

εΞ(ε) = 0. (3.22)

Moreover, assume that there is a one-parameter family of solutions (U, V,W )(ξ, ·)

to (3.10) with (U, V,W )(ξ1, ε) ∈ N1, (U, V,W )(ξ2(ε), ε) ∈ N2 and limε→0W (ξ1, ε) =

0 for some ξ1, ξ2(ε) ∈ R. Let U0(ξ) denote the solution to

U ′ = −Λ(U, 0, 0; c, a, 0)U, (3.23)

satisfying U0(ξ1) = ∆ + Ũ0 where |Ũ0| � ∆. Then, for ε > 0 sufficiently small, we

have that

‖(U, V,W )(ξ, ε)− (U0(ξ), 0, 0)‖ ≤ C
(
εΞ(ε) + |Ũ0|+ |W (ξ1, ε)|

)
, for ξ ∈ [ξ1,Ξ(ε)] ,

where C > 0 is independent of a and ε.

Proof. This proof is based on an argument in [14]. In the box

U ′E := {(U, V,W ) : U, V ∈ [−∆,∆],W ∈ [−∆,W ∗ + ∆]} ,

for sufficiently small ε > 0, there exist constants α
u/s
± > 0 such that

0 < αs− < Λ(U, V,W ; c, a, ε) < αs+,

0 < αu− < Γ(U, V,W ; c, a, ε) < αu+,
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We first consider the V -coordinate. For any ξ > ξ1, we have

|V (ξ)| ≥ |V (ξ1)| eαu−(ξ−ξ1).

Since V (ξ2) ∈ N2, we also have

|V (ξ1)| ≤ ∆e−α
u
−(ξ2−ξ1).

We note that since the solution enters U ′E via N1 and reaches N2 at ξ2(ε), using the

equation for W in (3.10), we have that ξ2(ε) satisfies ξ2(ε) ≥ (Cε)−1. Therefore,

using the upper bound on Γ we have that

|V (ξ)| ≤ ∆e−α
u
−ξ2+αu+ξ−(αu+−αu−)ξ1 ≤ Ce−

1
Cε ,

for ξ ∈ [ξ1,Ξ(ε)].

The solution in the slow W -component may be written as

W (ξ) = W (ξ1, ε) +

∫ ξ

ξ1

ε(1 +H(U(s), V (s),W (s), c, a, ε)U(s)V (s))ds,

from which we infer that

|W (ξ)−W (ξ1, ε)| ≤ Cε(ξ − ξ1) ≤ CεΞ(ε), for ξ ∈ [ξ1,Ξ(ε)] ,

and hence

|W (ξ)| ≤ CεΞ(ε) + |W (ξ1, ε)|, for ξ ∈ [ξ1,Ξ(ε)] .

Finally we consider the U -component. We have that the difference (U(ξ)−U0(ξ))
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satisfies

U ′ − U ′0 = −(Λ(U, V,W, c, a, ε)U − Λ(U0, 0, 0, c, a, 0)U0)

= −Λ(U0, 0, 0, c, a, 0)(U − U0) +O (ε+ |U − U0|+ |V |+ |W |)U.

with U(ξ1)−U0(ξ1) = Ũ0 where |Ũ0| � ∆. By possibly taking ∆ smaller if necessary

and using the fact that the rate of contraction in the U -component is stronger than

αs−, we deduce that (U(ξ)− U0(ξ)) satisfies a differential equation

X ′ = b1(ξ)X + b2(ξ), X(ξ1) = Ũ0,

where b1(ξ) < −αs−/2 < 0 and

|b2(ξ)| ≤ C (εΞ(ε) + |W (ξ1, ε)|) e−α
s
−ξ,

for ξ ∈ [ξ1,Ξ(ε)]. Hence, it holds

|U(ξ)− U0(ξ)| ≤ C
(
εΞ(ε) + |Ũ0|+ |W (ξ1, ε)|

)
,

for ξ ∈ [ξ1,Ξ(ε)], which completes the proof.

Remark 4.3.7. We note that Theorem 4.8 extends the result [14, Theorem 4.1] to

account for the following minor technicalities. Firstly, the estimates obtained along

the singular ε = 0 solution are shown to hold along the entire interval [ξ1,Ξ(ε)]

rather than just at the endpoint ξ = Ξ(ε). Second, we allow for an error Ũ0 in the

case that the solution in question does not arrive in N1 at the same time ξ1 as the

singular solution U0. Finally, no assumptions are made on the entry height W (ξ1, ε)

other than continuity in ε with limε→0W (ξ1, ε) = 0. This is necessary to deal with the

O
(
ε2/3
)

estimates along the back arising from Proposition 4.3.5 in the nonhyperbolic
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regime.

Proof of Theorem 4.5. We note that Ξτ (ε) := −τ log ε satisfies condition (3.22) in

Theorem 4.8 for every τ > 0.

We begin by showing (i). By standard geometric perturbation theory and the

stable manifold theorem, the solution φa,ε(ξ) is a-uniformly O(ε)-close to (φf(ξ), 0)

upon entry in N1 at ξf = O(1). We apply the coordinate transform Ψε in the

neighborhood UE ofMr
ε, which brings system (3.1) into Fenichel normal form (3.10).

For ε = 0, the orbit (φf(ξ), 0) converges exponentially to the equilibrium (p1
f , 0)

and hence lies in Ws(Mr
0). Therefore, we have that Ψ0(φf(ξ), 0) = (U0(ξ), 0, 0),

where U0(ξ) solves (3.23). We denote (Ua,ε(ξ), Va,ε(ξ),Wa,ε(ξ)) = Ψε(φa,ε(ξ)). By

Theorem 4.8 we have ‖(Ua,ε(ξ), Va,ε(ξ),Wa,ε(ξ)) − (U0(ξ), 0, 0)‖ ≤ CεΞτ (ε) for ξ ∈

[ξf ,Ξτ (ε)]. Since the transform Ψε to the Fenichel normal form is Cr-smooth in ε,

we incur at most O(ε) errors when transforming back to the (u, v, w)-coordinates.

Therefore, φa,ε(ξ) is a-uniformly O (εΞτ (ε))-close to (φf(ξ), 0) for ξ ∈ [ξf ,Ξτ (ε)] and

we obtain the estimate (i).

We now prove (ii). From Proposition 4.3.5, for each sufficiently small a0 > 0

we have that for 0 < a < a0 the solution φa,ε leaves the neighborhood UE of the

slow manifold Mr
ε after passing the section Σin

ε , defined in (3.21), where the flow

enters the neighborhood UF governed by the fold dynamics. With appropriate choice

of the neighborhood UE, the case a ≥ a0 bounded away from zero is covered by

standard geometric singular perturbation theory and the exchange lemma. Hence

the estimate (ii) is split into two cases.

We first consider the case a ≥ a0 in which the classical arguments apply. In

this case, the pulse leaves Mr
ε via the Fenichel neighborhood UE, where the flow is
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governed by the Fenichel normal form (3.10). By taking Za,ε = Os(ε−1) to be at

leading order the time at which the pulse solution exits the Fenichel neighborhood

UE of Mr
ε along the back and treating the flow in a neighborhood of the left slow

manifold M`
ε in a similar manner, the estimate (ii) follows from a similar argument

as (i).

We now consider the case a < a0 in which φa,ε leaves UE via the fold neighborhood

UF . We apply the coordinate transform Φε : UF → R3 in the neighborhood UF
bringing system (3.1) into the canonical form (3.13); see §4.3.3. Take Za,ε = Os(ε−1)

to be at leading order the time at which the pulse solution exits the a- and ε-

independent fold neighborhood U ′F ⊂ Φε(UF ) via the section Σout, defined in (3.21);

that is, we assume Φε(φa,ε(Za,ε − ξb)) ∈ Σout, where ξb = O(1). We begin with

establishing (ii) on the interval Jb,− := [Za,ε − Ξτ (ε), Za,ε − ξb].

The back solution (φb(ξ), w1
b) to system (3.3) converges exponentially in back-

wards time to the equilibrium (p1
b, w

1
b) ∈ Mr

0 lying O(a)-close to the fold point

(u∗, 0, w∗). Therefore, the equilibrium (p1
b, w

1
b) is contained in UF , for a > 0 suffi-

ciently small. Thus, transforming to system (3.13) for ε = 0 yields Φ0(p1
b, w

1
b) =

(xb, yb, 0), where xb < 0 and the equilibrium (xb, yb) lies on the critical manifold

Mr
0 = {(x, y) : x ≤ 0, y+x2 +h(x, y, 0, c̆, a) = 0} of the invariant subspace z = 0. In

addition, Φ0(φb(ξ), w1
b) equals the solution (xb, yb, zb(ξ)) to (3.13) for ε = 0, where

we gauge zb(ξ) so that (xb, yb, zb(−ξb)) ∈ Σout.

Recall that by Proposition 4.3.5 Φε(φa,ε(ξ)) enters the fold neighborhood U ′F
via the section Σin

ε and leaves via the section Σout at ξ = Za,ε − ξb. Since the

y-dynamics in (3.13) is O(ε), one readily observes that φa,ε(ξ) lies in UF for ξ ∈

Jb,− = [Za,ε − Ξτ (ε), Za,ε − ξb]. We claim that the pulse solution Φε(φa,ε(ξ)) =



122

(xa,ε(ξ), ya,ε(ξ), za,ε(ξ)) satisfies

‖Φε(φa,ε(ξ))− Φ0(φb(ξ − Za,ε), w1
b)‖ ≤ Cε2/3Ξτ (ε), for ξ ∈ Jb,−. (3.24)

By Proposition 4.3.5, Φε(φa,ε(Za,ε − ξb)) ∈ Σout lies a-uniformly O
(
ε2/3
)
-close to

Φ0(φb(−ξb), w1
b) ∈ Σout. Hence, it holds

Φε (φa,ε(Za,ε − ξb)) =
(
xb +O

(
ε2/3
)
, yb +O

(
ε2/3
)
, z0

)
, (3.25)

a-uniformly, for some z0 > 0. First, since (xb, yb) lies on the critical manifold Mr
0,

we have xb ≤ 0. So, by (3.25) it holds xa,ε(Za,ε − ξb) < Cε2/3. Second, Proposi-

tion 4.3.4 (ii) yields x′a,ε(ξ) > 0 for ξ ∈ Jb,−. Combining these two observations, we

establish xa,ε(ξ) < Cε2/3 for ξ ∈ Jb,−. Hence, by Proposition 4.3.4 (i) (xa,ε(ξ), ya,ε(ξ))

is O(ε2/3)-close to {(x, y) : y + x2 + h(x, y, ε, c̆, a) = 0} for ξ ∈ Jb,−. Thus, one ob-

serves directly from equation (3.13) that |x′a,ε(ξ)| < Cε2/3 and |y′a,ε(ξ)| < Cε for

ξ ∈ Jb,−. Therefore, starting at ξ = Za,ε − ξb and integrating backwards, we have

|xa,ε(ξ)− xa,ε(Za,ε − ξb)| ≤
∫ Za,ε−ξb

ξ

Cε2/3dt ≤ Cε2/3Ξτ (ε)

|ya,ε(ξ)− ya,ε(Za,ε − ξb)| ≤
∫ Za,ε−ξb

ξ

Cεdt ≤ CεΞτ (ε),

(3.26)

for ξ ∈ Jb,−.

Define z̃b(ξ) := zb(ξ − Za,ε). In backwards time, trajectories in (3.13) are expo-

nentially attracted to the invariant manifold z = 0 with rate greater than c̆/2 by

taking UF smaller if necessary. Note that c̆(a, ε) is bounded from below away from

0 by an a-independent constant. Since (xb, yb, zb(ξ)) solves (3.13) for ε = 0 the
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difference za,ε(ξ)− z̃b(ξ) satisfies on Jb,−

z′a,ε − z̃′b = (c̆+O(xa,ε, ya,ε, za,ε, xb, yb, z̃b, ε)) (za,ε − z̃b)

+O ((|xa,ε − xb|+ |ya,ε − yb|+ ε) (|za,ε|+ |z̃b|)) ,

suppressing the ξ-dependence of terms. Hence, using (3.25), (3.26) and the fact that

in backwards time z̃b(ξ) and za,ε(ξ) are exponentially decaying with rate c̆/2, we

deduce that za,ε − z̃b(ξ) satisfies a differential equation of the form

X ′ = b1(ξ)X + b2(ξ), X(Za,ε − ξb) = 0,

where b1(ξ) > c̆/2 > 0 and

|b2(ξ)| ≤ Cε2/3Ξτ (ε)e
−c̆(Za,ε−ξ)/2

for ξ ∈ Jb,−. Hence, we estimate

|za,ε(ξ)− z̃b(ξ)| ≤ Cε2/3Ξτ (ε).

for ξ ∈ Jb,−. Combining this with (3.25) and (3.26), we have that (3.24) holds.

Hence, since the transform Φε is Cr-smooth in a and ε, the pulse solution φa,ε(ξ) is

a-uniformly O
(
ε2/3Ξτ (ε)

)
-close to the back (φb(ξ), w1

b) and the estimate (ii) holds

for ξ ∈ Jb,− = [Za,ε − Ξτ (ε), Za,ε − ξb].

We now follow φa,ε along the back into a (Fenichel) neighborhood of M`
ε. Upon

entry, φa,ε(ξ) is a-uniformly O
(
ε2/3
)
-close to (φb(ξ), w1

b). Combining this with an-

other application of Theorem 4.8, the estimate (ii) follows for ξ ∈ Jb,+ = [Za,ε −

ξb, Za,ε + Ξτ (ε)].
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By taking the a- and ε-independent neighborhoods UF and UE smaller if necessary

(and thus taking a0, ε0 > 0 smaller if necessary) and setting ξ0 sufficiently large

independent of a and ε, we have that φa,ε(ξ) lies in the union UE ∪ UF for ξ ∈

[ξ0, Za,ε−ξ0]. Hence we obtain (iii) along the right branchMr
0. Along the left branch

M`
0, a similar argument combined with Proposition 4.3.6 gives the estimate (iv).

4.4 Essential spectrum

In this section we prove that the essential spectrum of La,ε is contained in the left half

plane and that it is bounded away from the imaginary axis. Moreover, we compute

the intersection points of the essential spectrum with the real axis. Explicit expres-

sions of these points are useful to determine whether there is a second eigenvalue of

La,ε to the right of the essential spectrum.

Proposition 4.4.1. In the setting of Theorem 4.1, let φ̃a,ε(ξ) denote a traveling-

pulse solution to (2.2) with associated linear operator La,ε. The essential spectrum

of La,ε is contained in the half plane Re(λ) ≤ −min{εγ, a}. Moreover, for all λ ∈ C

to the right of the essential spectrum the asymptotic matrix Â0(λ) = Â0(λ; a, ε) of

system (2.3) has precisely one (spatial) eigenvalue of positive real part. Finally, the

essential spectrum intersects with the real axis at points

λ =





−1
2
a− 1

2
εγ ± 1

2

√
(εγ − a)2 − 4ε, for a > εγ + 2

√
ε,

−εγ + c̆2 − 1
2

√
(2c̆2 − εγ + a)2 − (εγ − a)2 + 4ε, for a ≤ εγ + 2

√
ε.

(4.1)

Proof. The essential spectrum is given by the λ-values for which the asymptotic

matrix Â0(λ) of system (2.3) is nonhyperbolic. Thus we are looking for solutions
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λ ∈ C to

0 = det(Â0(λ)− iτ) = ∆
(
−iτ − λ+εγ

c̆

)
+ ε

c̆
, (4.2)

with τ ∈ R and ∆ := −τ 2 − c̆iτ − a − λ. For all τ ∈ R and Re(λ) > −a we have

that Re(∆) < 0. For Re(λ) > −a we rewrite (4.2) as

λ = −γε+ ε∆−1 − ic̆τ.

Taking real parts in the latter equation yields Re(λ) < −γε. This proves the first

assertion.

One readily observes that for sufficiently large λ > 0, the asymptotic matrix

Â0(λ) has precisely one unstable eigenvalue. By continuity this holds for all λ ∈ C

to the right of the essential spectrum. This proves the second assertion.

For the third assertion we are interested in real solutions λ to the characteristic

equation (4.2). Solving (4.2) yields

2λ = −εγ − 2ic̆τ − τ 2 − a±
√

(εγ − a)2 − 4ε+ τ 4 − 2(εγ − a)τ 2. (4.3)

Note that the square root in (4.3) is either real or purely imaginary. If the square

root in (4.3) is real, it holds 0 = Im(λ) = c̆τ yielding τ = 0. We obtain two real

solutions given by (4.1) if and only if (εγ − a)2 − 4ε > 0. If the square root in (4.3)

is purely imaginary it holds

0 = 2Im(λ) = −2c̆τ ±
√
−(εγ − a)2 + 4ε− τ 4 + 2(εγ − a)τ 2,

2λ = 2Re(λ) = −εγ − τ 2 − a,
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yielding

τ 2 = −2c̆2 + εγ − a±
√

(2c̆2 − εγ + a)2 − (εγ − a)2 + 4ε.

Since we have τ 2 ≥ 0, we obtain one real solution given by (4.1) if and only if

(εγ − a)2 − 4ε ≤ 0.

4.5 Point spectrum

In order to prove Theorem 4.2, we need to show that the point spectrum of La,ε to

the right of the essential spectrum consists at most of two eigenvalues. One of these

eigenvalues is the simple translational eigenvalue λ = 0. The other eigenvalue is

real and strictly negative. We will establish that this second eigenvalue is bounded

away from the imaginary axis by εb0 for some b0 > 0. Moreover, we aim to provide

a leading order expression of this eigenvalue in the hyperbolic and nonhyperbolic

regimes to prove Theorem 4.4.

We cover the critical point spectrum by the following three regions (see Fig-

ure 4.5),

R1 = R1(δ) := B(0, δ),

R2 = R2(δ,M) := {λ ∈ C : Re(λ) ≥ −δ, δ ≤ |λ| ≤M},

R3 = R3(M) := {λ ∈ C : |arg(λ)| ≤ 2π/3, |λ| > M},

where δ,M > 0 are a- and ε-independent constants. Recall that the point spectrum

of La,ε is given by the eigenvalues λ of the linear problem (2.3), i.e. the λ-values

such that (2.3) has an exponentially localized solution.
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Figure 4.5: Shown are the regions R1(δ), R2(δ,M), R3(M) considered in the point spectrum
analysis.

We start by showing that for M > 0 sufficiently large, the region R3(M) contains

no point spectrum by rescaling the eigenvalue problem (2.3). The analysis in the

regions R1 and R2 is more elaborate. The first step is to shift the essential spectrum

away from the imaginary axis by introducing an exponential weight η > 0. The

eigenvalues λ of system (2.3) and its shifted counterpart coincide to the right of the

essential spectrum. Thus, it is sufficient to look at the eigenvalues λ of the shifted

system to determine the critical point spectrum of La,ε. We proceed by constructing

a piecewise continuous eigenfunction for any prospective eigenvalue λ to the shifted

problem. Finding eigenvalues then reduces to identifying the values of λ for which

the discontinuous jumps vanish.

4.5.1 The region R3

In this section we show that R3 contains no point spectrum of La,ε. Our approach

is to prove that for λ ∈ R3(M), provided M > 0 is sufficiently large, a rescaled

version of system (2.3) either has an exponential dichotomy on R or an exponential
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trichotomy on R with one-dimensional center direction.

Definition 4.5.1. Let n ∈ Z>0, J ⊂ R an interval and A ∈ C(J,Matn×n(C)).

Denote by T (x, y) the evolution operator of

ϕx = A(x)ϕ. (5.1)

Equation (5.1) has an exponential dichotomy on J with constants K,µ > 0 and

projections P s(x), P u(x) : Cn → Cn, x ∈ J if for all x, y ∈ J it holds

• P u(x) + P s(x) = 1;

• P u,s(x)T (x, y) = T (x, y)P u,s(y);

• ‖T (x, y)P s(y)‖, ‖T (y, x)P u(x)‖ ≤ Ke−µ(x−y) for x ≥ y.

Equation (5.1) has an exponential trichotomy on J with constants K,µ, ν > 0 and

projections P u(x), P s(x), P c(x) : Cn → Cn, x ∈ J if for all x, y ∈ J it holds

• P u(x) + P s(x) + P c(x) = 1;

• P u,s,c(x)T (x, y) = T (x, y)P u,s,c(y);

• ‖T (x, y)P s(y)‖, ‖T (y, x)P u(x)‖ ≤ Ke−µ(x−y) for x ≥ y;

• ‖T (x, y)P c(y)‖ ≤ Keν|x−y|.

Often we use the abbreviations T u,s,c(x, y) = T (x, y)P u,s,c(y) leaving the asso-

ciated projections of the dichotomy or trichotomy implicit. It is well-known that

exponential separation is an important tool in studying spectral properties of trav-

eling waves [49]. For an extensive introduction we refer to [11, 47].
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We proceed by showing that in R3(M), the system (2.3) admits such an expo-

nential separation and converges to the same asymptotic system as ξ → ∞ and

ξ → −∞, and thus can not have nontrivial exponentially localized solutions.

Proposition 4.5.2. In the setting of Theorem 4.1, let φ̂a,ε(ξ) denote a traveling-

pulse solution to (2.2) with associated linear operator La,ε. There exists M > 0,

independent of a and ε, such that the region R3(M) contains no point spectrum of

La,ε.

Proof. Let λ ∈ R3. We rescale system (2.3) by putting ξ̃ =
√
|λ|ξ, ũ = u,

√
|λ|ṽ = v

and w̃ = w. The resulting system is of the form

ψξ = Ǎ(ξ, λ)ψ, Ǎ(ξ, λ) = Ǎ(ξ, λ; a, ε) := Ǎ1(λ) + 1√
|λ|
Ǎ2(ξ, λ),

Ǎ1(λ) = Ǎ1(λ; a, ε) :=




0 1 0

λ
|λ| 0 0

0 0 − λ

c̆
√
|λ|



,

Ǎ2(ξ, λ) = Ǎ2(ξ, λ; a, ε) :=




0 0 0

− f ′(u)√
|λ|

c̆ 1√
|λ|

ε
c̆

0 − εγ
c̆



,

(5.2)

where we dropped the tildes. Note that Ǎ2 is bounded on R × R3 uniformly in

(a, ε) ∈ [0, 1
2
− κ]× [0, ε0]. Our goal is to show that (5.2), and thus (2.3), admits no

nontrivial exponentially localized solutions for λ ∈ R3.

Since we have |arg(λ)| < 2π/3 for all λ ∈ R3, it holds Re(
√
λ/|λ|) > 1/2.

We distinguish between the cases 4|Re(λ)| > c̆
√
|λ| and 4|Re(λ)| ≤ c̆

√
|λ|. First,

suppose 4|Re(λ)| > c̆
√
|λ|, then Ǎ1(λ) is hyperbolic with spectral gap larger than

1/4. Thus, by roughness [11, p. 34] system (5.2) has an exponential dichotomy
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on R for M > 0 sufficiently large (with lower bound independent of a, ε and λ).

Hence, (5.2) admits no nontrivial exponentially localized solutions and λ is not in

the point spectrum of La,ε.

Second, suppose 4|Re(λ)| ≤ c̆
√
|λ|, then Ǎ1(λ) has one (spatial) eigenvalue with

absolute real part ≤ 1/4 and two eigenvalues with absolute real part ≥ 1/2. By

roughness system (5.2) has an exponential trichotomy on R for M > 0 sufficiently

large (with lower bound independent of a, ε and λ). Hence, all exponentially localized

solution must be contained in the one-dimensional center subspace. Fix 0 < k < 1/8.

By continuity the eigenvalues of the asymptotic matrix Ǎ∞(λ) := limξ→±∞ Ǎ(ξ, λ)

are separated in one eigenvalue υ with absolute real part ≤ 1/4 + k and two eigen-

values with absolute real part ≥ 1/2 − k provided M > 0 is sufficiently large (with

lower bound independent of a, ε and λ). Let β be the eigenvector associated with

υ. Using [40, Theorem 1] we conclude that any solution ψ(ξ) in the center subspace

of (5.2) satisfies limξ→±∞ ψ(ξ)e−υξ = b±β for some b± ∈ C\{0} and is therefore only

exponentially localized in case it is trivial. Therefore, λ is not in the point spectrum

of La,ε.

4.5.2 Setup for the regions R1 and R2

As described at the start of this section, we introduce a weight η > 0 and study the

shifted system

ψξ = A(ξ, λ)ψ, A(ξ, λ) = A(ξ, λ; a, ε) := A0(ξ, λ; a, ε)− η, (5.3)

instead of the original eigenvalue problem (2.3) to determine the point spectrum

of La,ε on the right hand side of the essential spectrum in the region R1 ∪ R2. In
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this section we describe the approach in more detail and fully formulate the shifted

eigenvalue problem.

Approach

The structure (3.9) of the singular limit φa,0 of the pulse φa,ε leads to our framework

for the construction of exponentially localized solutions to (5.3) in the regions R1 and

R2. More specifically, depending on the value of ξ ∈ R the pulse φa,ε(ξ) is to leading

order described by the front φf , the back φb or the left or right slow manifolds M`
ε

andMr
ε (see Theorem 4.5). This leads to a partition of the real line in four intervals

given by

If = (−∞, Lε], Ir = [Lε, Za,ε − Lε],

Ib = [Za,ε − Lε, Za,ε + Lε], I` = [Za,ε + Lε,∞),

where Za,ε = Os(ε−1) is defined in Theorem 4.5 and stands for the time the traveling-

pulse solution spends near the right slow manifold Mr
ε, and Lε is given by

Lε := −νlog ε,

with ν > 0 an a- and ε-independent constant. The endpoints of the above intervals

correspond to the ξ-values for which φa,ε(ξ) converges to one of the four non-smooth

corners of the singular concatenation φa,0; see §4.3.4 and Figure 4.3. Recall from

Theorem 4.5 that the pulse φa,ε(ξ) is for ξ in Ir or I` close to the right or left slow

manifold, respectively. Moreover, for ξ in If or Ib the pulse φa,ε(ξ) is approximated

by the front or the back, respectively.
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When the weight η > 0 is chosen appropriately, the spectrum of the coefficient

matrix A(ξ, λ) of system (5.3) has for ξ-values in Ir and I` a consistent splitting

into one unstable and two stable eigenvalues. This splitting along the slow man-

ifolds guarantees the existence of exponential dichotomies on the intervals Ir and

I`. Solutions to (5.3) can be decomposed in terms of these dichotomies. To obtain

suitable expressions for the solutions in the other two intervals If and Ib we have to

distinguish between the regions R1 and R2.

We start with describing the set-up for the region R1. For ξ ∈ If we establish

a reduced eigenvalue problem by setting ε and λ to 0 in system (5.3), while ap-

proximating φa,ε(ξ) with the front φf(ξ). The reduced eigenvalue problem admits

exponential dichotomies on both half-lines. The full eigenvalue problem (5.3) can

be seen as a (λ, ε)-perturbation of the reduced eigenvalue problem. Hence, one can

construct solutions to (5.3) using a variation of constants approach on intervals

If,− := (−∞, 0], If,+ := [0, Lε],

which partition If and correspond to the positive and negative half-lines in the sin-

gular limit. The perturbation term is kept under control by taking δ > 0 and ε > 0

sufficiently small. Similarly, we establish a reduced eigenvalue problem along the

back and one can construct solutions to (5.3) using a variation of constants approach

on intervals

Ib,− := [Za,ε − Lε, Za,ε], Ib,+ := [Za,ε, Za,ε + Lε].

In summary, we obtain variation of constants formulas for the solutions to (5.3) on

the four intervals If,± and Ib,± and expressions for the solutions to (5.3) in terms of

exponential dichotomies on the two intervals Ir and I`. Matching of these expres-
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sions yields for any λ ∈ R1 a piecewise continuous, exponentially localized solution

to (5.3) which has jumps at ξ = 0 and ξ = Za,ε. Finding eigenvalues then reduces

to locating λ ∈ R1 for which the two jumps vanish. Equating the jumps to zero

leads to an analytic matching equation that is to leading order a quadratic in λ.

The two solutions to this equation are the two eigenvalues of the shifted eigenvalue

problem (5.3) in R1(δ).

We know a priori that λ = 0 is a solution to the matching equation by trans-

lational invariance. The associated eigenfunction of (5.3) is the weighted derivative

e−ηξφ′a,ε(ξ) of the pulse. This information can be used to simplify some of the ex-

pressions in the matching equation. In the hyperbolic regime, this leads to a leading

order expression of the second nonzero eigenvalue. In the nonhyperbolic regime the

expressions in the matching equations relate to the dynamics at the fold point. One

needs detailed information about the dynamics in the blow-up coordinates to deter-

mine the sign and magnitude of these expressions, which eventually yield that the

second eigenvalue is strictly negative and smaller than b0ε for some b0 > 0 indepen-

dent of a and ε. In the regime K0a
3 < ε, a leading order expression for the second

eigenvalue can be determined, which is of the order O(ε2/3).

Finally, we describe the set-up in the region R2. We establish reduced eigenvalue

problems for λ ∈ R2 by setting ε to 0 in (5.3), while approximating φa,ε(ξ) with

(a translate of) the front φf(ξ) or the back φb(ξ). However, we do keep the λ-

dependence in contrast to the reduction done in the region R1. In this case the

reduced eigenvalue problems admit exponential dichotomies on the whole real line.

By roughness these dichotomies transfer to exponential dichotomies of (5.3) on the

two intervals If and Ib. Thus, the real line is partitioned in four intervals If , Ib, Ir

and I` such that in each interval (5.3) admits an exponential dichotomy governing

the solutions. By comparing the associated projections at the endpoints of these
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intervals, we show that for λ ∈ R2(δ,M) the shifted eigenvalue problem (5.3) can

not have a nontrivial exponentially localized solution for any M > 0 and each δ > 0

sufficiently small.

Formulation of the shifted eigenvalue problem

In this section we determine η, ν > 0 such that the shifted system (5.3) admits

exponential dichotomies on the intervals Ir = [Lε, Za,ε−Lε] and I` = [Za,ε +Lε,∞),

where Lε = −ν log ε and Za,ε is as in Theorem 4.5. Recall that for ξ-values in Ir

and I` the pulse φa,ε(ξ) is close to the right and left slow manifold, respectively. The

following technical result shows that for appropriate values of η the spectrum of the

coefficient matrix A(ξ, λ) of system (5.3) has for ξ-values in Ir and I` a consistent

splitting into one unstable and two stable eigenvalues.

Lemma 4.5.3. Let κ,M > 0 and define for σ0 > 0

U(σ0, κ) :=
{

(a, u) ∈ R2 : a ∈
[
0, 1

2
− κ
]
,

u ∈
[

1
3
(2a− 1)− σ0, σ0

]
∪
[

2
3
(a+ 1)− σ0, 1 + σ0

]}
.

Take η = 1
2

√
2κ > 0. For σ0, δ > 0 sufficiently small, there exists ε0 > 0 and

0 < µ ≤ η such that the matrix

Â = Â(u, λ, a, ε) :=




−η 1 0

λ− f ′(u) c̆− η 1

ε
c̆

0 −λ+εγ
c̆
− η



,

has for (a, u) ∈ U(σ0, κ), λ ∈ (R1(δ)∪R2(δ,M)) and ε ∈ [−ε0, ε0] a uniform spectral

gap larger than µ > 0 and precisely one eigenvalue of positive real part.
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Proof. The matrix Â(u, λ, a, ε) is nonhyperbolic if and only if

0 = det(Â(u, λ, a, ε)− iτ)

=
(
η2 − τ 2 + 2iτη − c̆iτ + f ′(u)− λ− c̆η

) (
−iτ − λ+εγ

c̆
− η
)

+ ε
c̆
,

is satisfied for some τ ∈ R. Thus, all λ-values for which Â(u, λ, a, 0) is nonhyperbolic

are given by the union of a line and a parabola

{−c̆0η + ic̆0τ : τ ∈ R} ∪
{
η2 − τ 2 + 2iτη − c̆0iτ + f ′(u)− c̆0η : τ ∈ R

}
. (5.4)

Recall that c̆0 = c̆0(a) is given by
√

2
(

1
2
− a
)
. For any (a, u) ∈ U(σ0, κ), it holds

c̆0 = c̆0(a) ≥
√

2κ and f ′(u) = −3u2+2(a+1)u−a ≤ 3σ0. Hence, for (a, u) ∈ U(σ0, κ)

the union (5.4) lies in the half plane

Re(λ) ≤ max
{
−c̆0η, η

2 −
√

2κη + 3σ0

}
.

Take η = 1
2

√
2κ and 3σ0 < 1

4
κ2. We deduce that (5.4) is contained in Re(λ) ≤

−1
4
κ2 < 0 for any (a, u) ∈ U(σ0, κ). Hence, provided δ > 0 is sufficiently small,

the union (5.4) doesn’t intersect the compact set R1(δ) ∪ R2(δ,M) for any (a, u) in

the compact set U(σ0, κ). By continuity we conclude that there exists ε0 > 0 such

that the matrix Â(u, λ, a, ε) has for (a, u) ∈ U(σ0, κ), λ ∈ (R1(δ) ∪ R2(δ,M)) and

ε ∈ [−ε0, ε0] a uniform spectral gap larger than some µ > 0. Note that −η is in the

spectrum of Â(0, 0, a, 0). Therefore, we must have µ ≤ η.

In addition, one readily observes that for sufficiently large λ > 0 the matrix

Â(u, λ, a, 0) has precisely one eigenvalue of positive real part. On the other hand,

the union (5.4) lies in the half plane Re(λ) ≤ −1
4
κ2 < 0 for (a, u) ∈ U(σ0, κ). So, by

continuity Â(u, λ, a, 0) has precisely one eigenvalue of positive real part for λ ∈ C
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lying to the right of (5.4). Taking δ, ε0 > 0 sufficiently small, we conclude that

Â(u, λ, a, ε) has precisely one eigenvalue of positive real part for (a, u) ∈ U(σ0, κ),

λ ∈ (R1(δ) ∪R2(δ,M)) and ε ∈ [−ε0, ε0].

We are now able to state a suitable version of the shifted eigenvalue problem (5.3).

Thus, we started with κ > 0 and K > K∗, where K∗ > 0 is as in Theorem 4.1.

Then, Theorem 4.1 provided us with an ε0 > 0 such that for any (a, ε) ∈ [0, 1
2
−κ]×

(0, ε0) satisfying ε < Ka2 there exists a traveling-pulse solution φ̃a,ε(ξ) to (2.2). In

Proposition 4.5.2 we obtained M > 0, independent of a and ε, such that the region

R3(M) contains no point spectrum of the associated linear operator La,ε. We fix

η := 1
2

√
2κ > 0,

and take ν > 0 an a- and ε-independent constant satisfying

ν ≥ max
{

2
µ
, 2
√

2
}
> 0, (5.5)

where µ > 0 is as in Lemma 4.5.3. The shifted eigenvalue problem is given by

ψξ = A(ξ, λ)ψ,

A(ξ, λ) = A(ξ, λ; a, ε) :=




−η 1 0

λ− f ′(ua,ε(ξ)) c̆− η 1

ε
c̆

0 −λ+εγ
c̆
− η



,

(λ, a, ε) ∈ (R1(δ) ∪R2(δ,M))× [0, 1
2
− κ]× (0, ε0), ε < Ka2,

(5.6)

where ua,ε(ξ) denotes the u-component of the pulse φ̃a,ε(ξ) and δ > 0 is as in

Lemma 4.5.3. In the next section we will show that with the above choice of η, δ,M

and ν system (5.6) admits for λ ∈ R1(δ) ∪R2(δ,M) exponential dichotomies on the
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intervals Ir = [Lε, Za,ε − Lε] and I` = [Za,ε + Lε,∞), where

Lε = −ν log ε,

and Za,ε is as in Theorem 4.5. However, before establishing these dichotomies, we

prove that it is indeed sufficient to study the shifted eigenvalue problem (5.6) to

determine the critical point spectrum of La,ε in R1 ∪R2.

Proposition 4.5.4. In the setting of Theorem 4.1, let φ̃a,ε(x, t) denote a traveling-

pulse solution to (2.2) with associated linear operator La,ε. A point λ ∈ R1∪R2 lying

to the right of the essential spectrum of La,ε is in the point spectrum of La,ε if and

only if it is an eigenvalue of the shifted eigenvalue problem (5.6).

Proof. The spectra of the asymptotic matrices Â0(λ; a, ε) and Â(0, λ, a, ε) of sys-

tems (2.3) and (5.6), respectively, are related via σ(Â(0, λ, a, ε)) = σ(Â0(λ; a, ε))−η.

Moreover, both Â(0, λ, a, ε) and Â0(λ; a, ε) have precisely one (spatial) eigenvalue of

positive real part for λ ∈ R1 ∪ R2 to the right of the essential spectrum of La,ε by

Proposition 4.4.1 and Lemma 4.5.3. Therefore, for λ ∈ R1 ∪ R2 to the right of the

essential spectrum of La,ε, system (2.3) admits a nontrivial exponentially localized

solution ψ(ξ) if and only if system (5.6) admits one given by e−ηξψ(ξ).

Exponential dichotomies along the right and left slow manifolds

For ξ-values in I` or Ir the pulse φa,ε(ξ) is by Theorem 4.5 close to the right or left

slow manifolds on which the dynamics is of the order O(ε). Hence, for ξ ∈ I`∪Ir the

coefficient matrix A(ξ, λ) of the shifted eigenvalue problem (5.6) has slowly varying

coefficients and is pointwise hyperbolic by Lemma 4.5.3. It is well-known that such

systems admit exponential dichotomies; see [11, Proposition 6.1]. We will prove
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below that the associated projections can be chosen to depend analytically on λ

and are close to the spectral projections on the (un)stable eigenspaces of A(ξ, λ).

As described in §4.5.2 the exponential dichotomies provide the framework for the

construction of solutions to (5.6) on Ir and I`. The approximations of the dichotomy

projections by the spectral projections are needed to match solutions to (5.6) on Ir

and I` to solutions on the other two intervals If and Ib.

Proposition 4.5.5. For each sufficiently small a0 > 0, there exists ε0 > 0 such

that system (5.6) admits for 0 < ε < ε0 exponential dichotomies on the intervals

Ir = [Lε, Za,ε − Lε] and I` = [Za,ε + Lε,∞) with constants C, µ > 0, where µ > 0

is as in Lemma 4.5.3. The associated projections Qu,sr,` (ξ, λ) = Qu,sr,` (ξ, λ; a, ε) are

analytic in λ on R1 ∪R2 and are approximated at the endpoints Lε, Za,ε ± Lε by

‖[Qsr − P ](Lε, λ)‖ ≤ Cε|log ε|,

‖[Qsr − P ](Za,ε − Lε, λ)‖ , ‖[Qs` − P ](Za,ε + Lε, λ)‖ ≤ Cερ(a)|log ε|,

where ρ(a) = 1 for a ≥ a0, ρ(a) = 2
3

for a < a0 and P(ξ, λ) = P(ξ, λ; a, ε) are

the spectral projections onto the stable eigenspace of the coefficient matrix A(ξ, λ)

of (5.6). In the above C > 0 is a constant independent of λ, a and ε.

Proof. We begin by proving the existence of the desired exponential dichotomy on

the interval Ir. The construction on the interval I` is similar, and we outline the

differences only. Denote L̂ε := Lε/2 = −ν
2

log ε. We introduce a smooth partition of
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unity χi : R→ [0, 1], i = 1, 2, 3, satisfying

3∑

i=1

χi(ξ) = 1, |χ′i(ξ)| ≤ 2, ξ ∈ R,

supp(χ1) ⊂ (−∞, L̂ε),

supp(χ2) ⊂ (L̂ε − 1, Za,ε − L̂ε + 1),

supp(χ3) ⊂ (Za,ε − L̂ε,∞).

The equation

ψξ = A(ξ, λ)ψ, (5.7)

with

A(ξ, λ) = A(ξ, λ; a, ε) := χ1(ξ)A(L̂ε, λ) + χ2(ξ)A(ξ, λ) + χ3(ξ)A(Za,ε − L̂ε, λ),

coincides with (5.6) on Ir. By Theorem 4.5 (iii) there exists, for any σ0 > 0 suffi-

ciently small, a constant ε0 > 0 such that for ε ∈ (0, ε0) it holds

‖u′a,ε(ξ)‖ ≤ σ0, ua,ε(ξ) ∈
[
u1

b − σ0, 1 + σ0

]
=
[

2
3
(a+ 1)− σ0, 1 + σ0

]
. (5.8)
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for ξ ∈ [L̂ε − 1, Za,ε − L̂ε + 1]. We calculate

∂ξA(ξ, λ) =





χ2(ξ)∂ξA(ξ, λ), ξ ∈ (L̂ε, Za,ε − L̂ε),

χ′2(ξ)(A(ξ, λ)− A(L̂ε, λ))

+ χ2(ξ)∂ξA(ξ, λ), ξ ∈ [L̂ε − 1, L̂ε],

χ′2(ξ)(A(ξ, λ)− A(Za,ε − L̂ε, λ))

+ χ2(ξ)∂ξA(ξ, λ), ξ ∈ [Za,ε − L̂ε, Za,ε − L̂ε + 1],

0, otherwise.

(5.9)

First, we have that ‖∂ξA(ξ, λ)‖ ≤ Cσ0 on R× (R1 ∪R2) by the mean value theorem

and identities (5.8) and (5.9). Second, by Lemma 4.5.3 and (5.8) the matrix A(ξ, λ)

is hyperbolic on R× (R1 ∪R2) with a- and ε-uniform spectral gap larger than µ > 0

. Third, A(ξ, λ) can be bounded on R× (R1 ∪R2) uniformly in a and ε. Combining

these three items with [11, Proposition 6.1] gives that system (5.7) has, provided

σ0 > 0 is sufficiently small, an exponential dichotomy on R with constants C, µ > 0,

independent of λ, a and ε, and projections Qu,sr (ξ, λ) = Qu,sr (ξ, λ; a, ε). Since (5.7)

coincides with (5.6) on [L̂ε, Za,ε − L̂ε], we have established the desired exponential

dichotomy of (5.6) on Ir with constants C, µ > 0 and projections Qu,sr (ξ, λ).

The next step is to prove that the projections Qu,sr (ξ, λ) are analytic in λ on

R1 ∪ R2. Any solution to the constant coefficient system ψξ = A(L̂ε, λ)ψ that

converges to 0 as ξ → −∞must be in the kernel of the spectral projection P(L̂ε, λ) on

the stable eigenspace of A(L̂ε, λ). Hence, it holds R(1−P(L̂ε, λ)) = R(Qur (L̂ε−1, λ))

by construction of (5.7). Moreover, the spectral projection P(L̂ε, λ) is analytic in λ,

since A(L̂ε, λ) is analytic in λ. Thus, R(Qur (L̂ε − 1, λ)) and similarly R(Qsr(Za,ε −

L̂ε+1, λ)) must be analytic subspaces in λ. Denote by T (ξ, ξ̂, λ) = T (ξ, ξ̂, λ; a, ε) the
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evolution of (5.7), which is analytic in λ. We conclude that both ker(Qsr(L̂ε − 1, λ))

and

R(Qsr(L̂ε − 1, λ)) = R(T (L̂ε − 1, Za,ε − L̂ε + 1, λ)Qsr(Za,ε − L̂ε + 1, λ)),

are analytic subspaces. Therefore, the projection Qsr(L̂ε − 1, λ) (and thus any pro-

jection Qu,sr (ξ, λ), ξ ∈ R) is analytic in λ on R1 ∪R2.

Finally, we shall prove that the projections Qsr(ξ, λ) are close to the spectral

projections P(ξ, λ) on the stable eigenspace of A(ξ, λ) at the points ξ = Lε, Za,ε−Lε.

First, observe that we have,

|u′a,ε(ξ)| ≤ Cε|log ε|, ξ ∈ [L̂ε, 3L̂ε],

|u′a,ε(ξ)| ≤ Cερ(a)|log ε|, ξ ∈ [Za,ε − 3L̂ε, Za,ε − L̂ε],
(5.10)

by Theorem 4.5 (i)-(ii). Consider the family of constant coefficient systems

ψξ = Â(u, λ)ψ, (5.11)

parameterized over u ∈ R, where Â(u, λ) = Â(u, λ; a, ε) is defined in Lemma 4.5.3.

Denote by P̂(u, λ) = P̂(u, λ; a, ε) the spectral projection on the stable eigenspace

of Â(u, λ) and by T̂ (ξ, ξ̂, u, λ) = T̂ (ξ, ξ̂, u, λ; a, ε) the evolution operator of (5.11).

Thus, we have Â(ua,ε(ξ), λ) = A(ξ, λ) and P̂(ua,ε(ξ), λ) = P(ξ, λ) for ξ ∈ R. Let

b1 ∈ R(P(Lε, λ)). Observe that

ψ̂(ξ) := P(ξ, λ)T̂ (ξ, Lε, ua,ε(ξ), λ)b1,
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satisfies the inhomogeneous equation

ψξ = A(ξ, λ)ψ + ĝ(ξ), ĝ(ξ) := ∂u P̂(u, λ)T̂ (ξ, Lε, u, λ)
∣∣∣
u=ua,ε(ξ)

u′a,ε(ξ)b1.

By the variation of constants formula there exists b2 ∈ C3 such that

ψ̂(ξ) = T (ξ, Lε + L̂ε, λ)b2 +

∫ ξ

Lε

Qsr(ξ, λ)T (ξ, ξ̂, λ)ĝ(ξ̂)dξ̂

+

∫ ξ

Lε+L̂ε

Qur (ξ, λ)T (ξ, ξ̂, λ)ĝ(ξ̂)dξ̂,

(5.12)

for ξ ∈ [Lε, Lε + L̂ε]. By [47, Lemma 1.1] and (5.10) we have

‖ψ̂(ξ)‖ ≤ Ce−µ(ξ−Lε)‖b1‖, ‖ĝ(ξ)‖ ≤ Cε|log ε|e−µ(ξ−Lε)‖b1‖, (5.13)

for ξ ∈ [Lε, Lε+L̂ε]. Evaluating (5.12) at Lε+L̂ε while using (5.13), we derive ‖b2‖ ≤

Cε|log ε|‖b1‖, since ν ≥ µ/2 by (5.5). Thus, applying Qur (Lε, λ) to (5.12) at Lε

yields the bound ‖Qur (Lε, λ)b1‖ ≤ Cε|log ε|‖b1‖ for every b1 ∈ R(P(Lε, λ)) by (5.13).

Similarly, one shows that for every b1 ∈ ker(P(Lε, λ)) we have ‖Qsr(Lε, λ)b1‖ ≤

Cε|log ε|‖b1‖. Thus, we obtain

‖[Qsr − P ](Lε, λ)‖ ≤ ‖[QurP ](Lε, λ)‖+ ‖[Qsr(1− P)](Lε, λ)‖ ≤ Cε|log ε|.

The bound at Za,ε − Lε is obtain analogously.

In a similar way one obtains for λ ∈ R1 ∪ R2 the desired exponential dichotomy

for (5.6) on I` with constants C, µ > 0 and projections Qu,s` (ξ, λ). The only fun-

damental difference in the analysis is that the analyticity of the range of Qs`(ξ, λ)

is immediate, since the asymptotic system limξ→∞A(ξ, λ) is analytic in λ, see [50,

Theorem 1].
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4.5.3 The region R1(δ)

A reduced eigenvalue problem

As described in §4.5.2 we establish for ξ in If or Ib a reduced eigenvalue problem by

setting ε and λ to 0 in system (5.6), while approximating φa,ε(ξ) with (a translate of)

the front φf(ξ) or the back φb(ξ), respectively. Thus, the reduced eigenvalue problem

reads

ψξ = Aj(ξ)ψ,

Aj(ξ) = Aj(ξ; a) :=




−η 1 0

−f ′(uj(ξ)) c̆0 − η 1

0 0 −η



, j = f, b,

(5.14)

where uj(ξ) denotes the u-component of φj(ξ) and a is in [0, 1
2
−κ]. Now, for ξ-values

in If = (−∞, Lε], problem (5.6) can be written as the perturbation

ψξ = (Af(ξ) +Bf(ξ, λ))ψ,

Bf(ξ, λ) = Bf(ξ, λ; a, ε) :=




0 0 0

λ− [f ′(ua,ε(ξ))− f ′(uf(ξ))] c̆− c̆0 0

ε
c̆

0 −λ+εγ
c̆



.

(5.15)

To define (5.6) as a proper perturbation of (5.14) along the back, we introduce the

translated version of (5.6)

ψξ = A(ξ + Za,ε, λ)ψ. (5.16)



144

For ξ-values in [−Lε, Lε] problem (5.16) can be written as the perturbation

ψξ = (Ab(ξ) +Bb(ξ, λ))ψ,

Bb(ξ, λ) = Bb(ξ, λ; a, ε) :=




0 0 0

λ− [f ′(ua,ε(ξ + Za,ε))− f ′(ub(ξ))] c̆− c̆0 0

ε
c̆

0 −λ+εγ
c̆



.

(5.17)

The reduced eigenvalue problem (5.14) has an upper triangular block structure.

Consequently, system (5.14) leaves the subspace C2 × {0} ⊂ C3 invariant and the

dynamics of (5.14) on that space is given by

ϕξ = Cj(ξ)ϕ,

Cj(ξ) = Cj(ξ; a) :=




−η 1

−f ′(uj(ξ)) c̆0 − η


 , j = f, b.

(5.18)

Before studying the full reduced eigenvalue problem (5.14) we study the dynamics on

the invariant subspace. We observe that system (5.18) has a one-dimensional space

of bounded solution spanned by

ϕj(ξ) = ϕj(ξ; a) := e−ηξφ′j(ξ), j = f, b.

Therefore, the adjoint system

ϕξ = −Cj(ξ)∗ϕ, j = f, b, (5.19)
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also has a one-dimensional space of bounded solution spanned by

ϕj,ad(ξ) = ϕj,ad(ξ; a) :=




v′j(ξ)

−u′j(ξ)


 e(η−c̆0)ξ, j = f, b. (5.20)

We emphasize that ϕj and ϕj,ad can be determined explicitly using the expressions

in (3.6) for φj, j = f, b. We establish exponential dichotomies for subsystem (5.18)

on both half-lines.

Proposition 4.5.6. Let κ > 0. For each a ∈ [0, 1
2
− κ], system (5.18) admits

exponential dichotomies on both half-lines R± with a-independent constants C, µ > 0

and projections Πu,s
j,±(ξ) = Πu,s

j,±(ξ; a), j = f, b. Here, µ > 0 is as in Lemma 4.5.3 and

the projections can be chosen in such a way that

R(Πs
j,+(0)) = Span(ϕj(0)) = R(Πu

j,−(0)),

R(Πu
j,+(0)) = Span(ϕj,ad(0)) = R(Πs

j,−(0)), j = f, b.

(5.21)

Proof. Define the asymptotic matrices Cj,±∞ = Cj,±∞(a) := limξ→±∞Cj(ξ) of (5.18)

for j = f, b. Consider the matrix Â(u, λ, a, ε) from Lemma 4.5.3. The spectra

of Cf,−∞ and Cf,∞ are contained in the spectra of Â(0, 0, a, 0) and Â(1, 0, a, 0), re-

spectively. Similarly, we have the spectral inclusions σ(Cb,−∞) ⊂ σ(Â(u1
b, 0, a, 0))

and σ(Cb,∞) ⊂ σ(Â(u0
b, 0, a, 0)). By Lemma 4.5.3 the matrices Â(u, 0, a, 0) have for

u = 0, 1, u0
b, u

1
b and a ∈ [0, 1

2
−κ] a uniform spectral gap larger than µ > 0. Thus, the

same holds for the asymptotic matrices Cj,±∞, j = f, b. Hence, it follows from [47,

Lemmata 1.1 and 1.2] that system (5.18) admits exponential dichotomies on both

half-lines with constants C, µ > 0 and projections as in (5.21). By compactness of

[0, 1
2
− κ] the constant C > 0 can be chosen independent of a.

We shift our focus to the full reduced eigenvalue problem (5.14). One readily
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observes that

ωj(ξ) = ωj(ξ; a) :=




ϕj(ξ)

0


 =




e−ηξφ′j(ξ)

0


 , j = f, b, (5.22)

is a bounded solution to (5.14). Moreover, using variation of constants formulas

the exponential dichotomies of the subsystem (5.18) can be transferred to the full

system (5.14).

Corollary 4.5.7. Let κ > 0. For each a ∈ [0, 1
2
− κ] system (5.14) admits expo-

nential dichotomies on both half-lines R± with a-independent constants C, µ > 0 and

projections Qu,s
j,±(ξ) = Qu,s

j,±(ξ; a), j = f, b, given by

Qs
j,+(ξ) =




Πs
j,+(ξ)

∫ ξ
∞ e

η(ξ−ξ̂)Φu
j,+(ξ, ξ̂)Fdξ̂

0 1


 = 1−Qu

j,+(ξ), ξ ≥ 0,

Qs
j,−(ξ) =




Πs
j,−(ξ)

∫ ξ
0
eη(ξ−ξ̂)Φu

j,−(ξ, ξ̂)Fdξ̂

0 1


 = 1−Qu

j,−(ξ), ξ ≤ 0,

(5.23)

where F is the vector ( 0
1 ) and Φu,s

j,±(ξ, ξ̂) = Φu,s
j,±(ξ, ξ̂; a) denotes the (un)stable evo-

lution of system (5.18) under the exponential dichotomies established in Proposi-

tion 4.5.6. Here, µ > 0 is as in Lemma 4.5.3 and the projections satisfy

R(Qu
j,+(0)) = Span(Ψ1,j), R(Qs

j,+(0)) = Span(ωj(0),Ψ2),

R(Qu
j,−(0)) = Span(ωj(0)), R(Qs

j,−(0)) = Span(Ψ1,j,Ψ2),

(5.24)

where ωj is defined in (5.22) and

Ψ1,j = Ψ1,j(a) :=




ϕj,ad(0)

0


 , Ψ2 :=




0

0

1



, j = f, b, (5.25)
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with ϕj,ad(ξ) defined in (5.20).

Proof. By variation of constants, the evolution Tj(ξ, ξ̂) = Tj(ξ, ξ̂; a) of the triangular

block system (5.14) is given by

Tj(ξ, ξ̂) =




Φj(ξ, ξ̂)
∫ ξ
ξ̂

Φj(ξ, z)Fe−η(z−ξ̂)dz

0 e−η(ξ−ξ̂)


 , j = f, b.

Hence, using Proposition 4.5.6, one readily observes that the projections defined

in (5.23) yield exponential dichotomies on both half-lines for (5.14) with constants

C,min{µ, η} > 0, where C > 0 is independent of a. The result follows, since µ ≤ η

by Lemma 4.5.3.

Along the front

In the previous section we showed that the eigenvalue problem (5.6) can be written as

a (λ, ε)-perturbation (5.15) of the reduced eigenvalue problem (5.14). Moreover, we

established an exponential dichotomy of (5.14) on (−∞, 0] in Corollary 4.5.7. Hence,

solutions to (5.6) can be expressed by a variation of constant formula on (−∞, 0].

This leads to an exit condition at ξ = 0 for exponentially decaying solutions to (5.6)

in backward time.

Eventually, our plan is to also obtain entry and exit conditions for solutions

to (5.6) on [0, Za,ε] and for exponentially decaying solutions to (5.6) in forward time

on [Za,ε,∞). As outlined in §4.5.2 equating these exit and entry conditions at ξ =

0 and ξ = Za,ε leads to a system of equations that can be reduced to a single

analytic matching equation, whose solutions are λ-values for which (5.6) admits an

exponentially localized solution.
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Simultaneously, we evaluate the obtained exit condition at λ = 0 using that we

know a priori that the weighted derivative e−ηξφ′a,ε(ξ) of the pulse is the eigenfunction

of (5.6) at λ = 0. As described in §4.5.2 this leads to extra information needed to

simplify the expressions in the final matching equation.

Proposition 4.5.8. Let Bf be as in (5.15) and ωf as in (5.22). Denote by T u,sf,−(ξ, ξ̂) =

T u,sf,−(ξ, ξ̂; a) the (un)stable evolution of system (5.14) under the exponential dichotomy

on If,− = (−∞, 0] established in Corollary 4.5.7 and by Qu,s
f,−(ξ) = Qu,s

f,−(ξ; a) the as-

sociated projections.

(i) There exists δ, ε0 > 0 such that for λ ∈ R1(δ) and ε ∈ (0, ε0) any solution

ψf,−(ξ, λ) to (5.6) decaying exponentially in backward time satisfies

ψf,−(0, λ) = βf,−ωf(0) + βf,−

∫ 0

−∞
T sf,−(0, ξ̂)Bf(ξ̂, λ)ωf(ξ̂)dξ̂ +Hf,−(βf,−),

Qu
f,−(0)ψf,−(0, λ) = βf,−ωf(0),

(5.26)

for some βf,− ∈ C, where Hf,− is a linear map satisfying the bound

‖Hf,−(βf,−)‖ ≤ C(ε|log ε|+ |λ|)2|βf,−|,

with C > 0 independent of λ, a and ε. Moreover, ψf,−(ξ, λ) is analytic in λ.

(ii) The derivative φ′a,ε of the pulse solution satisfies

Qs
f,−(0)φ′a,ε(0) =

∫ 0

−∞
T sf,−(0, ξ̂)Bf(ξ̂, 0)e−ηξ̂φ′a,ε(ξ̂)dξ̂. (5.27)

Proof. We begin with (i). Take 0 < µ̂ < µ with µ > 0 as in Lemma 4.5.3. Denote by

Cµ̂(If,−,C3) the space of µ̂-exponentially decaying, continuous functions If,− → C3
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endowed with the norm ‖ψ‖µ̂ = supξ≤0 ‖ψ(ξ)‖eµ̂|ξ|. By Theorem 4.5 (i) we bound

the perturbation matrix Bf by

‖Bf(ξ, λ; a, ε)‖ ≤ C(ε|log ε|+ |λ|), (5.28)

for ξ ∈ If,−. Let β ∈ C and λ ∈ R1(δ). Combining (5.28) with Corollary 4.5.7 the

function Gβ,λ : Cµ̂(If,−,C3)→ Cµ̂(If,−,C3) given by

Gβ,λ(ψ)(ξ) = βωf(ξ) +

∫ ξ

0

T uf,−(ξ, ξ̂)Bf(ξ̂, λ)ψ(ξ̂)dξ̂

+

∫ ξ

−∞
T sf,−(ξ, ξ̂)Bf(ξ̂, λ)ψ(ξ̂)dξ̂,

is a well-defined contraction mapping for each δ, ε > 0 sufficiently small (with upper

bound independent of β and a). By the Banach Contraction Theorem there exists a

unique fixed point ψf,− ∈ Cµ̂(If,−,C3) satisfying

ψf,− = Gβ,λ(ψf,−), ξ ∈ If,−. (5.29)

Observe that ψf,−(ξ, λ) is analytic in λ, because the perturbation matrix Bf(ξ, λ)

is analytic in λ. Moreover, ψf,− is linear in β by construction. Hence, using esti-

mate (5.28) we derive the bound

‖ψf,−(ξ, λ)− βωf(ξ)‖ ≤ C|β|(ε|log ε|+ |λ|), (5.30)

for ξ ∈ If,−.

The solutions to the family of fixed point equations (5.29) parameterized over

β ∈ C form a one-dimensional space of exponentially decaying solutions as ξ →

−∞ to (5.6). By Lemma 4.5.3 the asymptotic matrix Â(0, λ, a, ε) of system (5.6)
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has precisely one eigenvalue of positive real part. Therefore, the space of decaying

solutions in backward time to (5.6) is one-dimensional. This proves that any solution

ψf,−(ξ, λ) to (5.6) that converges to 0 as ξ → −∞, satisfies (5.29) for some β ∈ C.

Evaluating (5.29) at ξ = 0 and using estimates (5.28) and (5.30) yields (5.26).

For (ii), note that e−ηξφ′a,ε(ξ) is an eigenfunction of (5.6) at λ = 0. Therefore,

e−ηξφ′a,ε(ξ) satisfies the fixed point identity (5.29) at λ = 0 for some β ∈ C and

identity (5.27) follows.

Passage near the right slow manifold

Using the exponential dichotomies of system (5.14) established in Corollary 4.5.7 one

can construct expressions for solutions to (5.6) via a variation of constants approach

on the intervals If,+ = [0, Lε] and Ib,− = [Za,ε − Lε, Za,ε]. Moreover, the exponential

dichotomies established in Proposition 4.5.5 govern the solutions to (5.6) on Ir =

[Lε, Za,ε−Lε]. Matching the solutions on these three intervals we obtain the following

entry and exit conditions at ξ = 0 and ξ = Za,ε.

Proposition 4.5.9. Let Bj be as in (5.15) and (5.17), Ψ2 as in (5.25) and ωj as

in (5.22) for j = f, b. Denote by T u,sj,±(ξ, ξ̂) = T u,sj,±(ξ, ξ̂; a) the (un)stable evolution of

system (5.14) under the exponential dichotomies established in Corollary 4.5.7 and

by Qu,s
j,±(ξ) = Qu,s

j,±(ξ; a) the associated projections for j = f, b.

(i) For each sufficiently small a0 > 0, there exists δ, ε0 > 0 such that for λ ∈ R1(δ)
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and ε ∈ (0, ε0) any solution ψsl(ξ, λ) to (5.6) satisfies

ψsl(0, λ) = βfωf(0) + ζfQ
s
f,+(0)Ψ2

+ βf

∫ 0

Lε

T uf,+(0, ξ̂)Bf(ξ̂, λ)ωf(ξ̂)dξ̂ +Hf(βf , ζf , βb),

Qu
f,−(0)ψsl(0, λ) = βfωf(0),

(5.31)

and

ψsl(Za,ε, λ) = βbωb(0) + βb

∫ 0

−Lε
T sb,−(0, ξ̂)Bb(ξ̂, λ)ωb(ξ̂)dξ̂

+Hb(βf , ζf , βb),

Qu
b,−(0)ψsl(Za,ε, λ) = βbωb(0),

(5.32)

for some βf , βb, ζf ∈ C, where Hf and Hb are linear maps satisfying the bounds

‖Hf(βf , ζf , βb)‖ ≤ C
(
(ε|log ε|+ |λ|)|ζf |+ (ε|log ε|+ |λ|)2|βf |+ e−q/ε|βb|

)
,

‖Hb(βf , ζf , βb)‖ ≤ C
(
(ερ(a)|log ε|+ |λ|)2|βb|+ e−q/ε(|βf |+ |ζf |)

)
,

where ρ(a) = 2
3

for a < a0 and ρ(a) = 1 for a ≥ a0 and q, C > 0 independent

of λ, a and ε. Moreover, ψsl(ξ, λ) is analytic in λ.

(ii) The derivative φ′a,ε of the pulse solution satisfies

Qu
f,+(0)φ′a,ε(0) = T uf,+(0, Lε)e

−ηLεφ′a,ε(Lε)

+

∫ 0

Lε

T uf,+(0, ξ̂)Bf(ξ̂, 0)e−ηξ̂φ′a,ε(ξ̂)dξ̂,

Qs
b,−(0)φ′a,ε(Za,ε) = T sb,−(0,−Lε)eηLεφ′a,ε(Za,ε − Lε)

+

∫ 0

−Lε
T sb,−(0, ξ̂)Bf(ξ̂, 0)e−ηξ̂φ′a,ε(Za,ε + ξ̂)dξ̂.

(5.33)

Proof. We begin with (i). For the matching procedure, we need to compare projec-
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tions Qu,s
f,+(ξ) of the exponential dichotomies of (5.14) established in Corollary 4.5.7

with the projections Qu,sr (ξ, λ) of the dichotomy of (5.6) on Ir established in Propo-

sition 4.5.5. First, recall that the front φf(ξ) is a heteroclinic to the fixed point (1, 0)

of (3.4). By looking at the linearization of (3.4) about (1, 0) we deduce that φf(ξ),

and thus the coefficient matrix Af(ξ) of (5.14), converges at an exponential rate 1
2

√
2

to some asymptotic matrix Af,∞ as ξ →∞. Hence, by [46, Lemma 3.4] and its proof

the projections Qu,s
f,+ associated with the exponential dichotomy of system (5.14)

satisfy for ξ ≥ 0

‖Qu,s
f,+(ξ)− P u,s

f ‖ ≤ C

(
e−

1
2

√
2ξ + e−µξ

)
, (5.34)

where P u,s
f = P u,s

f (a) denotes the spectral projection on the (un)stable eigenspace

of the asymptotic matrix Af,∞. Moreover, the coefficient matrix A(ξ, λ) of (5.6) is

approximated at Lε = −ν log ε by

‖A(Lε, λ)− Af,∞‖ ≤ C(ε|log ε|+ |λ|),

by Theorem 4.5 (i) and the fact that Af(ξ) converges to Af,∞ at an exponential rate

1
2

√
2 as ξ → ∞, using that ν is chosen larger than 2

√
2 in (5.5). By continuity the

same bound holds for the spectral projections associated with the matrices A(Lε, λ)

and Af,∞. Combining the latter facts with (5.34) and the bounds in Proposition 4.5.5

we obtain

‖Qu,sr (Lε, λ)−Qu,s
f,+(Lε)‖ ≤ C(ε|log ε|+ |λ|), (5.35)

using ν ≥ max{ 2
µ
, 2
√

2}. In a similar way we obtain an estimate at Za,ε − Lε

‖Qu,sr (Za,ε − Lε, λ)−Qu,s
b,−(−Lε)‖ ≤ C(ερ(a)|log ε|+ |λ|). (5.36)
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using Theorem 4.5 (ii).

By the variation of constants formula, any solution ψsl
f (ξ, λ) to (5.6) must satisfy

on If,+

ψsl
f (ξ, λ) = T uf,+(ξ, Lε)αf + βfωf(ξ) + ζfT

s
f,+(ξ, 0)Ψ2

+

∫ ξ

0

T sf,+(ξ, ξ̂)Bf(ξ̂, λ)ψsl
f (ξ̂, λ)dξ̂ +

∫ ξ

Lε

T uf,+(ξ, ξ̂)Bf(ξ̂, λ)ψsl
f (ξ̂, λ)dξ̂,

(5.37)

for some βf , ζf ∈ C and αf ∈ R(Qu
f,+(Lε)). By Theorem 4.5 (i) we bound the

perturbation matrix Bf as

‖Bf(ξ, λ; a, ε)‖ ≤ C(ε|log ε|+ |λ|), (5.38)

for ξ ∈ If,+. Hence, for all sufficiently small |λ|, ε > 0, there exists a unique solution

ψsl
f to (5.37) by the contraction mapping principle. Note that ψsl

f is linear in (αf , βf , ζf)

and satisfies the bound

sup
ξ∈[0,Lε]

‖ψsl
f (ξ, λ)‖ ≤ C(|αf |+ |βf |+ |ζf |), (5.39)

by estimate (5.38), taking δ, ε0 > 0 smaller if necessary.

Denote by T u,sr (ξ, ξ̂, λ) = T u,sr (ξ, ξ̂, λ; a, ε) the (un)stable evolution of system (5.6)

under the exponential dichotomy on Ir established in Proposition 4.5.5. Any solution

ψr to (5.6) on Ir is of the form

ψr(ξ, λ) = T ur (ξ, Za,ε − Lε, λ)αr + T sr (ξ, Lε, λ)βr, (5.40)

for some αr ∈ R(Qur (Za,ε − Lε, λ)) and βr ∈ R(Qsr(Lε, λ)). Applying the projection



154

Qur (Lε, λ) to the difference ψr(Lε, λ)− ψsl
f (Lε, λ) yields the matching condition

αf = H1(αf , βf , αr), (5.41)

‖H1(αf , βf , αr)‖ ≤ C((ε|log ε|+ |λ|)(‖αf‖+ |βf |+ |ζf |) + e−q/ε‖αr‖),

where we use (5.35), (5.38), (5.39) and the fact that Za,ε = Os(ε−1) (see Theo-

rem 4.5) to obtain the bound on the linear map H1. Similarly, applying the projec-

tion Qsr(Lε, λ) to the difference ψr(Lε, λ)− ψsl
f (Lε, λ) yields the matching condition

βr = H2(αf , βf , ζf), (5.42)

‖H2(αf , βf , ζf)‖ ≤ C(ε|log ε|+ |λ|)(‖αf‖+ |βf |+ |ζf |),

where we use (5.35), (5.38), (5.39) and ν ≥ 2/µ to obtain the bound on the linear

map H2.

Consider the translated version (5.16) of system (5.6). By the variation of con-

stants formula, any solution ψsl
b (ξ, λ) to (5.16) on [−Lε, 0] must satisfy

ψsl
b (ξ, λ) = T sb,−(ξ,−Lε)αb + βbωb(ξ) +

∫ ξ

0

T ub,−(ξ, ξ̂)Bb(ξ̂, λ)ψsl
b (ξ̂, λ)dξ̂

+

∫ ξ

−Lε
T sb,−(ξ, ξ̂)Bb(ξ̂, λ)ψsl

b (ξ̂, λ)dξ̂,

(5.43)

for some βb ∈ C and αb ∈ R(Qs
b,−(−Lε)). By Theorem 4.5 (ii) we estimate

‖Bb(ξ, λ; a, ε)‖ ≤ C(ερ(a)|log ε|+ |λ|), (5.44)

for ξ ∈ [−Lε, 0]. For all sufficiently small |λ|, ε > 0, there exists a unique solution ψsl
b
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of (5.43). Note that ψsl
b is linear in (αb, βb) and using (5.44) we obtain the bound

sup
ξ∈[−Lε,0]

‖ψsl
b (ξ, λ)‖ ≤ C(‖αb‖+ |βb|), (5.45)

taking δ, ε0 > 0 smaller if necessary. The matching of ψsl
b (−Lε, λ) with ψr(Za,ε−Lε, λ)

is completely similar to the matching of ψsl
f (Lε, λ) with ψr(Lε, λ) in the previous

paragraph using (5.45) instead of (5.39) and (5.36) instead of (5.35). Hence we give

only the resulting matching conditions

αr = H3(αb, βb),

‖H3(αb, βb)‖ ≤ C(ερ(a)|log ε|+ |λ|)(‖αb‖+ |βb|),
(5.46)

αb = H4(αb, βb, βr),

‖H4(αb, βb, βr)‖ ≤ C
(
(ερ(a)|log ε|+ |λ|)(‖αb‖+ |βb|) + e−q/ε‖βr‖

)
,

(5.47)

where H3 and H4 are again linear maps.

We now combine the above results regarding the solution on [0, Za,ε] to obtain

the relevant conditions satisfied at ξ = 0 and ξ = Za,ε. Combining equations (5.42)

and (5.47), we obtain a linear map H5 satisfying

αb = H5(αb, βb, af , βf , ζf),

‖H5(αb, βb, βr, cr)‖ ≤ C
(
(ερ(a)|log ε|+ |λ|)(‖αb‖+ |βb|) + e−q/ε(‖αf‖+ |βf |+ |ζf |)

)
.

(5.48)

Thus, solving (5.48) for αb, we obtain for all sufficiently small |λ|, ε > 0

αb = αb(αf , βb, βf , ζf),

‖αb(αf , βb, βf , ζf)‖ ≤ C
(
(ερ(a)|log ε|+ |λ|)|βb|+ e−q/ε(‖αf‖+ |βf |+ |ζf |)

)
.

(5.49)
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From (5.41), (5.46) and (5.49) we obtain a linear map H6 satisfying

αf = H6(αf , βf , ζf , βb), (5.50)

‖H6(αf , βb, βf , ζf)‖ ≤ C
(
(ε|log ε|+ |λ|)(‖αf‖+ |βf |+ |ζf |) + e−q/ε|βb|

)
,

We solve (5.50) for αf for each sufficiently small |λ|, ε > 0 and obtain

αf = αf(βb, βf , ζf),

‖αf(βb, βf , ζf)‖ ≤ C
(
(ε|log ε|+ |λ|)(|βf |+ |ζf |) + e−q/ε|βb|

)
.

(5.51)

Substituting (5.51) into (5.37) at ξ = 0 we deduce, using ν ≥ µ/2 and identi-

ties (5.24), (5.38) and (5.39), that any solution ψsl(ξ, λ) to (5.6) satisfies the entry

condition (5.31). Similarly, we substitute (5.51) into (5.49) and substitute the result-

ing expression for αb into (5.43) at ξ = 0. Using estimates (5.44) and (5.45) and we

obtain the exit condition (5.32). Since the perturbation matrices Bj(ξ, λ), j = f, b,

the evolution T (ξ, ξ̂, λ) of system (5.6) and the projections Qu,sr (ξ, λ) associated with

the exponential dichotomy of (5.6) are analytic in λ, all quantities occurring in this

proof depend analytically on λ. Thus, ψsl(ξ, λ) is analytic in λ.

For (ii), we note that e−ηξφ′a,ε(ξ) is an eigenfunction of (5.6) at λ = 0. There-

fore, there exists βf,0, ζf,0 ∈ C and αf,0 ∈ R(Qu
f,+(Lε)) such that (5.37) is satisfied

at λ = 0 with ψsl
f (ξ, 0) = e−ηξφ′a,ε(ξ) and (αf , βf , ζf) = (αf,0, βf,0, ζf,0). We derive

αf,0 = Qu
f,+(Lε)e

−ηLεφ′a,ε(Lε) by applying Qu
f,+(Lε) to (5.37) at ξ = Lε. There-

fore, the first identity in (5.33) follows by applying Quf,+(0) to (5.37) at ξ = 0.

The second identity in (5.33) follows in a similar fashion using that there exists

βb,0 ∈ C and αb,0 ∈ R(Qs
b,−(−Lε)) such that (5.43) is satisfied at λ = 0 with

ψsl
b (ξ, 0) = e−η(ξ+Za,ε)φ′a,ε(Za,ε + ξ) and (αb, βb) = (αb,0, βb,0).
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Along the back

Finally, we establish an entry condition for exponentially decaying solution to (5.6)

on the interval [Za,ε,∞).

Proposition 4.5.10. Let Bb be as in (5.17), Ψ2 as in (5.25) and ωb as in (5.22). De-

note by T u,sb,±(ξ, ξ̂) = T u,sb,±(ξ, ξ̂; a) the (un)stable evolution of system (5.14) under the

exponential dichotomies established in Corollary 4.5.7 and by Qu,s
b,±(ξ) = Qu,s

b,±(ξ; a)

the associated projections.

(i) For each sufficiently small a0 > 0, there exists δ, ε0 > 0 such that for λ ∈ R1(δ)

and ε ∈ (0, ε0) any solution ψb,+(ξ, λ) to (5.6), which is exponentially decaying

in forward time, satisfies

ψb,+(Za,ε, λ) = βb,+ωb(0) + ζb,+Q
s
b,+(0)Ψ2

+ βb,+

∫ 0

Lε

T ub,+(0, ξ̂)Bb(ξ̂, λ)ωb(ξ̂)dξ̂ +Hb,+(βb,+, ζb,+),

Qu
b,−(0)ψb,+(Za,ε, λ) = βb,+ωb(0),

(5.52)

for some βb,+, ζb,+ ∈ C, where Hb,+ is a linear map satisfying the bound

‖Hb,+(βb,+, ζb,+)‖ ≤ C
(
(ερ(a)|log ε|+ |λ|)|ζb,+|+ (ερ(a)|log ε|+ |λ|)2|βb|

)
,

with ρ(a) = 2
3

for a < a0 and ρ(a) = 1 for a ≥ a0 and C > 0 independent of

λ, a and ε. Moreover, ψb,+(ξ, λ) is analytic in λ.
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(ii) The derivative φ′a,ε of the pulse solution satisfies

Qu
b,+(0)φ′a,ε(Za,ε) = T ub,+(0, Lε)e

−ηLεφ′a,ε(Za,ε + Lε)

+

∫ 0

Lε

T ub,+(0, ξ̂)Bb(ξ̂, 0)e−ηξ̂φ′a,ε(Za,ε + ξ̂)dξ̂.
(5.53)

Proof. We begin with (i). Consider the translated version (5.16) of system (5.6). By

the variation of constants formula, any solution ψ̂b,+(ξ, λ) to (5.16) on [0, Lε] must

satisfy

ψ̂b,+(ξ, λ) = T ub,+(ξ, Lε)αb,+ + βb,+ωb(ξ) + ζb,+T
s
b,+(ξ, 0)Ψ2

+

∫ ξ

0

T sb,+(ξ, ξ̂)Bb(ξ̂, λ)ψ̂b,+(ξ̂, λ)dξ̂ +

∫ ξ

Lε

T ub,+(ξ, ξ̂)Bb(ξ̂, λ)ψ̂b,+(ξ̂, λ)dξ̂,

(5.54)

for some βb,+, ζb,+ ∈ C and αb,+ ∈ R(Qu
b,+(Lε)). By Theorem 4.5 (ii) we estimate

‖Bb(ξ, λ; a, ε)‖ ≤ C(ερ(a)|log ε|+ |λ|), (5.55)

for ξ ∈ [0, Lε]. For all sufficiently small |λ|, ε > 0, there exists a unique solution ψ̂b,+

of (5.54). Note that ψ̂b,+ is linear in (αb,+, βb,+, ζb,+) and using (5.55) we obtain the

bound,

sup
ξ∈[0,Lε]

‖ψ̂b,+(ξ, λ)‖ ≤ C(‖αb,+‖+ |βb,+|+ |ζb,+|), (5.56)

taking δ, ε0 > 0 smaller if necessary.

Consider the exponential dichotomies of (5.6) on I` = [Za,ε + Lε,∞) established

in Proposition 4.5.5 with associated projections Qu,s` (ξ, λ). Completely analogous to
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the derivation of (5.36) in the proof of Proposition 4.5.9 we establish

‖Qu,s` (Za,ε + Lε, λ)−Qu,s
b,+(Lε)‖ ≤ C(ερ(a)|log ε|+ |λ|). (5.57)

The image of any exponentially decaying solution to (5.6) at Za,ε+Lε underQu` (Za,ε+

Lε, λ) must be 0, i.e. any solution ψ`(ξ, λ) to (5.6) decaying in forward time can be

written as

ψ`(ξ, λ) = T s` (ξ, Za,ε + Lε, λ)β`, (5.58)

for some β` ∈ R(Qs`(Za,ε + Lε, λ)), where T s` (ξ, ξ̂, λ) denotes the stable evolution of

system (5.6). Thus, by applying Qu` (Za,ε + Lε, λ) to ψ̂b,+(Lε, λ) we obtain a linear

map H1 satisfying

αb,+ = H1(αb,+, βb,+, ζb,+),

‖H1(αb,+, βb,+, ζb, βr)‖ ≤ C(ερ(a)|log ε|+ |λ|)(‖αb,+‖+ |βb,+|+ |ζb,+|),
(5.59)

where we have used (5.55), (5.56) and (5.57). So, for sufficiently small |λ|, ε > 0,

solving (5.59) for αb,+ yields

αb,+ = αb,+(βb,+, ζb,+)

‖αb,+(βb,+, ζb,+)‖ ≤ C(ερ(a)|log ε|+ |λ|)(|βb,+|+ |ζb,+|).
(5.60)

Substituting (5.60) into (5.54) we deduce with the aid of (5.24), (5.55) and (5.56) that

any exponentially decaying solution ψb,+(ξ, λ) = ψ̂b,+(ξ−Za,ε, λ) to (5.6) satisfies the

entry condition (5.52) at ξ = Za,ε. Moreover, analyticity of ψb,+(ξ, λ) in λ follows

from the analyticity of Bb(ξ, λ), of the evolution T (ξ, ξ̂, λ) and of the projections

Qu,s` (ξ, λ).
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We now prove (ii). Identity (5.53) follows in a similar fashion as (5.27) in the proof

of Proposition 4.5.9 using that there exists βb,+, ζb,+ ∈ C and αb,+ ∈ R(Qu
b,+(Lε))

such that (5.43) is satisfied at λ = 0 with ψ̂b,+(ξ, 0) = e−η(ξ+Za,ε)φ′a,ε(Za,ε + ξ).

The matching procedure

In the previous sections we constructed a piecewise continuous, exponentially local-

ized solution to the shifted eigenvalue problem (5.6) for any λ ∈ R1(δ). At the two

discontinuous jumps at ξ = 0 and ξ = Za,ε we obtained expressions for the left and

right limits of the solution; these are the so-called exit and entry conditions. Finding

eigenvalues now reduces to locating λ ∈ R1 for which the exit and entry conditions

match up. Equating the exit and entry conditions leads, after reduction, to a single

analytic matching equation in λ.

During the matching process we simplify terms in the following way. Recall that

we evaluated the obtained exit and entry conditions at λ = 0 using that the weighted

derivative e−ηξφ′a,ε(ξ) of the pulse is an eigenfunction of (5.6) at λ = 0. This leads

to identities that can be substituted in the matching equations; see Remark 4.5.11.

Since the final analytic matching equation is to leading order a quadratic in λ, it

has precisely two solutions in R1. These solutions are the eigenvalues of La,ε in R1.

A priori we know that λ0 = 0 must be one of these two eigenvalues by translational

invariance. In the next section 4.5.4 we show that λ0 is in fact a simple eigenvalue

of La,ε. The other eigenvalue λ1 can be determined to leading order. Section 4.5.5

is devoted to the calculation of this second eigenvalue, which differs between the

hyperbolic and nonhyperbolic regime.
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Thus, our aim is to prove the following result.

Theorem 4.9. For each sufficiently small a0 > 0, there exists δ, ε0 > 0 such that for

ε ∈ (0, ε0) system (5.6) has precisely two different eigenvalues λ0, λ1 ∈ R1(δ). The

eigenvalue λ0 equals 0 and the corresponding eigenspace is spanned by the solution

e−ηξφ′a,ε(ξ) to (5.6). The other eigenvalue λ1 is a-uniformly approximated by

λ1 = −Mb,2

Mb,1

+O
(∣∣ερ(a)log ε

∣∣2
)
,

with

Mb,1 :=

∫ ∞

−∞
(u′b(ξ))

2
e−c̆0ξdξ,

Mb,2 :=
〈
Ψ∗, φ

′
a,ε(Za,ε − Lε)

〉
, Ψ∗ :=




ec̆0Lεv′b(−Lε)

−ec̆0Lεu′b(−Lε)
∫ −Lε
∞ e−c̆0ξ̂u′b(ξ̂)dξ̂



,

(5.61)

where (ub(ξ), vb(ξ)) = φb(ξ) denotes the heteroclinic back solution to the Nagumo

system (3.5) and the exponent ρ(a) equals 2
3

for a < a0 and 1 for a ≥ a0. The

corresponding eigenspace is spanned by a solution ψ1(ξ) to (5.6) satisfying

‖ψ1(ξ + Za,ε)− ωb(ξ)‖ ≤ Cερ(a)|log ε|, ξ ∈ [−Lε, Lε],

‖ψ1(ξ + Za,ε)‖ ≤ Cερ(a)|log ε|, ξ ∈ R \ [−Lε, Lε],
(5.62)

where ωb is as in (5.22) and C > 1 is independent of a and ε. Finally, the quantities

Mb,1 and Mb,2 satisfy the bounds

1/C ≤Mb,1 ≤ C, |Mb,2| ≤ Cερ(a)|log ε|.

Proof. We start the proof with some estimates from the existence problem. By
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Theorem 4.5 (i)-(ii) we have the bounds

‖Bf(ξ, λ; a, ε)‖ ≤ C(ε|log ε|+ |λ|), ξ ∈ (−∞, Lε],

‖Bb(ξ, λ; a, ε)‖ ≤ C(ερ(a)|log ε|+ |λ|), ξ ∈ [−Lε, Lε].
(5.63)

where Bf and Bb are as in (5.15) and (5.17). Moreover, we use the equations (3.4)

and (3.5) for φf and φb and the equation (3.1) for φa,ε in combination with Theo-

rem 4.5 (i)-(ii) to estimate the difference between the derivatives

∥∥∥∥∥∥∥




φ′f(ξ)

0


− φ′a,ε(ξ)

∥∥∥∥∥∥∥
≤ Cε|log ε|, ξ ∈ (−∞, Lε],

∥∥∥∥∥∥∥




φ′b(ξ)

0


− φ′a,ε(Za,ε + ξ)

∥∥∥∥∥∥∥
≤ Cερ(a)|log ε|, ξ ∈ [−Lε, Lε].

(5.64)

We outline the matching procedure that yields the two λ-values for which (5.6)

admits nontrivial exponentially localized solutions. By Proposition 4.5.8 any solution

ψf,−(ξ, λ) to (5.6) decaying exponentially in backward time satisfies (5.26) at ξ = 0 for

some constant βf,− ∈ C. Moreover, by Proposition 4.5.9 any solution ψsl(ξ, λ) to (5.6)

satisfies (5.31) at ξ = 0 for some βf , ζf ∈ C and (5.32) at ξ = Za,ε for some βb ∈ C.

Finally, by Proposition 4.5.10 any solution ψb,+(ξ, λ) to (5.6) decaying exponentially

in forward time satisfies (5.52) at ξ = Za,ε for some βb,+, ζb,+ ∈ C. To obtain an

exponentially localized solution to (5.6) we match the solutions ψf,−, ψ
sl and ψb,+ at

ξ = 0 and at ξ = Za,ε. It suffices to require that the differences ψf,−(0, λ)− ψsl(0, λ)

and ψsl(Za,ε, λ) − ψb,+(Za,ε, λ) vanish under the projections Qu,s
f,−(0) and Qu,s

b,−(0)

associated with the exponential dichotomy of (5.14) established in Corollary 4.5.7.

We first apply the projections Qu
j,−(0), j = f, b to the differences ψf,−(0, λ) −

ψsl(0, λ) and ψsl(Za,ε, λ)− ψb,+(Za,ε, λ) and immediately obtain βf = βf,− and βb =
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βb,+ using (5.26), (5.31), (5.32) and (5.52). For the remaining matching condi-

tions, consider the vectors Ψ1,j and Ψ2 defined in (5.25) and the bounded solution

ϕj,ad, given by (5.20), to the adjoint equation (5.19) of the reduced eigenvalue prob-

lem (5.14). By (5.24) the vectors Ψ2 and

Ψj,⊥ := Ψ1,j −
∫ 0

∞
e−ηξ 〈ϕj,ad(ξ), F 〉 dξ Ψ2, F =




0

1


 , j = f, b,

span R(Qs
j,−(0)) and Ψj,⊥ is contained in ker(Qs

j,+(0)∗) = R(Qu
j,+(0)∗) ⊂ R(Qs

j,−(0)∗)

for j = f, b. Thus, we obtain four other matching conditions by requiring that the in-

ner products of the differences ψf,−(0, λ)−ψsl(0, λ) and ψsl(Za,ε, λ)−ψb,+(Za,ε, λ) with

Ψ2 and Ψj,⊥ vanish for j = f, b. With the aid of the identities (5.26), (5.31), (5.32)

and (5.52) we obtain the first two matching conditions by pairing with Ψ2

0 =
〈
Ψ2, ψf,−(0, λ)− ψsl(0, λ)

〉
= −ζf +H1(βb, βf , ζf),

0 =
〈
Ψ2, ψ

sl(Za,ε, λ)− ψb,+(Za,ε, λ)
〉

= −ζb,+ +H2(βb, ζb,+, βf , ζf),

(5.65)

where the linear maps H1 and H2 satisfy by (5.63) the bounds

|H1(βb, βf , ζf)| ≤ C
(
(ε|log ε|+ |λ|) (|βf |+ |ζf |) + e−q/ε|βb|

)
,

|H2(βb, ζb,+, βf , ζf)| ≤ C
((
ερ(a)|log ε|+ |λ|

)
(|βb|+ |ζb,+|) + e−q/ε(|βf |+ |ζf |)

)
,

with q > 0 independent of λ, a and ε. Hence, we can solve system (5.65) for ζf and

ζb,+, provided |λ|, ε > 0 are sufficiently small, and obtain

ζf = ζf(βb, βf), |ζf(βb, βf)| ≤ C
(
(ε|log ε|+ |λ|)|βf |+ e−q/ε|βb|

)
,

ζb,+ = ζb,+(βb, βf), |ζb,+(βb, βf)| ≤ C
(
(ερ(a)|log ε|+ |λ|)|βb|+ e−q/ε|βf |

)
.

(5.66)

For the last two matching conditions we substitute (5.66) into the identities (5.26),

(5.31), (5.32) and (5.52). Moreover, we estimate the tail of the integral in (5.26), i.e.
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the part from −∞ to −Lε, using that the exponential dichotomy of (5.14) on R− has

exponent µ by Corollary 4.5.7 and it holds ν ≥ µ/2. Thus, we obtain the last two

matching conditions by pairing with Ψf,⊥ ∈ ker(Qs
f,+(0)∗) and Ψb,⊥ ∈ ker(Qs

b,+(0)∗)

0 =
〈
Ψf,⊥, ψf,−(0, λ)− ψsl(0, λ)

〉

= βf

∫ Lε

−Lε
〈Tf(0, ξ)

∗Ψf,⊥, Bf(ξ, λ)ωf(ξ)〉 dξ +H3(βb, βf),
(5.67)

0 =
〈
Ψb,⊥, ψ

sl(Za,ε, λ)− ψb,+(Za,ε, λ)
〉

= βb

∫ Lε

−Lε
〈Tb(0, ξ)∗Ψb,⊥, Bb(ξ, λ)ωb(ξ)〉 dξ +H4(βb, βf),

(5.68)

where the linear maps H3 and H4 satisfy the bounds

|H3(βb, βf)| ≤ C
(
(ε|log ε|+ |λ|)2 |βf |+ e−q/ε|βb|

)
,

|H4(βb, βf)| ≤ C
((
ερ(a)|log ε|+ |λ|

)2 |βb|+ e−q/ε|βf |
)
.

The same procedure can be done using the expressions (5.27), (5.33) and (5.53)

instead. We approximate a-uniformly

0 =
〈
Ψf,⊥, φ

′
a,ε(0)− φ′a,ε(0)

〉
=
〈
Ψf,⊥, Q

s
f,−(0)φ′a,ε(0)−Qu

f,+(0)φ′a,ε(0)
〉

=

∫ Lε

−Lε

〈
e−ξηTf(0, ξ)

∗Ψf,⊥, Bf(ξ, 0)φ′a,ε(ξ)
〉
dξ +O

(
ε2
)
,

(5.69)

0 =
〈
Ψb,⊥, φ

′
a,ε(0)− φ′a,ε(0)

〉
=
〈
Ψb,⊥, Q

s
b,−(0)φ′a,ε(0)−Qu

b,+(0)φ′a,ε(0)
〉

=

∫ Lε

−Lε

〈
e−ξηTb(0, ξ)∗Ψf,⊥, Bb(ξ, 0)φ′a,ε(Za,ε + ξ)

〉
dξ

+
〈
eηLεTb(0,−Lε)∗Ψb,⊥, φ

′
a,ε(Za,ε − Lε)

〉
+O

(
ε2
)
,

(5.70)

using ν ≥ µ/2 ≥ η/2 (see (5.5) and Lemma 4.5.3).

Our plan is to use the identities (5.69) and (5.70) to simplify the expressions
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in (5.67) and (5.68). First, we calculate

e−ηξTj(0, ξ)
∗Ψj,⊥ =




e−ηξϕj,ad(ξ)

−
∫ ξ
∞ e
−ηξ̂
〈
ϕj,ad(ξ̂), F

〉
dξ̂




=




e−c̆0ξv′j(ξ)

−e−c̆0ξu′j(ξ)
∫ ξ
∞ e
−c̆0ξ̂u′j(ξ̂)dξ̂



, ξ ∈ R, j = f, b,

(5.71)

where (uj(ξ), vj(ξ)) = φj(ξ). Recall that the front φf is a heteroclinic connection

between the fixed points (0, 0) and (1, 0) of the Nagumo system (3.4). By looking

at the linearization of (3.4) about (0, 0) and (1, 0) we deduce that φ′f(ξ) converges to

0 at an exponential rate 1
2

√
2 as ξ → ±∞. The same holds for φ′b(ξ) by symmetry.

Recall that c̆0 is given by
√

2(1
2
−a). So, for all a ≥ 0, the upper two entries of (5.71)

are bounded on R by some constant C > 0, independent of a, whereas the last entry

is bounded by C|log ε| on [−Lε, Lε]. Further, by (5.63) the upper two rows of Bf(ξ, 0)

are bounded by Cε|log ε| on [−Lε, Lε], whereas the last row is bounded by Cε as can

be observed from (5.15). Combining these bounds with ν ≥ 2
√

2, (5.64) and (5.69)

we approximate a-uniformly

∫ Lε

−Lε
〈Tf(0, ξ)

∗Ψf,⊥, Bf(ξ, λ)ωf(ξ)〉 dξ =

∫ Lε

−Lε

〈
e−ξηTf(0, ξ)

∗Ψf,⊥, Bf(ξ, 0)φ′a,ε(ξ)
〉
dξ

− λ
∫ Lε

−Lε
e−c̆0ξ (u′f(ξ))

2
dξ +O

(
|εlog ε|2

)

= −λ
∫ ∞

−∞
e−c̆0ξ (u′f(ξ))

2
dξ +O

(
|εlog ε|2

)
.

(5.72)
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Similarly, we estimate a-uniformly

∫ Lε

−Lε
〈Tb(0, ξ)∗Ψb,⊥, Bb(ξ, λ)ωb(ξ)〉 dξ = −

〈
eηLεTb(0,−Lε)∗Ψb,⊥, φ

′
a,ε(Za,ε − Lε)

〉

− λ
∫ ∞

−∞
e−c̆0ξ (u′b(ξ))

2
dξ +O

(
|ερ(a)log ε|2

)
,

(5.73)

using (5.70) instead of (5.69). Substituting identities (5.72) and (5.73) into the

remaining matching conditions (5.67) and (5.68) we arrive at the linear system



−λMf +O ((ε|log ε|+ |λ|)2) O(e−q/ε)

O(e−q/ε) −λMb,1 −Mb,2 +O
(
(ερ(a)|log ε|+ |λ|)2

)




×




βf

βb


 = 0,

(5.74)

where the approximations are a-uniformly and with Mb,1 and Mb,2 as in (5.61) and

Mf :=

∫ ∞

−∞
(u′f(ξ))

2
e−c̆0ξdξ > 0. (5.75)

Thus, any nontrivial solution (βb, βf) to (5.74) corresponds to an eigenfunction

of (5.6).

Since the perturbation matrices Bj(ξ, λ), j = f, b, the evolution T (ξ, ξ̂, λ) of

system (5.6) and the projectionsQu,sr,` (ξ, λ) associated with the exponential dichotomy

of (5.6) established in Proposition 4.5.5 are analytic in λ, all quantities occurring

in this section are analytic in λ. Thus, the matrix in (5.74) and its determinant

D(λ) = D(λ; a, ε) are analytic in λ.
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Observe that the ε-independent quantities Mf and Mb,1 are to leading order

bounded away from 0, i.e. it holds 1/C ≤ Mf ,Mb,1 ≤ C, since u′j(ξ) converges

to 0 as ξ → ±∞ at an exponential rate 1
2

√
2; see also (3.6). Second, we estimate

a-uniformly Mb,2 = O(ερ(a)|log ε|) by combining (5.63) and (5.70). Hence, provided

δ, ε > 0 are sufficiently small, we have for λ ∈ ∂R1(δ) = {λ ∈ C : |λ| = δ}

|D(λ)− λMf (λMb,1 +Mb,2)| < |λMf (λMb,1 +Mb,2)|.

By Rouché’s Theorem D(λ) has in R1(δ) precisely two roots λ0, λ1 that are a-

uniformly O(|ερ(a)log ε|2)-close to the roots of the quadratic λMf (λMb,1 + Mb,2)

given by 0 and −Mb,2M
−1
b,1 . We conclude that (5.6) has two eigenvalues λ0, λ1 in the

region R1.

We are interested in an eigenfunction ψ1(ξ) of (5.6) corresponding to the eigen-

value λ1 that is a-uniformly O(|ερ(a)log ε|2)-close to −Mb,2M
−1
b,1 . The associated

solution to (5.74) is given by the eigenvector (βf , βb) =
(
O(e−q/ε), 1

)
. In the proofs

of Propositions 4.5.8, 4.5.9 and 4.5.10 we established a piecewise continuous eigen-

function to (5.6) for any prospective eigenvalue λ ∈ R1. Thus, the eigenfunction

ψ1(ξ) to (5.6), corresponding to the eigenvalue λ1, satisfies (5.29) on If,−, (5.37) on

If,+, (5.40) on Ir, (5.43) on Ib,−, (5.54) on Ib,+ and (5.58) on I`. The variables oc-

curring in these six expressions can all be expressed in βf = O(e−q/ε) and βb = 1.

This leads to the approximation (5.62) of ψ1(ξ).

By translational invariance we know a priori that e−ηξφ′a,ε(ξ) is an eigenfunction

of (5.6) at λ = 0. Therefore, λ = 0 is one of the two eigenvalues λ0, λ1 ∈ R1 of (5.6).

With the aid of the bounds (5.62) one observes that the eigenfunction ψ1(ξ) is not

a multiple of e−ηξφ′a,ε(ξ). On the other hand, the space of exponentially decaying

solutions in backward time to (5.6) is one-dimensional, because the asymptotic ma-
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trix Â(0, λ, a, ε) of system (5.6) has precisely one eigenvalue of positive real part by

Lemma 4.5.3. Hence, the eigenfunctions ψ1(ξ) and e−ηξφ′a,ε(ξ) must correspond to

different eigenvalues. We conclude λ0 = 0 and λ1 6= λ0.

Remark 4.5.11. In the proof of Theorem 4.9 we simplified the final matching equa-

tion by using that e−ηξφ′a,ε(ξ) is an exponentially localized solution to (5.6) at λ = 0.

More precisely, during the matching procedure we substituted the expressions

∫ Lε

−Lε
〈Tj(0, ξ)∗Ψj,⊥, Bj(ξ, 0)ωj(ξ)〉 dξ, j = f, b, (5.76)

by (5.72) and (5.73). Alternatively, one could try to calculate (5.76) directly us-

ing (5.71). The most problematic term is the difference f ′(ua,ε(ξ)) − f ′(uj(ξ)) in

Bj(ξ, 0). This difference can be calculated using an identity of the form

(∂ξ − Cj(ξ))


e−ηξ




u′a,ε(ξ)

v′a,ε(ξ)





 =

e−ηξ




0

(c(ε)− c(0))v′a,ε(ξ)− (f ′(ua,ε(ξ))− f ′(uj(ξ)))u′a,ε(ξ) + w′a,ε(ξ)


 ,

j = f, b, where Cj is the coefficient matrix of (5.18). The equivalent of the latter is

done in [31] in the context of the lattice Fitzhugh-Nagumo equations.

Remark 4.5.12. The proof of Theorem 4.9 shows that any eigenfunction of prob-

lem (5.6) corresponds to an eigenvector (βf , βb) of (5.74). Such an eigenfunction

is obtained by pasting together the eigenfunctions ωf(ξ) and ωb(ξ) to the reduced

eigenvalue problems (5.14) with amplitudes βf and βb, respectively.

The eigenvector (βf , βb) =
(
1,O(e−q/ε)

)
of (5.74) corresponds to the eigenfunc-

tion e−ηξφ′a,ε(ξ) of (5.6) at λ = 0. Indeed, this eigenfunction is centered at the front

and close to ωf(ξ). Switching back to the unshifted eigenvalue problem (2.3), we ob-
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serve that the corresponding eigenfunction φ′a,ε(ξ) to (2.3) is close to a concatenation

of ωf(ξ) and ωb(ξ); see also Theorem 4.5.

The other eigenvector (βf , βb) =
(
O(e−q/ε), 1

)
of (5.74) corresponds to the eigen-

function ψ1(ξ) of (5.6) at λ = λ1. The eigenfunction ψ1(ξ) is centered at the back

and close to ωb(ξ); see also estimate (5.62). When λ1 lies to the right of the essential

spectrum of La,ε, it is also an eigenvalue of the unshifted eigenvalue problem (2.3)

by Proposition 4.5.4. An eigenfunction of (2.3) corresponding to this potential sec-

ond eigenvalue λ1 is given by ψ̃1(ξ) := eη(ξ−Za,ε)ψ1(ξ). Using the estimate (5.62) we

conclude that ψ̃1(ξ) is centered at the back and the left slow manifold and close to

ωb(ξ) along the back, i.e. it holds

‖ψ̃1(ξ)‖ ≤ Cερ(a)|log ε|e−η(Za,ε−ξ), ξ ∈ (−∞, Za,ε − Lε],

‖ψ̃1(ξ + Za,ε)− ωb(ξ)‖ ≤ Cερ(a)|log ε|eηξ, ξ ∈ [−Lε, Lε].

We emphasize that in contrast to the shifted eigenvalue problem, we do not obtain

that the eigenfunction ψ̃1(ξ) is small along the left slow manifold, i.e. for ξ ∈ I` =

[Za,ε + Lε,∞). This observation agrees with the numerics done in §4.7; compare

Figures 4.6a and 4.7.

4.5.4 The translational eigenvalue is simple

In this section we prove that λ0 = 0 is a simple eigenvalue of La,ε. This is an essential

ingredient to establish nonlinear stability of the traveling pulse φ̃a,ε(ξ); see [15, 16]

and Theorem 4.3. By Theorem 4.9 λ0 has geometric multiplicity one. To prove that

λ0 also has algebraic multiplicity one we consider the associated shifted generalized

eigenvalue problem at λ = λ0. Particular solutions to this inhomogeneous problem
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are given by the λ-derivatives of solutions ψ(ξ, λ) to the shifted eigenvalue prob-

lem (5.6). By differentiating the exit and entry conditions at ξ = 0 and at ξ = Za,ε

established in Propositions 4.5.8, 4.5.9 and 4.5.10 we obtain exit and entry conditions

for exponentially localized solutions to the generalized eigenvalue problem. Match-

ing of these expression leads to a contradiction showing that λ0 also has algebraic

multiplicity one.

Proposition 4.5.13. In the setting of Theorem 4.1, let φ̃a,ε(ξ) denote a traveling-

pulse solution to (2.2) with associated linear operator La,ε. The translational eigen-

value λ0 = 0 of La,ε is simple.

Proof. By Theorem 4.9 the eigenspace of the shifted eigenvalue problem (5.6) at

λ = λ0 is spanned by the weighted derivative e−ηξφ′a,ε(ξ). Translating back to the

original system (2.3) we deduce ker(La,ε) is one-dimensional and spanned by φ̃′a,ε(ξ).

So the geometric multiplicity of λ0 equals one. Regarding the algebraic multiplicity

of the eigenvalue λ0 we are interested in exponentially localized solutions ψ̃ to the

generalized eigenvalue problem La,εψ̃ = φ̃′a,ε(ξ). This problem can be represented by

the inhomogeneous ODE

ψ̌ξ = A0(ξ, 0)ψ̌ + [∂λA0] (ξ, 0)φ′a,ε(ξ), (5.77)

where A0(ξ, λ) is the coefficient matrix of (2.3). The asymptotic matrices of (2.3)

and the shifted version (5.6) have precisely one eigenvalue of positive real part at

λ = 0 by Proposition 4.4.1 and Lemma 4.5.3. Moreover, the weighted derivative

e−ηξφ′a,ε(ξ) is exponentially localized. Therefore, ψ̌(ξ) is an exponentially localized

solution to (5.77) if and only if ψ(ξ) = e−ηξψ̌(ξ) is an exponentially localized solution



171

to

ψξ = A(ξ, 0)ψ + e−ηξ [∂λA] (ξ, 0)φ′a,ε(ξ), (5.78)

where A(ξ, λ) is the coefficient matrix of the shifted eigenvalue problem (5.6).

Since e−ηξφ′a,ε(ξ) is an exponentially localized solution to (5.6) at λ = 0, there ex-

ists by Propositions 4.5.8, 4.5.9 and 4.5.10 solutions ψf,−(ξ, λ), ψsl(ξ, λ) and ψb,+(ξ, λ)

to (5.6), which are analytic in λ and satisfy (5.26), (5.31), (5.32) and (5.52) for

some βf,−, βf , ζf , βb, βb,+, ζb,+ ∈ C, such that e−ηξφ′a,ε(ξ) equals ψf,−(ξ, 0) on (−∞, 0],

ψsl(ξ, 0) on [0, Za,ε] and ψb,+(ξ, 0) on [Za,ε,∞). As in the proof of Theorem 4.9 we

match ψf,−(0, 0) to ψsl(0, 0) and ψsl(Za,ε, 0) to ψb,−(Za,ε, 0). Applying the projections

Qu
j,−(0), j = f, b to the differences ψf,−(0, 0)−ψsl(0, 0) and ψsl(Za,ε, 0)−ψb,−(Za,ε, 0)

yields βf,− = βf and βb = βb,+. Taking the inner products 0 = 〈Ψ2, ψf,−(0, 0) −

ψsl(0, 0)〉 and 0 = 〈Ψ2, ψ
sl(Za,ε, 0)− ψb,−(Za,ε, 0)〉 we obtain that ζf and ζb,+ can be

expressed in βb and βf as

ζf = ζf(βb, βf), |ζf(βb, βf)| ≤ C
(
ε|log ε||βf |+ e−q/ε|βb|

)

ζb,+ = ζb,+(βb, βf), |ζb,+(βb, βf)| ≤ C
(
ε2/3|log ε||βb|+ e−q/ε|βf |

)
,

(5.79)

where C > 0 is independent of a and ε.

Observe that the derivatives [∂λψf,−](ξ, 0), [∂λψ
sl](ξ, 0) and [∂λψb,+](ξ, 0) are par-

ticular solutions to the equation (5.78) on (−∞, 0], [0, Za,ε] and [Za,ε,∞), respec-

tively. Moreover, e−ηξφ′a,ε(ξ) spans the space of exponentially localized solutions to

the homogeneous problem (5.6) associated to (5.78). Now suppose that ψ(ξ) is an
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exponentially localized solution to (5.78). By the previous two observations it holds

ψ(ξ) = [∂λψf,−](ξ, 0) + α1e
−ηξφ′a,ε(ξ), ξ ∈ (−∞, 0],

ψ(ξ) = [∂λψ
sl](ξ, 0) + α2e

−ηξφ′a,ε(ξ), ξ ∈ [0, Za,ε],

ψ(ξ) = [∂λψb,+](ξ, 0) + α3e
−ηξφ′a,ε(ξ), ξ ∈ [Za,ε,∞),

(5.80)

for some α1,2,3 ∈ C. We differentiate the analytic expressions (5.26) and (5.31) with

respect to λ and obtain by the Cauchy estimates and (5.79)

[∂λψf,−](ξ, 0) = βf

∫ 0

−∞
T sf,−(0, ξ̂)B̃ωf(ξ̂)dξ̂ +H1(βf),

‖H1(βf)‖ ≤ Cε|log ε||βf,−|,

[∂λψ
sl](ξ, 0) = βf

∫ 0

Lε

T uf,+(0, ξ̂)B̃ωf(ξ̂)dξ̂ +H2(βf , βb),

‖H2(βf , βb)‖ ≤ C
(
ε|log ε||βf |+ e−q/ε|βb|

)
,

(5.81)

where ωf is as in (5.22), H1,2 are linear maps and B̃ denotes the derivative of the

perturbation matrix

B̃ = B̃(a, ε) := [∂λ]Bf(ξ, λ) :=




0 0 0

1 0 0

0 0 −1
c̆



.

On the other hand, we estimate using Theorem 4.5 (i)

‖Ψf,a,ε −Ψ1,f‖ ≤ Cε|log ε|, where Ψf,a,ε :=




v′a,ε(0)

−u′a,ε(0)

0



, (5.82)

and Ψ1,f is defined in (5.25). Note that Ψf,a,ε is perpendicular to the derivative

φ′a,ε(0). As in the proof of Theorem 4.9 note that the front φ′f(ξ) = (u′f(ξ), v
′
f(ξ))
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decays to 0 as ξ → ±∞ with an exponential rate 1
2

√
2. Thus, we calculate using

ν ≥ 2
√

2, (5.80), (5.81) and (5.82)

0 =
〈
Ψf,a,ε, [∂λψf,−](0, 0)− [∂λψ

sl](0, 0) + (α1 − α2)φ′a,ε(0)
〉

= βf

(∫ Lε

−∞

〈
Tf(0, ξ)

∗Ψ1,f , B̃ωf(ξ)
〉
dξ +O(ε|log ε|)

)
+ βbO

(
e−q/ε

)

= βf (−Mf +O(ε|log ε|)) + βbO
(
e−q/ε

)
,

(5.83)

a-uniformly, where Mf is defined in (5.75). Let Ψb,a,ε = (v′a,ε(Za,ε),−u′a,ε(Za,ε), 0). A

similar calculation shows

0 =
〈
Ψb,a,ε, [∂λψ

sl](Za,ε, 0)− [∂λψb,+](Za,ε, 0) + (α2 − α3)e−ηZa,εφ′a,ε(Za,ε)
〉

= βb

(
−Mb,1 +O(ε2/3|log ε|)

)
+ βfO

(
e−q/ε

)
,

(5.84)

a-uniformly, where Mb,1 is defined in (5.61). The conditions (5.83) and (5.84) form

a system of linear equations in βf and βb. The only solution to this system is

βf = βb = 0, because Mf ,Mb,1 > 0 are independent of ε and bounded below away

from 0 uniformly in a. This is a contradiction with the fact that e−ηξφ′a,ε(ξ) is not

the zero solution to (5.6). We conclude that (5.78) has no exponentially localized

solution and that also the algebraic multiplicity of the eigenvalue λ = 0 of La,ε equals

one.

4.5.5 Calculation of second eigenvalue

By Theorem 4.9 the second eigenvalue λ1 ∈ R1 of (5.6) is a-uniformlyO(|ερ(a)log ε|2)-

close to the quotient −Mb,2M
−1
b,1 . Thus, to prove our main stability results in The-

orem 4.2, we need to show −Mb,2M
−1
b,1 ≤ −εb0, where b0 is independent of a and ε.

Since Mb,1 > 0 is independent of ε and bounded by an a-independent constant, the
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problem amounts to proving that Mb,2 is bounded below by εb̃0 for some b̃0 > 0. We

distinguish between the hyperbolic and nonhyperbolic regime.

In the hyperbolic regime, it is possible to determine the quantity Mb,2 to leading

order. This relies on the fact that the solution ϕb,ad(ξ), defined in (5.20), to the

adjoint system (5.19) converges exponentially to 0 as ξ → −∞ with rate
√

2a. Since

a is bounded below in the hyperbolic regime, the first two coordinates of Ψ∗, defined

in (5.61), are of higher order by choosing ν sufficiently large.

Therefore, the calculation for Mb,2 reduces to approximating the product

w′a,ε(Za,ε − Lε)
∫ Lε

−∞
u′b(ξ)e−c̆0ξdξ.

This leads to the following result.

Proposition 4.5.14. For each a0 > 0 there exists ε0 > 0 such that for each (a, ε) ∈

[a0,
1
2
− κ]× (0, ε0) the quantity Mb,2 in Theorem 4.9 is approximated (a-uniformly)

by

Mb,2 =
ε

c̆0

(
γw1

b − u1
b

) ∫ ∞

−∞
u′b(ξ)e−c̆0ξdξ +O

(
ε2|log ε|

)
, (5.85)

In particular, we have Mb,2 > ε/k0 for some k0 > 1, independent of a and ε.

Proof. The Nagumo back solution φb(ξ) to system (3.5) converges to the fixed point

p1
b = (u1

b, 0) as ξ → −∞. By looking at the linearization of (3.5) about p1
b we deduce

that the convergence of φb(ξ) to p1
b is exponential at a rate 1

2

√
2. Combining this
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with Theorem 4.5 (ii), ν ≥ 2
√

2 and c̆− c̆0 = O(ε) we estimate

w′a,ε(Za,ε − Lε) =
ε

c̆
(ua,ε(−Lε)− γwa,ε(−Lε))

=
ε

c̆0

(
u1

b − γw1
b

)
+O

(
ε2|log ε|

)
.

In addition, the derivative φ′b(ξ) converges exponentially to 0 at a rate 1
2

√
2 as

ξ → −∞. Finally, recall that c̆0(a) =
√

2(1
2
−a). Using all the previous observations,

we estimate

Mb,2 =

〈



ec̆0Lεv′b(−Lε)

−ec̆0Lεu′b(−Lε)
∫ −Lε
∞ e−c̆0ξ̂u′b(ξ̂)dξ̂



,




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)

w′a,ε(Za,ε − Lε)




〉

= − ε

c̆0

(
u1

b − γw1
b

) ∫ ∞

−∞
u′b(ξ)e−c̆0ξdξ +O

(
ε2|log ε|, ε

√
2a0ν
)
.

Without loss of generality we may assume ν ≥
√

2/a0. Thus, we take

ν ≥ max{2
√

2,
√

2/a0, 2/µ} > 0

(see (5.5)). With this choice of ν the approximation result follows. Since we have

0 < γ < 4, the line w = γ−1u intersects the cubic w = f(u) only at u = 0. So, it

holds u1
b − γw1

b > 0. Moreover, we have u′b(ξ) = vb(ξ) < 0 for all x ∈ R. Combing

these two items, it follows Mb,2 > ε/k0.

Recall that the solution ϕb,ad(ξ), defined in (5.20), to the adjoint system (5.19)

converges exponentially to 0 as ξ → −∞ with rate
√

2a. Thus, in the nonhyperbolic

regime 0 < a� 1, the first two coordinates of Ψ∗, defined in (5.61), are no longer of

higher-order, as was the case in the hyperbolic regime. Therefore, in addition to the
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product w′a,ε(Za,ε − Lε)
∫ Lε
−∞ u

′
b(ξ)e−c̆0ξdξ, we also have to bound the inner product

〈


ϕb,ad(−Lε)

0


 , φ′a,ε(Za,ε − Lε)

〉
, (5.86)

from below away from 0. Recall from §4.3.3 that the pulse solution φa,ε(ξ) is at

ξ = Za,ε − Lε in the neighborhood UF of the fold point (u∗, 0, w∗), where u∗ =

1
3

(
a+ 1 +

√
a2 − a+ 1

)
and w∗ = f(u∗). In UF there exists a coordinate transform

Φε : UF → R3 bringing system (3.1) into the canonical form (3.13). In system (3.13)

the dynamics on the two-dimensional invariant manifold z = 0 is decoupled from

the dynamics along the straightened out strong unstable fibers in the z-direction.

The flow on the invariant manifold z = 0 can be estimated; see Propositions 4.3.4

and 4.3.5. Therefore, our approach is to transfer to local coordinates by applying

Φε to the inner product (5.86). The estimates on the dynamics of (3.13) leads to

bounds on φ′a,ε(Za,ε − Lε) in the local coordinates. In addition, the other term

(φ′b,ad(−Lε), 0) in the inner product (5.86) can be determined to leading order in the

local coordinates, since the linear action of Φε is explicit. Furthermore, if we have

ε > K0a
3, then the leading order of φ′a,ε(Za,ε − Lε) can also be determined in local

coordinates using the estimates on the x-derivative given in Proposition 4.3.4 (ii).

The procedure described above leads to the following result.

Proposition 4.5.15. For each sufficiently small a0 > 0, there exists ε0 > 0 and

K0, k0 > 1, such that for each (a, ε) ∈ (0, a0) × (0, ε0) the quantity Mb,2 in Theo-

rem 4.9 satisfies Mb,2 > ε/k0. If we have in addition ε > K0a
3, then Mb,2 is bounded

as ε2/3/k0 < Mb,2 < ε2/3k0 and can be approximated a-uniformly by

Mb,2 =
a2

4
√

2
− (18− 4γ)2/3

9
√

2
Θ−1

(
−3a

2 (18− 4γ)1/3 ε1/3

)
ε2/3 +O (ε|log ε|) ,

where Θ is defined in (3.15).
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Proof. We start by estimating the lower term in the inner product Mb,2. Similarly

as in the proof of Proposition 4.5.14, we estimate a-uniformly

w′a,ε(Za,ε − Lε) =
ε

c̆0

(
u1

b − γw1
b

)
+O

(
ε5/3|log ε|

)
,

using Theorem 4.5 (ii). The ε-independent quantity u1
b − γw1

b > 0 is approximated

by 2
3
− 4

27
γ + O(a) and is bounded away from 0, since u1

b = 2
3
(1 + a), w1

b = f(u1
b)

and 0 < γ < 4. In addition, u′b(ξ) is strictly negative, independent of ε and a and

converges to 0 at an exponential rate 1
2

√
2 as ξ → ±∞; see (3.6). Therefore, we

estimate

k̃0ε <

〈∫ −Lε
∞

e−c̆0ξ̂u′b(ξ̂)dξ̂, w′a,ε(Za,ε − Lε)
〉
< ε|log ε|/k̃0 (5.87)

for some k̃0 > 0 independent of a and ε.

We continue by estimating the upper terms in the inner product Mb,2. The

linearization about the fixed point (u1
b, 0) of (3.5) has eigenvalues 1

2

√
2 and −

√
2a and

corresponding eigenvectors v+ = (1, 1
2

√
2) and v− = (1,−

√
2a), respectively. By [40,

Theorem 1] φ′b(ξ)e−ξ/
√

2 converges at an exponential rate 1
2

√
2 to an eigenvector α+v+

as ξ → −∞ for some α+ ∈ R \ {0}. Using the explicit formula (3.6) for φb(ξ), we

deduce α+ = −1
2

√
2eξb,0/

√
2, where ξb,0 ∈ R denotes the initial translation. Without

loss of generality we take ξb,0 = 0 so that α+ = −1
2

√
2; see Remark 4.3.1. Thus, we

approximate a-uniformly

ec̆0Lε




v′b(−Lε)

−u′b(−Lε)


 =

1

2
e−
√

2aLε



−1
√

2


+O

(
ε2
)
, (5.88)

using ν ≥ 2
√

2. For the remaining computations, we transform into local coordinates

in the neighborhood UF of the fold point (u∗, 0, w∗); see §4.3.3. Recall from the
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proof of Theorem 4.5 that φa,ε(Za,ε − Lε) is contained in the fold neighborhood UF
for a0, ε0 > 0 sufficiently small. We apply the coordinate transform Φε : UF → R3

bringing system (3.1) into the canonical form (3.13). Recall from §4.3.3 that Φε

is Cr-smooth in a and ε in a neighborhood of (a, ε) = 0. Moreover, Φε can be

decomposed about (u∗, 0, w∗) into a linear and a nonlinear part

Φε




u

v

w




= N







u

v

w



−




u∗

0

w∗







+ Φ̃ε




u

v

w



,

N = ∂Φε




u∗

0

w∗




=




−β1
β1
c̆

β1
c̆2

0 0 β2
c̆

0 1
c̆

1
c̆2



,

(5.89)

where

β1 =
(
a2 − a+ 1

)1/3
(u∗ − γw∗)−1/3 > 0,

β2 = c̆
(
a2 − a+ 1

)1/6
(u∗ − γw∗)−2/3 > 0,

uniformly in a and ε. The nonlinearity Φ̃ε satisfies Φ̃ε(u
∗, 0, w∗) = ∂Φ̃ε(u

∗, 0, w∗) = 0

and ∂Φ̃ε is bounded a- and ε-uniformly. Differentiating (xa,ε(ξ), ya,ε(ξ), za,ε(ξ)) =

Φε(φa,ε(ξ)) yields




x′a,ε(ξ)

y′a,ε(ξ)

z′a,ε(ξ)




=
[
N + ∂Φ̃(φa,ε(ξ))

]




u′a,ε(ξ)

v′a,ε(ξ)

w′a,ε(ξ)



.

Recall that (φb(ξ), w1
b) converges at an exponential rate 1

2

√
2 to (u1

b, 0, w
1
b). Thus,
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by Theorem 4.5 (ii) and ν ≥ 2
√

2 we have

‖φa,ε(Za,ε − Lε)− (u1
b, 0, w

1
b)‖ ≤ Cε2/3|log ε|, (5.90)

where C > 0 denotes a constant independent of a and ε. Recall that u1
b = 2

3
(1 + a),

u∗ = 1
3

(
a+ 1 +

√
a2 − a+ 1

)
, w1

b = f(u1
b), w∗ = f(u∗) and f ′(u∗) = 0. Therefore,

we estimate

∣∣u∗ − 2
3

∣∣ ,
∣∣w∗ − 4

27

∣∣ ≤ Ca
∣∣u1

b − u∗ − 1
2
a
∣∣ ,
∣∣w1

b − w∗
∣∣ ≤ Ca2. (5.91)

Combining estimates (5.90) and (5.91) with ∂Φ̃ε(u
∗, 0, w∗) = 0, we estimate

‖∂Φ̃ε(φa,ε(Za,ε − Lε))‖ ≤ C
(
ε2/3|log ε|+ a

)
. (5.92)

Using (5.88) and

(
N−1

)∗
=




− 1
β1

0 0

0 − 1
β2

c̆
β2

1 c̆ 0



,



180

we approximate a-uniformly

ec̆0Lε

〈


v′b(−Lε)

−u′b(−Lε)


 ,




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)



〉

=

〈
1

2
e−
√

2aLε




−1
√

2

0



,




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)

w′a,ε(Za,ε − Lε)




〉
+O

(
ε2
)

=

〈
1

2
e−
√

2aLε
(
N−1

)∗




−1
√

2

0



,N




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)

w′a,ε(Za,ε − Lε)




〉
+O

(
ε2
)

=

〈
1

2
e−
√

2aLε




1
β1

−
√

2
β2√

2c̆− 1



, (I + ∆)




x′a,ε(Za,ε − Lε)

y′a,ε(Za,ε − Lε)

z′a,ε(Za,ε − Lε)




〉
+O

(
ε2
)
,

(5.93)

where ∆ := −∂Φ̃ε(φa,ε(Za,ε − Lε))
(
N + ∂Φ̃ε(φa,ε(Za,ε − Lε))

)−1

. First, by (5.92)

it holds ‖∆‖ ≤ C
(
ε2/3|log ε|+ a

)
. Second, from the equations (3.13) one observes

that |y′a,ε(Za,ε − Lε)| < Cε. Third, by Theorem 4.5 the pulse φa,ε(ξ) exits the fold

neighborhood at ξ = Za,ε − ξb, where ξb = O(1). The dynamics in the z-component

in (3.13) decays exponentially in backward time with rate greater than c̆/2 by taking

the neighborhood UF smaller if necessary. Note that c̆ is bounded from below away

from 0 by an a-independent constant. Thus, we may assume that the a-independent

constant ν satisfies ν ≥ 2c̆−1, i.e. we take ν ≥ max{2
√

2, 2c̆−1, 2/µ} > 0 (see (5.5)).

With this choice of ν, we estimate |za,ε(Za,ε − Lε)| ≤ Cε. So, using the equation for

z′ in (3.13), one observes that |z′a,ε(Za,ε − Lε)| ≤ Cε. Combining the previous three
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observations with (5.93), we approximate a-uniformly

e(
√

2a+c̆0)Lε

〈


v′b(−Lε)

−u′b(−Lε)


 ,




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)



〉

=
1

2
x′a,ε(Za,ε − Lε)

〈



1
β1

−
√

2
β2√

2c̆− 1



, (I + ∆)




1

0

0




〉
+O (ε) ,

=
1

2β1

x′a,ε(Za,ε − Lε)
(
1 +O

(
ε2/3|log ε|+ a

))
+O (ε) .

(5.94)

From Propositions 4.3.4 and 4.3.5 it follows that for any k† > 0 there exists ε0, a0 > 0

such that for (a, ε) ∈ (0, a0)× (0, ε0) it holds x′a,ε(Za,ε−Lε) > k†ε. Moreover, β1 > 0

is bounded by an a-independent constant. Thus, by taking k† > 0 sufficiently large,

we estimate

Mb,2 > e−
√

2aLε
k†ε

4β1

+ k̃0ε, (5.95)

using (5.87) and (5.94). This proves the first assertion.

Suppose we are in the regime ε > K0a
3 for some K0 > 0, so that a = O

(
ε1/3
)
.

On the one hand, using (5.89) and (5.91) we approximate the x-coordinate xb of

Φε(u
1
b, 0, w

1
b) by

xb = −β1

(
u1

b − u∗
)

+
β1

c̆2

(
w1
b − w∗

)
+O

(
a2
)

= −β1a

2
+O(a2).

On the other hand, since ∂Φε is bounded a- and ε-uniformly, we have by (5.90) that

|xa,ε(Za,ε − Lε)− xb| ≤ Cε2/3|log ε|. Hence, using K0a
3 < ε, we estimate

∣∣xa,ε(Za,ε − Lε) + 1
2
β1a
∣∣ ≤ C

(
ε2/3|log ε|+ a2

)
≤ Cε2/3|log ε|. (5.96)
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Therefore, Propositions 4.3.4 and 4.3.5 yield, provided K0 > 0 is chosen sufficiently

large (with lower bound independent of a and ε),

x′a,ε(Za,ε − Lε) = θ0

(
xa,ε(Za,ε − Lε)2 −Θ−1

(
xa,ε(Za,ε − Lε)ε−1/3

)
ε2/3
)

+O(ε).

(5.97)

First, by (5.91) it holds

θ0 =
1

c̆
(a2 − a+ 1)1/6 (u∗ − γw∗)1/3 =

√
2

3
(18− 4γ)1/3 +O(a),

β1 =
(
a2 − a+ 1

)1/3
(u∗ − γw∗)−1/3 = 3 (18− 4γ)−1/3 +O(a).

Second, in the regime K0a
3 < ε we have

∣∣∣e−
√

2aLε − 1
∣∣∣ ≤ Cε1/3|log ε|.

Third, by combining (5.96) and (5.97), we observe x′a,ε(Za,ε − Lε) = O(ε2/3). We

substitute (5.96) and (5.97) into (5.94) and approximate Mb,2 with the aid of the

previous three observations and identity (5.87) by

Mb,2 =
1

2β1

x′a,ε(Za,ε − Lε) +O (ε|log ε|)

=
θ0

2β1

(
xa,ε(Za,ε − Lε)2 −Θ−1

(
xa,ε(Za,ε − Lε)ε−1/3

)
ε2/3
)

+O (ε|log ε|)

=
a2

4
√

2
− (18− 4γ)2/3

9
√

2
Θ−1

(
−3a

2 (18− 4γ)1/3 ε1/3

)
ε2/3 +O (ε|log ε|) .

This is the desired leading order approximation of Mb,2. In the regime K0a
3 < ε,

for K0 > 1 sufficiently large, the bound ε2/3/k0 < Mb,2 < ε2/3k0 follows from this

approximation, using that Θ−1 is smooth and Θ−1(0) < 0.

Remark 4.5.16. By Theorem 4.9 the second eigenvalue λ1 of (5.6) is to leading

order approximated by the quotient Mb,2M
−1
b,1 . We give a geometric interpretation of
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the quantities Mb,1 and Mb,2 in both the hyperbolic and nonhyperbolic regimes.

For the interpretation of the quantity Mb,1 we append the Nagumo eigenvalue

problem to the Nagumo existence problem (3.5) along the back

uξ = v,

vξ = c̆0v − f(u) + w1
b,

ũξ = ṽ,

ṽξ = c̆0ṽ − f ′(u)ũ+ λũ.

(5.98)

Note that (φb(ξ), φ′b(ξ)) is a heteroclinic solution to (5.98) for λ = 0 connecting the

equilibria (p1
b, 0) and (p0

b, 0). The space of bounded solutions to the adjoint equation

of the linearization of (5.98) at λ = 0 about (φb(ξ), φ′b(ξ)) is spanned by (ψad,1(ξ), 0)

and (ψad,2(ξ), ψad,1(ξ)), where ψad,1(ξ) = (v′b(ξ),−u′b(ξ))e−c̆0ξ. The Melnikov integral

Mb,1 =

∫ ∞

−∞
(u′b(ξ))

2
e−c̆0ξdξ,

measures how the intersection between the stable manifold Ws(p0
b, 0) and unstable

manifold Wu(p1
b, 0) breaks at (φb(0), φ′b(0)) in the direction of (ψad,2(0), ψad,1(0)) as

we vary λ. Note that the quantity Mf , defined in (5.75), has a similar interpretation.

In the hyperbolic regime Mb,2 is to leading order given by (5.85). The positive sign

of the quantity u1
b− γw1

b in (5.85) corresponds to the fact that solutions on the right

slow manifold move in the direction of positive w. For the geometric interpretation

of the integral

∫ ∞

−∞
u′b(ξ)e−c̆0ξdξ, (5.99)

in (5.85) we observe that the dynamics in the layers of the fast problem (3.3) are
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given by the Nagumo systems

uξ = v,

vξ = c̆0v − f(u) + w.

(5.100)

For w = w1
b system (5.100) admits the heteroclinic solution φb(ξ) connecting the

equilibria p1
b and p0

b. The space of bounded solutions to the adjoint problem of the

linearization of (5.100) at w = w1
b about φb(ξ) is spanned by ψad,1(ξ). One readily

observes that (5.99) is a Melnikov integral measuring how the intersection between

the stable manifold Ws(p0
b) and unstable manifold Wu(p1

b) breaks at φb(0) in the

direction of ψad,1(0) as we vary w in (5.100), i.e. as we move through the fast fibers

in the layer problem (3.3).

In the nonhyperbolic regime Mb,2 is estimated by (5.95). As can be observed from

the proof of Proposition 4.5.15, the sign of Mb,2 is dominated by the inner product

〈


v′b(−Lε)

−u′b(−Lε)


 ,




u′a,ε(Za,ε − Lε)

v′a,ε(Za,ε − Lε)



〉

of the adjoint of the singular back solution and the derivative of the pulse solution

near the fold point. This inner product determines the orientation of the pulse so-

lution as it passes over the fold before jumping off in the strong unstable direction

along the singular back solution. In essence, upon passing up and over the fold, the

solution jumps off along a strong unstable fiber to the left. In the fold coordinates,

the sign of this inner product amounts to the sign of the derivative x′a,ε(Za,ε−Lε) of

the x-coordinate of the pulse solution in the local coordinates around the fold (3.13).

The sign of this derivative is determined by the direction of the Riccati flow in the

blow up charts near the fold; see system (3.20).
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4.5.6 The region R2

The goal of the section is to prove that the region R2(δ,M) contains no eigenvalues

of (5.6) for any M > 0 and each δ > 0 sufficiently small. As described in §4.5.2 our

approach is to show that problem (5.6) admits exponential dichotomies on each of

the intervals If , Ir, Ib and I`, which together form a partition of the whole real line

R. The exponential dichotomies on Ir and I` are yet established in Proposition 4.5.5.

The exponential dichotomies on If and Ib are generated from exponential dichotomies

of a reduced eigenvalue problem via roughness results. Our plan is to compare the

projections of the aforementioned exponential dichotomies at the endpoints of the

intervals. The obtained estimates yield that any exponentially localized solution

to (5.6) must be trivial for λ ∈ R2.

A reduced eigenvalue problem

We establish for ξ in If or Ib a reduced eigenvalue problem by setting ε to 0 in

system (5.6), while approximating φa,ε(ξ) with (a translate of) the front φf(ξ) or the

back φb(ξ), respectively. However, we do keep the λ-dependence in contrast to the

reduction done in the region R1. Thus, the reduced eigenvalue problem reads

ψξ = Aj(ξ, λ)ψ,

Aj(ξ, λ) = Aj(ξ, λ; a) :=




−η 1 0

λ− f ′(uj(ξ)) c̆0 − η 1

0 0 − λ
c̆0
− η



, j = f, b,

(5.101)

where uj(ξ) denotes the u-component of φj(ξ), λ is in R2 and a is in [0, 1
2
− κ]. By

its triangular structure, system (5.101) leaves the subspace C2×{0} ⊂ C3 invariant.
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The dynamics of (5.101) on that space is given by

ϕξ = Cj(ξ, λ)ϕ,

Cj(ξ, λ) = Cj(ξ, λ; a) :=




−η 1

λ− f ′(uj(ξ)) c̆0 − η


 , j = f, b.

(5.102)

We remark that problem (5.102) corresponds to the weighted eigenvalue problem of

the Nagumo systems ut = uxx + f(u) and ut = uxx + f(u)−w1
b about the traveling-

wave solutions uf(x+ c̆0t) and ub(x+ c̆0t), respectively.

We show that systems (5.101) and (5.102) admit exponential dichotomies on both

half-lines. The translated derivative e−ηξφ′j(ξ) is an exponentially localized solution

to (5.102) at λ = 0, which admits no zeros. Therefore, by Sturm-Liouville theory,

λ = 0 is the eigenvalue of largest real part of (5.102). So, problems (5.102) admit

no exponentially localized solutions for λ ∈ R2(δ,M) by taking δ > 0 sufficiently

small. This fact allows us to paste the exponential dichotomies on both half-lines

of systems (5.102) and (5.101) to a single exponential dichotomy on R. This is the

content of the following result.

Proposition 4.5.17. Let κ,M > 0. For each δ > 0 sufficiently small, a ∈ [0, 1
2
− κ]

and λ ∈ R2(δ,M) system (5.101) admit exponential dichotomies on R with λ- and

a-independent constants C, µ
2
> 0, where µ > 0 is as in Lemma 4.5.3.

Proof. By Lemma 4.5.3, provided δ > 0 is sufficiently small, the asymptotic matrices

Cj,±∞(λ) = Cj,±∞(λ; a) := limξ→±∞Cj(ξ, λ) of (5.102) have for a ∈ [0, 1/2− κ] and

λ ∈ R2(δ,M) a uniform spectral gap larger than µ > 0. Hence, it follows from [47,

Lemmata 1.1 and 1.2] that system (5.102) admits for (λ, a) ∈ R2 × [0, 1/2 − κ] ex-

ponential dichotomies on both half-lines with constants C, µ > 0 and projections

Πu,s
j,±(ξ, λ) = Πu,s

j,±(ξ, λ; a), j = f, b. We emphasize that the constant C > 0 is inde-
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pendent of λ and a, because R2 × [0, 1/2− κ] is compact.

By Sturm-Liouville theory (see e.g. [35, Theorem 2.3.3]) system (5.102) has pre-

cisely one eigenvalue λ = 0 on Re(λ) ≥ −δ (taking δ > 0 smaller if necessary).

Therefore, system (5.102) admits no bounded solutions for λ ∈ R2. Hence, we can

paste the exponential dichotomies as in [11, p. 16-19] by defining Πs
j(0, λ) to be the

projection onto R(Πs
j,+(0, λ)) along R(Πu

j,−(0;λ)). Thus, system (5.102) admits for

(λ, a) ∈ R2× [0, 1/2− κ] an exponential dichotomy on R with λ- and a-independent

constants C, µ > 0 and projections Πu,s
j (ξ, λ) = Πu,s

j (ξ, λ; a), j = f, b.

By the triangular structure of system (5.101) the exponential dichotomy on R

of the subsystem (5.102) can be transferred to the full system (5.101) using a vari-

ation of constants formula; see also the proof of Corollary 4.5.7. The exponential

dichotomy on R of system (5.101) has constants C,min{µ, η− δ
c̆0
} > 0, where C > 0

is independent of a and λ. The result follows by taking δ > 0 sufficiently small using

that µ ≤ η by Lemma 4.5.3.

Absence of point spectrum in R2

With the aid of the following lemma we show that the region R2 contains no eigen-

values of (5.6).

Lemma 4.5.18 ([29, Lemma 6.10]). Let n ∈ N, a, b ∈ R with a < b and A ∈

C([a, b],Matn×n(C)). Suppose the equation

ϕx = A(x)ϕ, (5.103)

has an exponential dichotomy on [a, b] with constants C,m > 0 and projections
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P u,s
1 (x). Denote by T (x, y) the evolution of (5.103). Let P2 be a projection such that

‖P s
1 (b) − P2‖ ≤ δ0 for some δ0 > 0 and let v ∈ Cn a vector such that ‖P s

1 (a)v‖ ≤

k‖P u
1 (a)v‖ for some k ≥ 0. If we have δ0(1 + kC2e−2m(b−a)) < 1, then it holds

‖P2T (b, a)v‖ ≤ δ0 + kC2e−2m(b−a) (1 + δ0)

1− δ0 (1 + kC2e−2m(b−a))
‖(1− P2)T (b, a)v‖.

Proposition 4.5.19. Let M > 0 be as in Proposition 4.5.2. There exists δ, ε0 > 0

such that for ε ∈ (0, ε0) system (5.6) admits no nontrivial exponentially localized

solution for λ ∈ R2(δ,M).

Proof. We start by establishing exponential dichotomies of system (5.6) on the in-

tervals If = (−∞, Lε] and Ib = [Za,ε − Lε, Za,ε + Lε]. Let λ ∈ R2(δ,M). We regard

the eigenvalue problem (5.6) as an ε-perturbation of system (5.101). Indeed, by

Theorem 4.5 (i)-(ii), for each sufficiently small a0 > 0, there exists ε0 > 0 such that

for ε ∈ (0, ε0) we estimate the difference between the coefficient matrices of both

systems along the front and the back by

‖A(ξ, λ)− Af(ξ, λ)‖ ≤ Cε|log ε|, ξ ∈ (−∞, Lε],

‖A(Za,ε + ξ, λ)− Ab(ξ, λ)‖ ≤ Cερ(a)|log ε|, ξ ∈ [−Lε, Lε],
(5.104)

where ρ(a) = 2
3

for a < a0 and ρ(a) = 1 for a ≥ a0 and C is independent of λ, a and

ε. By Proposition 4.5.17 system (5.101) has an exponential dichotomy on R with λ-

and a-independent constants C, µ
2
> 0 and projections Qu,s

j (ξ, λ) = Qu,s
j (ξ, λ; a) for

j = f, b. Denote by P u,s
j (λ) = P u,s

j (λ; a) the spectral projection onto the (un)stable

eigenspace of the asymptotic matrices Aj,±∞(λ) = Aj,±∞(λ; a) of system (5.101). As

in the proof of Proposition 4.5.9 we obtain the estimate

‖Qu,s
j (±ξ, λ)− P u,s

j,±(λ)‖ ≤ C

(
e−

1
2

√
2ξ + e−

µ
2
ξ

)
, j = f, b, (5.105)
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for ξ ≥ 0. By estimate (5.104) roughness [10, Theorem 2] yields exponential di-

chotomies on If = (−∞, Lε] and Ib = [Za,ε − Lε, Za,ε + Lε] for system (5.6) with λ-

and a-independent constants C, µ
2
> 0 and projections Qu,sj (ξ, λ) = Qu,sj (ξ, λ; a, ε),

which satisfy

‖Qu,sf (ξ, λ)−Qu,s
f (ξ, λ)‖ ≤ Cε|log ε|,

‖Qu,sb (Za,ε + ξ, λ)−Qu,s
b (ξ, λ)‖ ≤ Cερ(a)|log ε|,

(5.106)

for |ξ| ≤ Lε.

On the other hand, system (5.6) admits by Proposition 4.5.5 exponential di-

chotomies on Ir = [Lε, Za,ε −Lε] and on I` = [Za,ε +Lε,∞) with constants C, µ > 0

and projections Qu,sr,` (ξ, λ) = Qu,sr,` (ξ, λ; a, ε). The projections satisfy at the endpoints

‖[Qsr − P ](Lε, λ)‖ ≤ Cε|log ε|,

‖[Qsr − P ](Za,ε − Lε, λ)‖ , ‖[Qs` − P ](Za,ε + Lε, λ)‖ ≤ Cερ(a)|log ε|,
(5.107)

where P(ξ, λ) = P(ξ, λ; a, ε) denote the spectral projections onto the stable eigenspace

of A(ξ, λ).

Having established exponential dichotomies for (5.6) on the intervals If , Ir, Ib

and I`, our next step is to compare the associated projections at the endpoints of

the intervals. Recall that Aj(ξ, λ) converges at an exponential rate 1
2

√
2 to the

asymptotic matrix Aj,±∞(λ) as ξ → ±∞ for j = f, b. Combining this with (5.104)

and ν ≥ 2
√

2 we estimate

‖A(Lε, λ)− Af,∞(λ)‖ ≤ Cε|log ε|,

‖A(Za,ε ± Lε, λ)− Ab,±∞(λ)‖ ≤ Cερ(a)|log ε|.



190

By continuity the same bound holds for the spectral projections associated with

these matrices. Combining this fact with ν ≥ max{2
√

2, 2/µ}, (5.105), (5.106) and

(5.107) we obtain

‖[Qu,sr −Qu,sf ](Lε, λ)‖ ≤ Cε|log ε|,

‖[Qu,s` −Qu,sb ](Za,ε + Lε, λ)‖ , ‖[Qu,sr −Qu,sb ](Za,ε − Lε, λ)‖ ≤ Cερ(a)|log ε|.
(5.108)

The last step is an application of Lemma 4.5.18. Let ψ(ξ) be an exponentially

localized solution to (5.6) at some λ ∈ R2. This implies Qsf (0, λ)ψ(0) = 0. An

application of Lemma 4.5.18 yields

‖Qsr(Lε, λ)ψ(Lε)‖ ≤ Cε|log ε|‖Qur (Lε, λ)ψ(Lε)‖, (5.109)

using (5.108) and ν ≥ 2/µ. We proceed in a similar fashion by applying Lemma 4.5.18

to the inequality (5.109) and using (5.108) to obtain a similar inequality at the end-

point Za,ε − Lε. Applying the Lemma once again, we eventually obtain

‖Qs`(Za,ε + Lε, λ)ψ(Za,ε + Lε)‖ ≤ Cερ(a)|log ε|‖Qu` (Za,ε + Lε, λ)ψ(Za,ε + Lε)‖ = 0,

where the latter equality is due to the fact that ψ(ξ) is exponentially localized. Thus,

ψ is the trivial solution to (5.6).

4.6 Proofs of main stability results

We studied the essential spectrum in §4.4 and the point spectrum in §4.5 of the

linearization La,ε. In this section we complete the proofs of the main stability results:
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Theorem 4.2 and Theorem 4.4.

Proof of Theorem 4.2. In the regime ε < Ka2, the essential spectrum of La,ε is con-

tained in the half-plane Re(λ) ≤ −min{εγ, a} = −εγ by Theorem 4.4.1. Consider

the regions R1, R2 and R3 defined in §4.5.2. By Propositions 4.5.2, 4.5.4 and 4.5.19

there is no point spectrum of La,ε in the regions R2 and R3 to the right hand side

of the essential spectrum. By Proposition 4.5.4, Theorem 4.9 and Proposition 4.5.13

the point spectrum in R1 to the right hand side of the essential spectrum consists of

the simple translational eigenvalue λ0 = 0 and at most one other real eigenvalue λ1

approximated by −Mb,2M
−1
b,1 , where Mb,1 > 0 is independent of ε and bounded by an

a-independent constant. Subsequently, we use Propositions 4.5.14 and 4.5.15 to esti-

mate Mb,2. We conclude that there exists a constant b0 > 0 such that λ1 < −εb0.

Proof of Theorem 4.4. It follows by Proposition 4.5.14 that the potential eigenvalue

λ1 < 0 of La,ε is approximated (a-uniformly) by λ1 = −M1ε + O (|ε log ε|2) in the

hyperbolic regime, where M1 is given by

M1 = M1(a) :=
(γw1

b − u1
b)
∫∞
−∞ u

′
b(ξ)e−c̆0ξdξ

c̆0

∫∞
−∞ (u′b(ξ))2 e−c̆0ξdξ

=
18(a+ 1)− γ (4a3 − 6a2 − 6a+ 4)

9a (1− a) (1− 2a)

> 0,

(6.1)

where we used the explicit expressions for the front and the back given in (3.6) and

substituted u1
b = 2

3
(1 + a), w1

b = f(u1
b) and c̆0 =

√
2(1

2
− a).

By Proposition 4.4.1 the essential spectrum of La,ε intersects the real axis only

at points λ ≤ −ε(γ + a−1) in the hyperbolic regime. So, if M1 < γ + a−1 is satisfied,

then λ1 lies to the right hand side of the essential spectrum. In that case, λ1 is
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by Proposition 4.5.4 contained in the point spectrum of La,ε. This proves the first

assertion.

By Theorem 4.9 and Proposition 4.5.15, there exists K0, k0 > 1, independent of

a and ε, such that, if ε > K0a
3, then

λ1 = −Mb,2

Mb,1

+O
(∣∣ε2/3 log ε

∣∣2
)
,

satisfies 1/k0ε
2/3 < λ1 < k0ε

2/3. By Theorem 4.4.1 the essential spectrum of La,ε
intersects the real axis only at points λ ≤ −min{ε(γ + a−1), 1

2
a + 1

2
εγ}. Thus, in

the regime K0a
3 < ε < Ka2 the essential spectrum intersects the real axis at points

λ < −K1/3
0 ε2/3. Taking K0 > 1 larger if necessary, it follows that λ1 lies to the right

hand side of the essential spectrum and λ1 is by Proposition 4.5.4 an eigenvalue of

La,ε.

With the aid of (3.6) we calculate

Mb,1 =

∫ ∞

−∞
(u′b(ξ))

2
e−c̆0ξdξ =

1

3
√

2
+O(a),

taking the initial translation ξb,0 of ub(ξ) equal to 0; see Remark 4.3.1. Moreover, if

K0a
3 < ε1+α for some α > 0, then we compute with the aid of Proposition 4.5.15

Mb,2 = −(18− 4γ)2/3

9
√

2
Θ−1(0)ε2/3 +O

(
ε(2+α)/3, ε|log ε|

)
,

uniformly in a and α, where Θ is defined in (3.15). With these leading order com-

putations of Mb,1 and Mb,2 the approximation (2.4) of λ1 follows in the regime

K0a
3 < ε1+α, ε < Ka2.
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(a) Shown is the u-component of the
pulse solution (blue) obtained numerically
for (a, ε, γ) = (0.0997, 0.0021, 3.5). Also
plotted is the u-component of the eigenfunc-
tion (dashed red) corresponding to the eigen-
value λ1 = −0.0194.
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(b) Shown is the spectrum of the opera-
tor La,ε associated with the pulse in Fig-
ure 4.6a. Note that the eigenvalue λ1 =
−0.0194 (shown in red) lies to the right of
the essential spectrum.

Figure 4.6: Shown is a sample pulse solution and its spectrum. Also shown is the eigenfunction
corresponding to the critical eigenvalue λ1 = −0.0194.

4.7 Numerics

In this section, we discuss numerical results pertaining to Theorem 4.4; in particular,

we focus on the location of the potential second eigenvalue λ1 of La,ε with respect

to the essential spectrum and its asymptotic behavior as ε→ 0.

4.7.1 Position of λ1 with respect to the essential spectrum

In the nonhyperbolic regime K0a
3 < ε it is always the case that λ1 lies to the right

of the essential spectrum and is in fact an eigenvalue of La,ε by Theorem 4.4 (ii). In

the hyperbolic regime there is a condition in Theorem 4.4 (i) which ensures that λ1

lies to the right of the essential spectrum and is an eigenvalue of La,ε. We comment

on this condition. Note that for parameter values (a, γ) = (0.0997, 3.5) the condition
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(a) Shown is the u-component
of the monotone pulse solution
(blue) obtained numerically for
(c, a, ε, γ) = (0.4446, 0.1671, 0.0021, 0.5).
Also plotted is the u-component of the
weighted eigenfunction (dashed red) corre-
sponding to the eigenvalue λ1 = −0.0408.
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(b) Shown is the u-component
of the oscillatory pulse solution
(blue) obtained numerically for
(c, a, ε, γ) = (0.6864, 0.0059, 0.0021, 0.5).
Also plotted is the u-component of the
weighted eigenfunction (dashed red) corre-
sponding to the eigenvalue λ1 = −0.0374.

Figure 4.7: Sample monotone and oscillatory pulses and the weighed eigenfunctions corresponding
to the critical eigenvalue λ1.

is satisfied

M1 = 12.498 < 13.530 = γ + a−1.

Here M1 is calculated with the aid of formula (6.1). In Matlab, we solve for stationary

solutions of (2.2) numerically for the parameter values (a, ε, γ) = (0.0997, 0.0021, 3.5)

where we obtain the monotone pulse solution shown in Figure 4.6a; we also solve the

eigenvalue problem (2.3) and obtain a solution with eigenvalue λ1 = −0.0194; the

corresponding eigenfunction of La,ε is plotted along with the pulse in Figure 4.6a.

The spectrum associated with the pulse is plotted in Figure 4.6b. Note that the

eigenvalue λ1 = −0.0194 appears indeed to the right of the essential spectrum.
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4.7.2 Asymptotics of λ1 as ε→ 0

We now turn to the asymptotics of the eigenvalue λ1 of La,ε as ε → 0. To study

this, we continue traveling-pulse solutions to (2.1) numerically along different curves

in the parameters c, a and ε in order to illustrate the behavior of the eigenvalue λ1

in the hyperbolic and nonhyperbolic regimes treated in Theorem 4.4. In order to

ensure that we obtain the correct value for λ1, we use a small exponential weight

η > 0 to shift the essential spectrum away from the imaginary axis, i.e. we look for

solutions to the eigenvalue problem (2.3) bounded in the weighted norm ‖ψ‖−η =

supξ∈R ‖ψ(ξ)e−ηξ‖. This amounts to replacing (2.3) with the shifted version

ψξ = (A0(ξ, λ)− η)ψ. (7.1)

This procedure is justified and explained in detail in §4.5.2. In short, if [0, 1/2− κ]

is the allowed range for a in the existence result Theorem 4.1, then for the choice

η = 1
2

√
2κ, λ1 lies to the right of the shifted essential spectrum and is always an

eigenvalue of the shifted problem (7.1). In the following, we fix η = 0.1. Thus, we

restrict to a-values in [0, 0.3586].

Hyperbolic regime

We first consider the hyperbolic regime: according to Theorem 4.4 (i), for sufficiently

small ε > 0, the eigenvalue λ1 of (7.1) is approximated by

λ1 = −M1ε+O
(
|ε log ε|2

)
, (7.2)
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where M1 > 0 is given by (6.1). If (u(x− ct), w(x− ct)) is a traveling-wave solution

to (2.1) with wave speed c, then (u(ξ), u′(ξ), w(ξ)) satisfies the ODE

uξ = v,

vξ = cv − f(u) + w,

wξ =
ε

c
(u− γw).

(7.3)

Using Matlab, we solve (7.3) numerically for the parameter values (c, a, ε, γ) =

(0.4446, 0.1671, 0.0021, 0.5) where we obtain the monotone pulse solution shown in

Figure 4.7a. In addition, we solve the eigenvalue problem (7.1) and obtain a solution

with eigenvalue λ1 = −0.0408; the corresponding weighted eigenfunction of (7.1)

is plotted along with the pulse in Figure 4.7a. To see whether (7.2) gives a good

prediction for the location of the eigenvalue λ1 in the hyperbolic regime, we fix the

parameter a and using the continuation software package AUTO, we append the

weighted eigenvalue problem (7.1) to the existence problem (7.3) and continue in the

parameters (c, ε) letting ε → 0 to determine the asymptotics of the eigenvalue λ1.

We regard c here as a free parameter, because the value of c = c̆(a, ε) for which (2.1)

admits a traveling-pulse solution depends on a and ε by Theorem 4.1. Thus, instead

of prescribing c = c̆(a, ε) we require AUTO to continue along a 1-dimensional curve

in the (c, ε)-plane of homoclinic solutions to 0 of (7.3).

The results of the continuation process are plotted in Figure 4.8. In Figure 4.8a,

the continuation of the eigenvalue λ1 is plotted against ε along with the first order

approximation λ1 ≈ −M1ε for the eigenvalue λ1 from Theorem 4.4 (i). There is good

agreement as ε → 0. In addition, in Figure 4.8b, a log-log plot of the difference of

the two curves in Figure 4.8a is plotted along with a straight line of slope 2. Asymp-

totically, there is good agreement between these two curves, which suggests that the

difference between the numerically computed values for λ1 and the approximation
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(a) Plotted is the curve (blue) obtained
for the continuation of the eigenvalue λ1 as
ε → 0 in the monotone pulse case. Here we
have fixed a = 0.1671 and the wave speed c
varies along the continuation. For compari-
son, we also plot the first order approxima-
tion (dashed red) λ ≈ −M1ε for the eigen-
value λ1 from Theorem 4.4 (i).
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(b) Shown is a log-log plot of the differences
(blue) of the two curves in Figure 4.8a,
that is, we plot log (λ1 +M1ε) vs. log ε
where the values for λ1 were obtained using
the numerical continuation. Also plotted
(dashed red) is a straight line of slope 2.

Figure 4.8: Asymptotics of the critical eigenvalue λ1 in the hyperbolic regime.

λ1 ≈ −M1ε is indeed higher order.

Nonhyperbolic regime

We next consider the nonhyperbolic regime. Take K∗ > 1/4. By Theorem 4.1 and

Remark 4.3.3, provided a, ε > 0 are sufficiently small with K∗a2 < ε, the tail of

the pulse solution is oscillatory. Hence for sufficiently small ε > 0, in the region of

oscillatory pulses, one expects by Theorem 4.4 (ii) that the eigenvalue λ1 of (7.1)

becomes asymptotically O
(
ε2/3
)
. Using Matlab, we solve (7.3) numerically for the

parameter values (c, a, ε, γ) = (0.6864, 0.0059, 0.0021, 0.5) and obtain the oscillatory

pulse solution shown in Figure 4.7b. We also solve the eigenvalue problem (7.1)

and obtain a solution with eigenvalue λ1 = −0.0374 and corresponding weighted

eigenfunction which is plotted along with the pulse in Figure 4.7b. To determine

the asymptotics of the eigenvalue λ1 in the oscillatory regime, we now continue this
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solution letting ε→ 0 along the curve ε = 61.9026a2 so that it holds ε > K∗a2 along

this curve. Note that we regard c again as a free parameter for the same reasons as

in §4.7.2.

We compare the results of the continuation process with the results of Theo-

rem 4.4. Along the curve ε = 61.9026a2, for sufficiently small a, ε > 0, by Theo-

rem 4.4 (ii) the eigenvalue is given by

λ1 = −1
3

(18− 4γ)2/3 ζ0ε
2/3 +O

(
ε5/6
)
≈ −2.1561ε2/3, (7.4)

where we used that ζ0 ≈ 1.0187.

The results of the continuation process are shown in Figure 4.9; in Figure 4.9a,

the continuation of the eigenvalue λ1 is plotted against ε in blue along with the first

order approximation (7.4) in red. In Figure 4.9b, a log-log plot of the difference

of the two curves in Figure 4.9 is plotted along with straight lines of slope 1 and

5/6. Asymptotically, the log of the difference lies between these two lines, which

suggests that the difference between the numerically computed values for λ1 and the

approximation is indeed higher order.
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(blue) of the two curves in Figure 4.9a, that
is, we plot log

(
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)
vs. log ε
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straight line (dashed green) of slope 5/6.

Figure 4.9: Asymptotics of the critical eigenvalue λ1 in the nonhyperbolic regime.



Chapter Five

Unpeeling a homoclinic banana
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5.1 Introduction

We return to the FitzHugh-Nagumo traveling wave ODE:

u̇ = v

v̇ = cv − f(u) + w

ẇ = ε(u− γw) ,

(1.1)

where ˙ = d
dt

, and where the nonlinearity f(u) = u(u − a)(1 − u), −1/2 < a < 1/2,

γ > 0, and 0 < ε � 1. In this chapter, we discuss a phenomenon, which has

previously been observed numerically, in which the oscillation in the tails of the pulses

constructed in [8, Theorem 1.1] grow into a secondary excursion upon continuation in

the parameters (c, a). This second excursion grows into a second copy of the primary

pulse via a mechanism resembling a canard explosion. The goal of this chapter is to

construct this transition analytically using geometric singular perturbation theory

and blow up techniques as in the construction of the oscillatory pulses in [8, Theorem

1.1]

We begin in §5.2 by describing the transition mechanism in more detail with the

aid of numerical computations. In §5.3, we outline the setup and give a statement of

the main result. The pulse solutions are constructed in §5.4 save for a few technical

results which are proved in §5.5 and §5.6.
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5.2 Homoclinic C-curve and single-to-double pulse

transition

The following computations were performed using the continuation software AUTO.

Throughout, we fix γ = 1/2.

5.2.1 The homoclinic banana

Starting with a monotone 1-pulse, we begin by fixing ε = 0.021 and continuing

in the parameters (c, a) and obtain the homoclinic “C-curve” (Figure 5.2a) which

connects the branch of fast monotone pulses with the branch of slow pulses (see

the schematic diagram in Figure 5.1). When continuing along the upper branch

towards the left corner of the diagram, due to the Belyakov transition occurring at

the origin, the tail of the pulse solution changes from monotone to oscillatory. The

branch eventually turns around sharply as the pulse undergoes a transition from a

single to a double pulse. The continuation then follows the C-curve in reverse, and

similar sharp turn occurs when the lower branch appears to terminate in the lower

left corner of the diagram, during which the double pulse transitions back to a single

pulse. To better visualize this curve of solutions, in Figure 5.2b, the L2-norm of the

solutions is plotted against the parameter a. This gives the homoclinic “banana” as

described in [9]. Figure 5.3 shows an example oscillatory pulse solution and a nearby

double pulse solution after the transition along the banana.
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ǫ 1/2

c = c∗(a)

Figure 5.1: Shown is the bifurcation diagram indicating the known regions of existence for pulses
in (1.1). Pulses on the upper branch are referred to as “fast” pulses, while those along the lower
branch are called “slow” pulses. These two branches coalesce near the point (c, a, ε) = (0, 1/2, 0).

0.4

0.5

0.6

-0.04 0 0.04 0.08 0.12 0.16

a

c

(a) Homoclinic C-curve: c vs. a

0.01

0.02

0.03

-0.04 0 0.04 0.08 0.12 0.16

a

L2
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Figure 5.2: Plotted are the homoclinic C-curve and banana obtained by continuing the pulse
solution in the parameters (a, c) for ε = 0.021. The red square and green circle refer to the
locations of the oscillatory pulse and double pulse of Figure 5.3, respectively.
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(a) Shown is a pulse with oscillatory
tail for (c, a, ε) = (0.005, 0.608, 0.021).
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(b) Shown is a double pulse for
(c, a, ε) = (0.001, 0.612, 0.021).

Figure 5.3: Plotted are examples of an oscillatory pulse and a double pulse along the homoclinic
C-curve. The colored shapes refer to their location along the homoclinic C-curve and banana of
Figure 5.2.
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5.2.2 Transition mechanism

Numerical explorations of the FitzHugh–Nagumo system have resulted in possible

explanations for the termination of the branch of pulses in the upper left corner

of the C-curve and the structure of the homoclinic banana [9, 22, 23]. The major

contributing factor to this behavior is the singular Hopf bifurcation occurring at the

origin. As the Hopf bifurcation is subcritical in the region in question, the onset of

small unstable periodic solutions nearby block the convergence of the homoclinic to

the equilibrium. However, the exact nature of the sharp turn in the C-curve, and

in particular the relation to the transition between the single and double pulse, is

not well understood. Guided by the analysis to construct the pulse in the previous

sections and the investigation of the canard point at the origin, we propose a geo-

metric mechanism for the transition from the single to double pulse, and we use the

numerical continuation to visualize this transition. Figure 5.4 shows a zoom of the

upper left part of the banana for a lower value of ε as well as six different pulses

along the curve plotted together.

When viewing the progression in Figure 5.4, it becomes clear how the second pulse

is added. Starting from the oscillatory pulse, after passing near the equilibrium, the

tail follows the completely unstable middle branch of the slow manifold for some

amount of time before jumping off and returning toM`
ε(c, a) and then converging to

the equilibrium. Eventually the pulse follows the entire middle branch up to the fold

point before jumping back toM`
ε(c, a). In Figure 5.5a, we see this progression fills out

a surface when many such pulses are plotted together. As the transition continues,

the pulse instead jumps from the middle branch to Mr
ε(c, a) which it follows until

reaching the fold point, then jumps back toM`
ε(c, a), culminating in a double pulse.

Figure 5.5b shows a surface filled out by this part of the sequence with many pulses
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(c) Six pulses along the banana in the full uvw-space showing the transition from a single to a
double pulse.

Figure 5.4: Transition from single to double pulse in the top left of the homoclinic banana for
ε = 0.0036. The solutions labelled 1, 2, 3 are left pulses, and those labelled 4, 5, 6 are right pulses.



206

-0.2
-0.1

0
0.1

0.2
-0.5

0

0.5

0

0.04

0.16

0.12

0.08

v

w

u

(a) Plotted are left pulses along the transi-
tion from single to double pulse.

-0.2
-0.1

0
0.1

0.2
-0.4

0

0.4

0.8

0.04

0.08

0.12

0.16

0

u
v

w

(b) Plotted are right pulses along the tran-
sition from single to double pulse.

Figure 5.5: Transition from single to double pulse in the top left of the homoclinic banana for
ε = 0.0036.

plotted together. The entire progression of the tail from small oscillations to a full

additional pulse resembles a classical canard explosion (see Figure 5.4b).

In the following, we will construct this entire sequence analytically using the same

geometric framework used to construct the pulse with oscillatory tail. In Figure 5.6,

we show the two new types of singular pulses from which the transitional pulses will

be constructed; these will be defined in more detail in §5.3. As with the proof of [8,

Theorem 1.1], up to some technical difficulties, each pulse along the transition can be

constructed using classical geometric singular perturbation theory and the exchange

lemma. The main challenges involve the flow near the fold points, for which we use

blow up analysis, as well as constructing the tails of the pulses. The structure of

the middle branch turns out to be very important in this regard. While the entire

branch is completely unstable, there is a point along the middle branch (in fact two

due to symmetry) in which the flow transitions from node to focus behavior, which

is crucial to understanding the nature of the tails. In what follows, this point will be

referred to as the Airy point, and we will use another blow up to treat this region.
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Figure 5.6: Singular ε = 0 double pulses for (c, a) = (1/
√

2, 0).

5.3 Setup

We start by collecting a few results from [8]. Define the closed intervals Ia = [−a0, a0]

for sufficiently small a0 > 0 and Ic = {c∗(a) : a ∈ Ia}; here c∗(a) = 1/
√

2(1 − 2a)

is the wavespeed for which the Nagumo front exists for this choice of a. Then for

sufficiently small ε0, a0, we have the following:

(i) The origin has a strong unstable manifold Wu
0 (0; c, a) for c ∈ Ic, a ∈ Ia, and

ε = 0 which persists for a, c in the same range and ε ∈ [0, ε0].

(ii) We consider the critical manifold defined by {(u, v, w) : v = 0, w = f(u)}. For

each a ∈ Ia, we consider the right branch of the critical manifoldMr
0(c, a) up to

a neighborhood of the knee for ε = 0. This manifold persists as a slow manifold

Mr
ε(c, a) for ε ∈ [0, ε0]. In addition, Mr

0(c, a) possesses stable and unstable

manifolds Ws(Mr
0(c, a)) and Wu(Mr

0(c, a)) which also persist for ε ∈ [0, ε0] as

invariant manifolds which we denote by Ws,r
ε (c, a) and Wu,r

ε (c, a).

(iii) In addition, we consider the left branch of the critical manifoldM`
0(c, a) up to a

neighborhood of the origin for ε = 0. This manifold persists as a slow manifold
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M`
ε(c, a) for ε ∈ [0, ε0]. In addition, M`

0(c, a) possesses a stable manifold

Ws(M`
0(c, a)) which also persists for ε ∈ [0, ε0] as an invariant manifold which

we denote by Ws,`
ε (c, a). In §5.3.2, we show that there is a way to extend

Ws,`
ε (c, a) in such a manner that it also encompasses a center manifold near

the origin which will be useful in the existence proof.

(iv) Finally, we consider the middle branch of the critical manifoldMm
0 (c, a) away

from neighborhoods of the origin and the upper right fold point for ε = 0.

This manifold persists as a slow manifold Mm
ε (c, a) for ε ∈ [0, ε0]. In addi-

tion,Mm
0 (c, a) possesses a three-dimensional unstable manifoldWu(Mm

0 (c, a))

which also persists for ε ∈ [0, ε0] as an invariant manifold which we denote by

Wu,m
ε (c, a). The stable manifolds Ws(Mr

0(c, a)) and Ws(M`
0(c, a)) form part

ofWu(Mm
0 (c, a)) for ε = 0 and hence for sufficiently small ε > 0, we have that

the foliations Ws,r
ε (c, a) and Ws,`

ε (c, a) are contained in Wu,m
ε (c, a).

We also have the following proposition, which follows from the analysis in [8, §5].

Proposition 5.3.1. There exists ε0 > 0 and µ > 0 such that for each a ∈ Ia and ε ∈

(0, ε0), the manifold
⋃
c∈IcWu

ε (0; c, a) intersects
⋃
c∈IcWs,`

ε (c, a) near the upper right

fold point transversely in uvwc-space with the intersection occurring at c = c̆(a, ε)

for a smooth function c̆ : Ia× (0, ε0)→ Ic where c̆(a, ε) = c∗(a)− µε+O(ε(|a|+ ε)).

5.3.1 Layer analysis

The construction of transitional pulses involves concatenating pieces of slow mani-

folds with fast jumps along fronts/backs at different heights along the slow manifolds.
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In this section we outline the structure of the layer problem

u̇ = v

v̇ = cv − f(u) + w

ẇ = 0,

(3.1)

at (c, a) = (1/
√

2, 0), where w now acts as a parameter (see Figure 5.7). Hence we

study the two-dimensional system

u̇ = v

v̇ = cv − u2(1− u) + w,

(3.2)

for values of w ∈ [0, w†], where (u†, 0, w†) = (2/3, 0, 8/27) denotes the location of

the upper right fold point for (c, a) = (1/
√

2, 0). For the values w = 0, (3.2) has two

equilibria at (u, v) = (0, 0) and (u, v) = (1, 0), and when c = 1/
√

2, there is a front

ϕf connecting these two equilibria. By symmetry, when w = w† there is a ‘back’ ϕb

connecting the two equilibria at (u, v) = (2/3, 0) and (u, v) = (−1/3, 0).

For values of w ∈ (0, w†), (3.2) has three equilibria pi = (ui(w), 0), where

ui(w), i = 1, 2, 3 are the three solutions of f(u) = w in increasing order. The outer

equilibria are saddles, while the middle equilibrium p2 is completely unstable. To

compute the type, we note that the eigenvalues at p2 are given by

λ =
c±

√
c2 − 4f ′(u2(w))

2
. (3.3)

We define wA to be the lesser of the two solutions of c2 − 4f ′(u2(w)), and we refer

to the point (u2(wA), 0, wA) as the Airy point. Hence for (c, a) = (1/
√

2, 0), the

equilibrium p2 is an unstable node for w ∈ (0, wA) ∪ (w† − wA, w
†), a degenerate

node at w = wA, w
† − wA, and an unstable spiral for w ∈ (wA, w

† − wA).
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Figure 5.7: Shown is the structure of the fronts ϕ`, ϕr, ϕf , ϕb given by Proposition 5.3.2 for values
of w ∈ [0, w†].

We have the following proposition regarding heteroclinic connections between the

equilibria pi for values of w ∈ [0, w†]. The results of Proposition 5.3.2 are shown in

Figure 5.7.

Proposition 5.3.2. Consider the system (3.2) for (c, a) = (1/
√

2, 0). For each

w ∈ (0, w†), there exists a front ϕ`(w) connecting the equilibria p2 and p1, and a

front ϕr(w), connecting the equilibria p2 and p3. Furthermore,

(i) For w ∈ (0, wA), the front ϕ` leaves p2 along a weak unstable direction and

remains in {(u, v) : u1(w) < u < u2(w), v < 0}. The front ϕr leaves p2 along

ϕ`, then crosses into the half space v > 0, where it remains until arriving at p3.

(ii) When w = wA, the fronts ϕ`, ϕr leave p2 along the line v = u−u2(w)

2
√

2
in the half

space v < 0. There exist A`, Ar and B`, Br > 0 such that ϕ`, ϕr satisfy

u(t) = u2(w) + (Aj +Bjt)e
t

2
√
2 +O(t2e

t√
2 )

v(t) =
1

2
√

2
(Aj +Bjt)e

t
2
√
2 +Bje

t
2
√
2 +O(t2e

t√
2 ),

(3.4)
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j = `, r, asymptotically as t → −∞. There exists ∆ > 0 such that these

solutions can be written as graphs v = vj(u), j = `, r, for u ∈ [u2(w)−∆, u2(w)]

with vr(u) > v`(u) for all u ∈ [u2(w)−∆, u2(w)].

(iii) When w = w†−wA, the fronts ϕ`, ϕr leave p2 along the line v = u−u2(w)

2
√

2
in the

half space v > 0.

(iv) For w ∈ (w† − wA, w†), the front ϕr leaves p2 along a weak unstable direction

and remains in {(u, v) : u2(w) < u < u3(w), v > 0}. The front ϕ` leaves p2

along ϕr, then crosses into the half space v < 0, where it remains until arriving

at p1.

Proof. We prove (i) and (ii); the remaining two assertions follow from the symmetry

of the cubic nonlinearity. The claims regarding the front ϕ` follow from analysis of

traveling fronts [2, 20, 24].

It remains to show the properties of the front ϕr. We first consider the case of

small w. When w = 0, the equilibria p1 and p2 collide, and p1 and p3 are connected

by the Nagumo front ϕf . Hence for small w > 0 property (i) follows from the fact

that ϕf breaks regularly as w increases; this can be shown in a manner similar to

the proof of [8, Proposition 5.2]. Hence the result holds for w ∈ (0,∆w) sufficiently

small.

We next examine the linearization of (3.2) at the equilibria p2, p3. At pi, the

linearization of (3.2) is given by

J2 =




0 1

−f ′(ui(w)) c


 , (3.5)
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which has eigenvalues

λ±i =
c±

√
c2 − 4f ′(ui(w))

2
. (3.6)

For all w ∈ (0, wA) and all c ≥ 1/
√

2, p2 is an unstable node (which is degenerate in

the critical case of w = wA, c = 1/
√

2) with corresponding eigenvectors

e±2 =




1

c±
√
c2−4f ′(u2(w))

2



. (3.7)

For w ∈ (0, wA), the equilibrium p2 has a well defined strong unstable eigenspace

with nonzero (u, v)-components. Hence the front ϕr leaves the equilibrium along a

trajectory tangent to this subspace with u initially either increasing or decreasing.

Proving (i) amounts to showing that the former is always the case.

For all w ∈ (0, wA) and all c ≥ 1/
√

2, p3 is a saddle with corresponding eigenvec-

tors

e±2 =




1

c±
√
c2−4f ′(u3(w))

2



. (3.8)

Hence for each w ∈ (∆w, wA) and each c ≥ 1/
√

2, the equilibrium p2 has a well

defined strong unstable manifold Wuu(p2), and the equilibrium p3 has a well defined

stable manifold Ws(p3). If a front were to exist as an intersection of Wuu(p2) and

Ws(p3) lying in the half space v > 0 for some cw ≥
√

2, then by monotonicity of

the flow with respect to c, this connection will break upon varying c: for c < cw, we
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must have that Wuu(p2) lies below Ws(p3) and vice-versa for c > cw, and hence this

value of cw for which a connection exists is unique among c ≥ 1/
√

2. We show that

for each w ∈ (0, wA), such a value cw > 1/
√

2 exists by explicitly constructing the

associated front.

Using the ansatz v = b(u − u2(w))(u − u3(w)), we deduce that there is a front

connecting p2 and p3 given by

u(t) =
u3(w) + u2(w)

2
+
u3(w)− u2(w)

2
tanh

(
u3(w)− u2(w)

2
√

2
t

)

v(t) =
(u3(w)− u2(w))2

4
√

2
sech

(
u3(w)− u2(w)

2
√

2
t

)
,

(3.9)

with wave speed

c =
1√
2

(u2(w) + u3(w)− 2u1(w))

=
1√
2

(u1(w) + u2(w) + u3(w)− 3u1(w))

=
1√
2

(1− 3u1(w))

>
1√
2
,

(3.10)

for all w ∈ (∆w, wA). Hence for each w ∈ (∆w, wA), for c = 1/
√

2, we must have

that Wuu(p2) lies below Ws(p3).

Finally, we can apply the same argument as above to the case of w = wA. For

c = 1/
√

2, there is a unique trajectory decaying exponentially in backwards time
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along the eigenvector

eA2 =




1

1
2
√

2



, (3.11)

with exponential rate e
t

2
√
2 , whereas all other trajectories decay with algebro ex-

ponential rate te
t

2
√

2 . We abuse notation and refer to this trajectory as Wuu(p2).

For c > 1/
√

2, p2 is an unstable node, and as above we can find a front solution

connecting Wuu(p2) and Ws(p3) at with wave speed

c =
1√
2

(1− 3u1(wA))

>
1√
2
,

(3.12)

and hence, by the above monotonicity argument, we deduce thatWuu(p2) lies below

Ws(p3) for c = 1/
√

2, w = wA, which completes the proof of (ii).

5.3.2 Existence of the center-stable manifold Ws,`
ε (c, a)

There are a number of invariant manifolds near the origin which will be involved in

the construction of the transitional pulses outlined above. In particular there is the

local center manifold near the origin considered in [8, §6] and the stable foliation

Ws,`
ε (c, a) of the left slow manifold M`

ε(c, a). These two manifolds are only unique

up to exponentially small errors and were chosen in such a manner that they overlap

to form one larger extended center-type manifold.

In the following, as certain parts of our analysis is sensitive to exponentially

small errors, it will be convenient to consider an even larger center manifold in this
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region which contains all of the essential dynamics to reduce dependence on matching

conditions containing exponentially small errors.

The goal is to show that for any small ∆w, for any sufficiently small ε0, a0, there

exists a center type manifold at the origin (as in [8, §6]) which we can extend up

to w = wA − ∆w, where wA is the height of the Airy point, due to the consistent

exponential separation away from the Airy point. We will be able to choose this

manifold in such a way that it contains any part ofMm
ε (c, a) lying below w = wA−∆w

and the entirety ofWs,`
ε (c, a). Hence we abuse notation and refer to this new (larger)

manifold as Ws,`
ε (c, a).

To see this we look at the linearization of (1.1) at (c, a, ε) = (1/
√

2, 0, 0) given

by

A =




0 1 0

−f ′(u) c 1

0 0 0



. (3.13)

There are three eigenvalues λ0 = 0, λ± =
c±
√
c2−4f ′(u)

2
. A quick computation shows

that Re(λ+) > Re(λ−) provided c2 > 4f ′(u). In particular for (c, a) = (1/
√

2, 0),

this holds for any u < uA = 1
3

(
1−

√
5
8

)
.

We fix ∆w sufficiently small and consider the union of the fronts ϕ` for w ∈

(0, wA − ∆w) for (c, a, ε) = (1/
√

2, 0, 0) and refer to this invariant manifold as

Ws,`
0 (c, a). This manifold is normally hyperbolic with the rate of expansion in the

normal direction stronger than the expansion rates on Ws,`
0 (c, a). Therefore this

manifold persists [3, 4] as a normally repelling locally invariant manifold Ws,`
ε (c, a)

containing a neighborhood of the slow manifolds M`
ε(c, a),Mm

ε (c, a) and the local
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M`
✏

Mr
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u

v
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Mm
✏

Ws,`
✏

wA

⌃m

⌃h,` ⌃h,r

Figure 5.8: The extended center-stable manifold Ws,`
ε (c, a) and the sections Σm, Σh,`, Σh,r.

center manifold near the origin. Taking the intersection of this manifold in a plane of

fixed w < wA −∆w which intersects the manifold M`
ε(c, a) and evolving backwards

in time determines a choice of Ws,`
ε (c, a) which also contains the strong stable fibers

of the manifold M`
ε(c, a) for w > wA − ∆w. This extended center-stable manifold

Ws,`
ε (c, a) is shown in Figure 5.8.

5.3.3 Existence of maximal canards

In the two-dimensional manifold Ws,`
ε (c, a), for certain parameter values, there exist

canard solutions near the attracting slow manifold M`
ε(c, a) which pass near the

origin and then follow the repelling slow manifold Mm
ε (c, a) for some time. Using

the results in [38], there is a maximal canard solution which occurs when M`
ε(c, a)

and Mm
ε (c, a) coincide. We have the following.

Theorem 5.1. There exists ε0 > 0 and a smooth function ac(
√
ε, c) : (0, ε0)×Ic → Ia

such that there is a maximal canard solution connecting the manifolds M`
ε(c, a) and

Mm
ε (c, a) when a = ac(c,

√
ε). We have that

ac(
√
ε, c) = −mε+O

(
ε3/2
)

(3.14)
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where m = m(c) is positively bounded away from zero uniformly in c ∈ Ic.

5.3.4 Singular transitional pulses

In this section we construct singular transitional pulses for (c, a, ε) = (1/
√

2, 0, 0)

using the layer analysis above. We define

M(u1, u2) := {(u, 0, f(u)) : u ∈ [u1, u2]} (3.15)

All singular pulses consist of a single pulse

Γ1
0 = ϕf ∪M(u†, 1) ∪ ϕb ∪M(u† − 1, 0), (3.16)

followed by a secondary pulse. The secondary pulse follows a canard-like explosion

which we parametrize by s ∈ (0, 2w†). We define the singular secondary pulses

Γ2
0(s) :=





M(0, u2(s)) ∪ ϕ`(s) ∪M(u1(s), 0), s ∈ (0, w†)

M(0, u†) ∪ ϕb ∪M(u† − 1, 0), s = w†

M(0, u2(2w† − s)) ∪ ϕr(2w† − s)

∪M(u†, u3(2w† − s)) ∪ ϕb ∪M(u† − 1, 0), s ∈ (w†, 2w†)

.

(3.17)

We refer to singular transitional pulses Γ0(s) = Γ1
0 ∪ Γ2

0(s) as “left” transitional

pulses for s ∈ (0, w†) and “right” double pulses for s ∈ (w†, 2w†). The left/right

descriptor refers to whether the double pulse involves a jump from Mm
0 to the left

branch M`
0 or a jump to the right branch Mr

0. These two types of singular pulses

are shown in Figure 5.6.
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We also define the two dimensional singular tail manifolds T0(w̄) for w̄ ∈ (0, wA)

by

T0(w̄) =
⋃

w∈(0,w̄)

ϕ`(w),

where the fronts ϕ`(w) are defined as in Proposition 5.3.2.

5.3.5 Statement of the main result

The goal of this chapter is to prove the following existence theorem for a one-

parameter family of homoclinic solutions to (1.1) which encompasses the transition

from single pulses with oscillatory tails from [8, Theorem 1.1] to double pulse solu-

tions comprised of a single pulse followed by a secondary excursion which is close to

the original pulse.

Theorem 5.2. For each sufficiently small ∆w > 0, there exists ε0, q, C > 0 such

that the following holds. For each 0 < ε < ε0, there exists a one-parameter family of

traveling pulse solutions to (1.1)

s→
(
c(s,
√
ε), a(s,

√
ε),Γ(s,

√
ε)
)
, s ∈ (0, 2w† −∆w) (3.18)

which is C1 in (s,
√
ε). Furthermore

(i) The family Γ(s,
√
ε) is approximated by the singular transitional pulses Γ0(s) =

Γ1
0 ∪ Γ2

0(s) in the following sense:

For s ∈ (0, wA), the pulse Γ(s,
√
ε) consists of a primary excursion which lies

within O(
√
ε) of Γ1

0, followed by an oscillatory tail which remains within an

O(
√
ε) neighborhood of T0(max{s,∆w}).
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For s ∈ (wA, 2w
† − ∆w), the pulse Γ(s,

√
ε) consists of a primary excursion

which lies within O(
√
ε) of Γ1

0, followed by a secondary excursion which lies

within O(
√
ε) of Γ2

0(s), followed by an oscillatory tail which remains within an

O(
√
ε) neighborhood of T0(wA).

(ii) For all sufficiently small s > 0, a(s,
√
ε) is monotone decreasing in s and the

pulses Γ(s,
√
ε) correspond to the pulses constructed in [8, Theorem 1.1] with

c(s,
√
ε) = c̆(a(s,

√
ε), ε). (3.19)

(iii) For all s ∈ (0, 2w† −∆w), we have that

∣∣c(s,√ε)− c̆(a(s,
√
ε), ε)

∣∣ ≤ Ce−q/ε. (3.20)

(iv) For all s ∈ (∆w, 2w
† −∆w), we have that

∣∣a(s,
√
ε)− ac(√ε, c(s,√ε))

∣∣ ≤ Ce−q/ε. (3.21)

5.4 Constructing transitional pulses

In this section, we construct transitional pulses in pieces and obtain matching condi-

tions near the canard point at the origin which are solved using an implicit function

theorem.

The general construction for pulses of all types involves three pieces: the primary

pulse, a secondary excursion, and a tail manifold which is formed by an appropriately

defined subset of the manifoldWs,`
ε (c, a). Hence the procedure involves obtaining two
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conditions: one which matches the primary pulse to the secondary excursion, and

one matching the secondary excursion with the tail manifold. Once these matching

conditions are obtained, it remains to show that solutions on the tail manifold in

fact converge to the equilibrium (and are not blocked by periodic orbits, etc.). This

is treated in §5.5, where we show that the tail manifold forms part of the stable

manifold of the origin, which completes the construction.

Due to various interactions of the pulses with the fold points and Airy point, the

construction of the transitional pulses breaks down into six types, five of which we

are able to construct. All pulse types have the same primary excursion, and hence

the pulse types are determined by properties of the secondary excursion.

• Type 1: {Γ(s) : s ∈ (0, wA + ∆w)}

Type 1 pulses are left pulses with a secondary excursion of height w ∈ (0, wA+

∆w), where wA represents the height of the Airy point, and ∆w is sufficiently

small. For these pulses, we show that this secondary excursion already lies in

the tail manifold, and no further matching is required.

• Type 2: {Γ(s) : s ∈ (wA + ∆w, w
† −∆w)}

Type 2 pulses are left pulses with a secondary excursion of height w ∈ (wA +

∆w, w
†−∆w), where wA represents the height of the ‘Airy’ point, and w† is the

height of the upper right fold point. For these pulses, we show that a second

matching condition is necessary to ensure that the secondary excursion can be

matched with the tail manifold.

• Type 3: {Γ(s) : s ∈ (w† −∆w, w
† + ∆w)}

Type 3 pulses pass near the upper right fold point and encompass the transi-

tion between left and right pulses. These are constructed in much the same
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way as type 2 pulses, but there are additional difficulties encountered in pa-

rameterizing these pulses (w is not a natural parameter in this regime), and in

verifying that the interaction with the upper right fold does not break down

the argument.

• Type 4: {Γ(s) : s ∈ (w† + ∆w, 2w
† − wA −∆w)}

Type 4 pulses are right pulses with secondary excursion of height w ∈ (wA +

∆w, w
† − ∆w). There is a technical difficulty involved in obtaining the first

matching condition which involves balance of exponential contraction/expansion

along the slow manifolds Mr
ε(c, a),M`

ε(c, a).

• Type 5: {Γ(s) : s ∈ (2w† − wA −∆w, 2w
† −∆w)}

Type 5 pulses are right pulses with a secondary excursion of height w ∈

(0, wA + ∆w). For these pulses, the secondary excursions have a more deli-

cate interaction with the Airy point and therefore also introduce complications

when trying to determine the final matching condition with the tail manifold.

• Type 6: {Γ(s) : s ∈ (2w† −∆w, 2w
†)}

Type 6 pulses are essentially two copies of the primary pulse. Our results do

not cover this regime, though it is an area for further study. When trying to

construct these pulses, we approach the Belyakov transition where we expect

the branch of pulses will terminate for ε sufficiently small [9], so we do not

expect that it is possible to construct pulses for s arbitrarily close to 2w†.

The different pulse types are shown in Figure 5.4 with one caveat: the type 3

pulses as defined above should actually appear somewhere in between the pulses with

labels 3 and 4 in Figure 5.4.

We begin with setting up the blown-up coordinate system near the canard point
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at the origin in which the matching will occur, followed by constructing pulses of type

1,2. We then outline the difficulties/differences in constructing pulses of type 3,4,5

and how to overcome these. The construction is then complete up to two technical

results: first, the convergence of the tails, proved in §5.5, and second, a transversality

condition which arises due to interaction with the Airy point, proved in §5.6.

5.4.1 Flow near the canard point

We collect some results from [8, 38] which will be useful in the forthcoming analysis

for obtaining matching conditions for the transitional pulses near the equilibrium.

In [8], it was shown that in a neighborhood of the origin, after a change of coordinates,

we obtain the system

ẋ = −y + x2 +O(ε, xy, y2, x3)

ẏ = ε [x (1 +O(x, y, α, ε)) + α (1 +O(x, y, α, ε)) +O(y)]

ż = z
(
c3/2 +O(x, y, z, ε)

)

α̇ = 0

ε̇ = 0 ,

(4.1)

where α = a
2c1/2

. The manifold Ws,`
ε (c, a) is given by z = 0, where the strong

unstable fibers have been straightened. We note that the (x, y) coordinates are in
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the canonical form for a canard point (compare [38]), that is,

ẋ = −yh1(x, y, α, ε, c) + x2h2(x, y, α, ε, c) + εh3(x, y, α, ε, c)

ẏ = ε (xh4(x, y, α, ε, c) + αh5(x, y, α, ε, c) + yh6(x, y, α, ε, c))

ż = z
(
c3/2 +O(x, y, z, ε)

)

α̇ = 0

ε̇ = 0 ,

(4.2)

where we have

h3(x, y, α, ε, c) = O(x, y, α, ε)

hj(x, y, α, ε, c) = 1 +O(x, y, α, ε), j = 1, 2, 4, 5 .

(4.3)

We have now separated the hyperbolic dynamics (given by the z-coordinate) from

the nonhyperbolic dynamics which are isolated on a four-dimensional center manifold

parameterized by the variables (x, y, ε, α) on which the origin is a canard point in

the sense of [38]. Such points are characterized by “canard” trajectories which follow

a strongly attracting manifold (in this caseM`
ε(c, a)), pass near the equilibrium and

continue along a strongly repelling manifold (in this case Mm
ε (c, a)) for some time.

To understand the flow near this point, we use blowup methods as in [38]. Restricting

to the center manifold z = 0, the blow up transformation is given by

x = r̄x̄, y = r̄2ȳ, α = r̄ᾱ, ε = r̄2ε̄ , (4.4)

defined on the manifold Bc = S2× [0, r̄0]× [−ᾱ0, ᾱ0] for sufficiently small r̄0, ᾱ0 with

(x̄, ȳ, ε̄) ∈ S2. There is one relevant coordinate chart which will be needed for the

matching analysis. Keeping the same notation as in [38] and [39], the chart K2 uses
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Figure 5.9: The local coordinates near the canard point and the section Σm. The manifold
Ws,`
ε (c, a) coincides with the subspace z = 0.

the coordinates

x = r2x2, y = r2
2y2, α = r2α2, ε = r2

2. (4.5)

Using these blow-up charts, in [38], the authors studied the behavior of the

manifoldsM`
ε(c, a) andMm

ε (c, a) near the equilibrium, and in particular determined

conditions under which these manifolds coincide along a canard trajectory. We place

a section Σm = {x = 0, |y| < ∆y, |z| ≤ ∆z} for small fixed ∆z and ∆y = 2∆w in

which most of our computations will take place (see Figure 5.9).

In the chart K2, the section Σm is given by Σm
2 =

{
x2 = 0, |y2| < ∆y

r22
, |z| ≤ ∆z

}
.

It was shown in [38] that for all sufficiently small r2, α2, the manifoldsM`
ε(c, a) and

Mm
ε (c, a) reach Σm

2 at y = yM,`
2 (c, a) and y = yM,m

2 (c, a), respectively. Furthermore,

we have the following result which will be useful in the coming analysis.

Proposition 5.4.1. [38, Proposition 3.5] The distance between the slow manifolds

M`
ε(c, a) and Mm

ε (c, a) in Σm is given by

yM,`
2 − yM,m

2 = D0(α2, r2; c) = dα2α2 + dr2r2 +O(r2
2 + α2

2) , (4.6)

where the coefficients dα2 , dr2 are positive constants. Hence we can solve for when
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this distance vanishes which occurs when

α2 = αc2 = − dr2
dα2

r2 +O(r2
2). (4.7)

Remark 5.4.2. In the following, many computations will be performed in the K2

coordinates before transforming back into the original coordinates/parameters as the

results of Theorem 5.2 are stated in terms of the original parameters (c, a, ε), rather

than (c, α2, r2). To obtain (a, ε) from (α2, r2), we have

a = 2c1/2α2r2

ε = r2
2,

(4.8)

which are smooth functions of (c, α2, r2) for (c, α2, r2) near (1/
√

2, 0, 0).

We remark that results involving transversality with respect to parameter varia-

tions due to the exchange lemma [51] which are obtained for the original system (1.1)

can likewise be shown to hold in the K2 coordinates by instead considering the system

u̇ = v

v̇ = cv − f(u) + w

ẇ = r2
2(u− γw),

(4.9)

where f(u) = u(u− 2c1/2α2r2)(1− u) for (c, α2, r2) near (1/
√

2, 0, 0).

5.4.2 Type 1 pulses

Type 1 pulses are the simplest of the transitional pulses and are really just single

pulses with oscillatory tails. In this section, we deduce the existence of transitional
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left pulses with secondary excursion of height w ≤ wA + ∆w and show that these

pulses are in fact a continuation of the family of pulses with oscillatory tails con-

structed in [8]. To construct a type 1 pulse, we need a single matching condition

which matches the primary pulse with a tail of height w ≤ wA + ∆w.

We break this into two parts. We first construct pulses of height w ∈ (∆w, wA +

∆w) and then move onto pulses with ‘small’ oscillatory tails, that is, pulses with tails

of height w ≤ ∆w.

Matching condition for pulses Γ(s,
√
ε), s ∈ (∆w, wA + ∆w)

We match the various components of the solution in the section Σm in the K2 co-

ordinates. First, we have the following lemma, which will be useful in solving the

matching conditions.

Lemma 5.4.3. For each sufficiently small ∆z > 0, there exists C, q, ε0 > 0 and

q1 > q2 > 0 such that the following holds. For each 0 < ε < ε0 and each |z| < ∆z,

there exists c with |c− c̆(a, ε)| = O(e−q/ε) such that Wu
ε (0; c, a) intersects Σm at the

point (yu2 (z; c, a), z) where

e−q1/ε/C ≤ yu2 (0; c, a)− yM,`
2 ≤ Ce−q2/ε

|yu2 (z; c, a)− yu2 (0; c, a)| = O(ze−q/ε).

(4.10)

Proof. We have that Wu
ε (0; c̆(a, ε), a) is O(e−q/ε)-close to M`

ε(c, a) in Σm. Since

by Proposition 5.3.1, Wu
ε (0; c, a) transversely intersects Ws,`

ε (c, a) upon varying c ≈

c̆(a, ε), the result follows from the exchange lemma.

Consider the solution γf (s; c, a) on the stable foliationWs,`
ε (c, a) which intersects
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the section Σh,` := {u = 0,∆w < w < w† −∆w} at height w = s ∈ (∆w, wA + ∆w).

This intersection occurs at a point (u, v, w) = (0, vf (s; c, a), s). Evolving γf (s; c, a)

backwards, we have that γf (s; c, a) is exponentially close toMm
ε (c, a) in Σm. Thus we

have that γf (s; c, a) intersects Σm at a point (y2, z) = (yb2, z
b)(s; c, a) which satisfies

|yb2(s; c, a)− yM,m
2 | = O(e−q/ε)

|zb(s; c, a)| = O(e−q/ε),

(4.11)

uniformly in (c, a). Thus by Proposition 5.4.1 we can match Wu
ε (0; c, a) with the

trajectory γf (s; c, a) by solving

D0(α2, r2; c) =
(
yM,`

2 − yu2 (z; c, a)
)

+
(
yb2(s; c, a)− yM,m

2

)
= O(e−q/ε)

z = zb(s; c, a),

(4.12)

We obtain a solution by solving

a = 2c1/2ε1/2(αc2 +O(e−q/ε))

c = c̆ (a, ε) +O(e−q/ε),

(4.13)

by the implicit function theorem to find (c, a) = (c, a)(s,
√
ε).

Connection to pulses with small oscillatory tails

We now consider the case of pulses with tails of height w ≤ ∆w. In [8], it was shown

that there exists K∗, such that for each K and each sufficiently small (a, ε) satisfying

ε < Ka2, there exists a pulse solution with wave speed c = c̆(a, ε). For ε > K∗a2,

the tail of the pulse decays exponentially to zero in an oscillatory fashion.

We deduce that such pulses exist for (α2, r2) for any r2 > 0 sufficiently small and



228

α2 >
1

2c
√
K
> 1

2
√
K

, since

c = 1/
√

2 +O(α2r2, r
2
2) < 1 (4.14)

for α2 bounded and r2 > 0 sufficiently small. In this section we show that these

pulses overlap with the type 1 pulses constructed above, forming a one-parameter

family. It turns out that this family is naturally parameterized by α2.

To see this, we proceed as follows. Setting s = ∆w, for sufficiently small ε > 0,

we can follow the procedure above in constructing a type 1 pulse with a tail of

height s = ∆w. We note that in this case, the backwards evolution of the trajec-

tory γf (∆w; c, a) remains in Ws,`
ε (c, a) until reaching the section Σm and therefore

intersects this section at a point (y2, z) = (yb2, z
b)(∆w; c, a) which satisfies

e−q1/ε/C ≤ yb2(∆w; c, a)− yM,m
2 ≤ Ce−q2/ε

zb(∆w, c, a) = 0,

(4.15)

for some q1 > q2 > 0. Thus we can match Wu
ε (0; c, a) with γf (∆w; c, a) by solving

D0(α2, r2; c) =
(
yM,`

2 − yu2 (0; c, a)
)

+
(
yb2(∆w; c, a)− yM,m

2

)
(4.16)

We obtain a solution by solving

α2 = αc2 +O(e−q/ε)

c = c̆
(
2c1/2r2α2, r

2
2

)
,

(4.17)

by the implicit function theorem to find a solution at (c, α2) = (cu, αu2)(r2). We now
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consider the function D̄(α2, r2, c) defined to be the difference

D̄(α2, r2, c) = yu2 (0; c, a)− yb2(∆w; c, a) (4.18)

in Σm. From the construction above for the pulse with tail of height w̄ = ∆w, we

have that

D̄(αu2 , r2, c
u) = 0 (4.19)

and

D̄(α2, r2, c) = yu2 (0; c, a)− yb2(∆w; c, a)

= yM,`
2 − yM,m

2 +O
(
e−q/ε

)

= D0(α2, r2; c) +O
(
e−q/ε

)

= dα2α2 + dr2r2 +O(α2
2, α2r2, r

2
2).

(4.20)

Hence we have that

∂

∂α2

D̄(α2, r2, c) = dα2 +O(α2, r2) > 0 (4.21)

for any sufficiently small r2 > 0 and |α2| ≤ κ, uniformly in c ≈ 1/
√

2.

Hence for sufficiently small r2 > 0, for αu2 < α2 < κ, we can ensure that

Wu
ε (0; c, a) lands in Ws,`

ε (c, a) by solving

c = c̆(2c1/2r2α2, r
2
2), (4.22)

for c = c(α2, r2) by the implicit function theorem. Furthermore, we have that the

distance D̄(α2, r2, c) is positive, and hence we obtain a pulse whose tail reaches a
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height lower than ∆w, but remains in Ws,`
ε (c, a) and converges to the equilibrium.

For fixed r2, such pulses are therefore parameterized by αu2 < α2 < κ.

By taking K > 1
4κ2

in [8, Theorem 1.1], we deduce that these pulses form a

continuous family with the pulses constructed in [8] for α2 >
1

2
√
K

.

5.4.3 The tail manifold

We will match the various components of the solution in the section Σm = {x =

0, |y| < ∆y, |z| ≤ ∆z}. These matching conditions will be determined by inter-

sections of various invariant manifolds evolved forwards/backwards under the flow

between the sections Σh,`,Σm. To avoid confusion, when referring to an invariant

manifold evolved in backwards time from Σh,` to Σm, we use the notation ‘ ̂ ’ , e.g.

when referring to the manifold Ŵs,`
ε (c, a), we mean the manifoldWs,`

ε (c, a) under the

backwards evolution of (1.1).

We now identify the ‘tail’ manifold in which the desired pulse solutions will be

trapped. In §5.5, we will show that this manifold indeed forms part of the sta-

ble manifold Ws
ε (0; c, a) of the equilibrium. We consider the backwards evolution

of Ŵs,`
ε (c, a) from Σh,` to Σm. The manifold Ŵs,`

ε (c, a) intersects Σh,` in a curve

(u, v, w) = (0, vf (w; c, a), w). We have the following proposition, which states that

the backwards evolution of Ŵs,`
ε (c, a) intersects Σm in a curve transverse to the strong

unstable fibers y2 = const. Except for an exponentially thin region aroundMm
ε (c, a),

this curve coincides with z = 0. The intersection of Ŵs,`
ε (c, a) with the section Σm

is shown in Figure 5.10.

Proposition 5.4.4. For each sufficiently small ∆w > 0, there exists C, κ, ε0, q > 0

and sufficiently small choice of the intervals Ic, Ia such that for each (c, a, ε) ∈ Ic ×
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Ia × (0, ε0), there exists w∆
ε (c, a) ∈ [wA − 3∆w, wA −∆w] and wt

ε (c, a) > wA + κε2/3

such that the following holds. Let Ŵs,`,∗
ε (c, a) denote the backwards evolution of the

curve {(u, v, w) = (0, vf (w; c, a), w);w∆
ε < w < wt

ε }. Then Ŵs,`,∗
ε (c, a) intersects Σm

in a curve z = z`,∗(y2; c, a) for y`,∗2,0(c, a) ≤ y2 ≤ ŷ`2,0(c, a) where

(i) The interval [y`,∗2,0(c, a), ŷ`2,0(c, a)] satisfies 0 < ŷ`2,0(c, a) − y`,∗2,0(c, a) < Ce−q/ε

uniformly in (c, a) ∈ Ic × Ia.

(ii) There exists ỹ`2,0(c, a) ∈ [y`,∗2,0(c, a), ŷ`2,0(c, a)] such that z`,∗(y2; c, a) ≡ 0 for y2 ∈

[ỹ`2,0(c, a), ŷ`2,0(c, a)].

(iii) The function z`,∗ and its derivatives are O(e−q/ε) uniformly in

y2 ∈ [y`,∗2,0(c, a), ŷ`2,0(c, a)] and (c, a) ∈ Ic × Ia.

Hence we have that Ŵs,`,∗
ε (c, a) intersects Σm in a curve which can be repre-

sented as a graph z = z`,∗(y2; c, a) for y2 ≥ y`,∗2,0(c, a) where the function z`,∗ and its

derivatives are O(e−q/ε). The proof of this proposition will be given in §5.6.

We can now define the tail manifold in the section Σm. We define Tε(c, a) to be

the forward evolution of trajectories which intersect the section Σm in the graph of

a smooth function given by z = zTε (y2; c, a) for y2 ≥ y`,∗2,0(c, a) where

zTε (y2; c, a) =





0 y2 ≥ ŷ`2,0(c, a)

z`,∗(y2; c, a) y`,∗2,0(c, a) ≤ y2 ≤ ŷ`2,0(c, a)
. (4.23)

The intersection of the tail manifold with the section Σm is shown in Figure 5.10.

In §5.5, it is shown that all trajectories which hit Tε(c, a) in fact lie in the stable

manifold Ws
ε (0; c, a).
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Figure 5.10: Shown is the setup for the matching conditions in the section Σm.
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Figure 5.11: Shown is the geometry for constructing a type 2 left transitional pulse.

5.4.4 Type 2 pulses

To construct a left transitional pulse with secondary excursion of height s ∈ (wA +

∆w, w
†−∆w), we consider a two dimensional manifold B(s; c, a) (to be chosen below)

which intersects the manifold Ws,`
ε (c, a) in the section Σh,` := {u = 0,∆w < w <

w† − ∆w} at w = s. Evolving B̂(s; c, a) backwards to the section Σm, we show

that each trajectory passing through B(s; c, a) can be matched with Wu
ε (0; c, a) by

choosing (c, a) appropriately. By evolving B(s; c, a) forwards, we show that precisely

one of these choices results in Wu
ε (0; c, a) becoming trapped in the tail manifold

Tε(c, a) as t→∞. The setup is shown in Figure 5.11.

Therefore, to construct a transitional pulse we need two matching conditions near

the equilibrium: the first matches Wu
ε (0; c, a) with B̂(s; c, a) to guarantee height s

for the second excursion, and the second matches B(s; c, a) with the tail manifold

Tε(c, a), which we will show in §5.5 forms part of the two-dimensional stable manifold

of the equilibrium. The local geometry for the matching conditions is shown in

Figure 5.12. The setup for the matching conditions in the section Σm is shown in
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Mm
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Figure 5.12: Shown is the setup for the matching conditions in the section Σm. There are two
matching conditions: (i) matchWu

ε (0; c, a) with B̂(s; c, a) (ii) match B(s; c, a) with the tail manifold
Tε(c, a).

Figure 5.10.

Matching conditions for pulses Γ(s,
√
ε), s ∈ (wA + ∆w, w

† −∆w)

We match the various components of the solution in the section Σm in the K2 co-

ordinates. From Lemma 5.4.3, for each |z| < ∆z, there exists c with |c − c̆(a, ε)| =

O(e−q/ε) such that Wu
ε (0; c, a) intersects Σm at the point (yu2 (z; c, a), z) where

e−q1/ε/C ≤ yu2 (0; c, a)− yM,`
2 ≤ Ce−q2/ε

|yu2 (z; c, a)− yu2 (0; c, a)| = O(ze−q/ε),

(4.24)

for some q1 > q2 > 0.

Consider the solution γf (s; c, a) on the stable foliationWs,`
ε (c, a) which intersects

the section Σh,` at height w = s. This intersection occurs at a point (u, v, w) =

(0, vf (s; c, a), s). This solution is exponentially attracted in forward time toM`
ε(c, a)
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and hence intersects Σm at the point (yf2 (s; c, a), 0) where

e−q1/ε/C ≤ yf2 (s; c, a)− yu2 (0; c, a) ≤ Ce−q2/ε. (4.25)

The geometry of the setup for type 2 pulses and the solution γf (s; c, a) is shown in

Figure 5.11.

Define the manifold B(s; c, a) to be the backwards evolution of the fiber

{(0, yf2 (s; c, a), z) : |z| ≤ ∆z} ⊆ Σm. (4.26)

We parameterize B(s; c, a) by |zB| ≤ ∆z, where zB denotes the height along the fiber.

In backwards time, this fiber is exponentially contracted to the solution γf (s; c, a) and

hence intersects Σh,` in a one-dimensional curve which is O(e−q/ε)-close to (u, v, w) =

(0, vf (s; c, a), s), uniformly in (c, a). A schematic of the manifold B(s; c, a) and its

relation to γf (s; c, a) is shown in Figure 5.11.

Evolving B̂(s; c, a) backwards, we have that B̂(s; c, a) is exponentially close to

Mm
ε (c, a) in Σm. Thus we have that in Σm, B̂(s; c, a) is given by a curve (y2, z) =

(yb2, z
b)(zB, s; c, a) which satisfies

|yb2(zB, s; c, a)− yM,m
2 | = O(e−q/ε)

|zb(zB, s; c, a)| = O(e−q/ε),

(4.27)

uniformly in |zB| ≤ ∆z and (c, a, ) ∈ Ic×Ia. The derivatives of the above expressions

with respect to (c, a, zB) are also O(e−q/ε), by taking q a bit smaller if necessary.

Recall from §5.4.3 that in the section Σm, the tail manifold Tε(c, a) is defined by
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the graph of a smooth function given by z = zTε (y2; c, a) for y2 ≥ y`,∗2,0(c, a) where

zTε (y2; c, a) =





0 y2 ≥ ŷ`2,0(c, a)

z`,∗(y2; c, a) y`,∗2,0(c, a) ≤ y2 ≤ ŷ`2,0(c, a)
(4.28)

and the function z`,∗ and its derivatives are O(e−q/ε). We have the following.

Lemma 5.4.5. For each s ∈ (wA + ∆w, w
†−∆w) and each sufficiently small ε > 0,

the backwards evolution of the manifold B̂(s; c, a) intersects Σm in a curve (y2, z) =

(yb2, z
b)(zB, s; c, a) which satisfies

|yb2(zB, s; c, a)− yM,m
2 | = O(e−q/ε)

|zb(zB, s; c, a)| = O(e−q/ε),

(4.29)

uniformly in |zB| ≤ ∆z and (c, a) ∈ Ic× Ia. The derivatives of the above expressions

with respect to (c, a, zB) are also O(e−q/ε). Furthermore

y`,∗2,0(c, a) < inf
|zB |≤∆z

yb2(zB, s; c, a), (4.30)

for all (c, a) ∈ Ic × Ia.

The first assertion of Lemma 5.4.5 follows from the analysis above; the proof of

the second assertion will be given in §5.6.

The final matching conditions are obtained as follows. Starting in Σh,`, we evolve

B̂(s; c, a) back to the section Σm and show that for each |zB| ≤ ∆z, Wu
ε (0; c, a) can

be matched with the corresponding solution on B̂(s; c, a) by adjusting (c, a). We

then evolve B(s; c, a) forwards from Σh,` to Σm and show that B(s; c, a) transversely

intersects Tε(c, a) for each such (c, a) as zB varies. This implies the existence of

parameter values (c, a) for whichWu
ε (0; c, a) completes one full pulse and a secondary
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pulse of height s before landing in the tail manifold Tε(c, a). Convergence of the tails

is proved in §5.5. The setup for the matching conditions is shown in Figures 5.10

and 5.12.

From Proposition 5.4.1, we have that the distance between the manifoldsM`
ε(c, a)

and Mm
ε (c, a) in Σm is given by

yM,`
2 − yM,m

2 = D0(α2, r2; c) = dα2α2 + dr2r2 +O(2) . (4.31)

Using Lemma 5.4.3 and Proposition 5.4.1, by varying c, α2 we can matchWu
ε (0; c, a)

with any solution in B̂(s; c, a) by solving

D0(α2, r2; c) =
(
yM,`

2 − yu2 (z; c, a)
)

+
(
yb2(zB, s; c, a)− yM,m

2

)
= O(e−q/ε)

z = zb(zB, s; c, a),

(4.32)

for each |zB| ≤ ∆z. For each such zB, we obtain a solution by solving

a = 2c1/2ε1/2(αc2 +O(e−q/ε))

c = c̆ (a, ε) +O(e−q/ε),

(4.33)

by the implicit function theorem to find (a, c) = (au, cu)(zB; s,
√
ε). We now evolve

Wu
ε (0; c, a) forwards; for each zB we can hit the corresponding point on B(s; c, a),

henceWu
ε (0; c, a) intersects Σm at the point (yf2 (s; c, a), zB) when (c, a) = (cu, au)(zB)

defined above. We now match with the tail manifold Tε(c, a) by solving

zB = zTε (yf2 (s; c, a); cu(zB), au(zB)), (4.34)

which, using Lemma 5.4.5, we can solve by the implicit function theorem when
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zB = zsB = O(e−q/ε) to find the desired pulse solution when

a = a(s,
√
ε) := au(zsB; s,

√
ε)

c = c(s,
√
ε) := au(zsB; s,

√
ε).

(4.35)

5.4.5 Type 4 & 5 pulses

Type 4/5 pulses correspond to Γ(s), s ∈ (w† + ∆w, 2w
† − ∆w). Type 4 pulses are

right transitional pulses with a secondary pulse of heights w ∈ (wA + ∆w, w
† −∆w),

and type 5 pulses are right transitional pulses with a secondary pulse of height

w ∈ (∆w, wA + ∆w). For type 4/5 pulses, the secondary pulses pass close to the

upper right fold point. These pulses are constructed in much the same way as type 2

pulses, except with a different definition of the solution γf (s; c, a) and the associated

manifold B(s; c, a). In terms of the actual construction of the pulses, there is no

distinction between pulses of type 4 and 5. We distinguish these pulses, however,

due to the technical difficulties associated with proving Lemma 5.4.9 for the case of

type 5 pulses, which is crucial to solving the final matching conditions.

To construct a right transitional pulse with secondary height w = 2w†−s, we first

consider the plane w = 2w† − s which intersects the section Σh,r := {u = 2/3,∆w <

w < w†−∆w} in a line {u = 2/3, w = 2w†− s}. This line transversely intersects the

manifold Ws,r
ε (c, a) for all (c, a) ∈ Ic × Ia. Using arguments similar to those in [8,

§5] in the proof of Proposition 5.3.1, it follows that the forward evolution of this

line transversely intersects Ws,`
ε (c, a) for each (c, a) ∈ Ic × Ia and each sufficiently

small ε > 0 along a trajectory γf (s; c, a). Furthermore, the solution γf (s; c, a) is

exponentially close to Ws,r
ε (c, a) in Σh,r and passes O(ε2/3 + |a|) close to the fold

before intersecting Ws,`
ε (c, a).
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Figure 5.13: Shown is the geometry for constructing a type 4 right transitional pulse.

The geometry of the setup for type 4 pulses and the solution γf (s; c, a) is shown

in Figure 5.13.

Proceeding as with Type 2 pulses, we follow γf (s; c, a) along Ws,`
ε (c, a) where

it is exponentially contracted to Mr
ε(c, a) and intersects the section Σm at a point

(yf2 (s; c, a), 0). We again define B(s; c, a) to be the backwards evolution of the fiber

{(0, yf2 (s; c, a), z) : |z| ≤ ∆z}. We parametrize the manifold B(s; c, a) by {zB, |zB| ≤

∆z} corresponding to the initial height along the fiber in Σm. Assuming this manifold

is well defined and exponentially close to γf (s; c, a) in Σh,r (and the derivatives of the

transition maps with respect to (c, a, zB) are also exponentially small), the remainder

of the construction follows similarly to the case of type 2 pulses. A schematic of the

manifold B(s; c, a) and its relation to γf (s; c, a) is shown in Figure 5.13.
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Contraction/expansion rates along M`
ε(c, a), Mr

ε(c, a)

To construct pulses of type 4, 5, we need more explicit bounds on the rates of contrac-

tion and expansion along solutions near the slow manifolds M`
ε(c, a), Mr

ε(c, a). We

consider the flow in neighborhoods of each of these slow manifolds in which they are

normally hyperbolic, and we make coordinate transformations to put the equations

in a preliminary Fenichel normal form which identifies the stable/unstable subspaces

and corresponding contraction/expansion rates.

The ultimate goal is to show that the manifold B(s; c, a) is well defined and

exponentially close to γf (s; c, a) in Σh,r for each (c, a) ∈ Ic × Ia. The existence of

the solution γf (s; c, a) for (c, a) ∈ Ic × Ia is clear; however, it is not immediately

obvious that the fiber of this solution in the section Σm is exponentially contracted

to γf (s; c, a) in backwards time to Σh,r. Along the manifold Ws,`
ε (c, a), this is clear

as this fiber is defined by the fact that it contracts exponentially to γf (s; c, a) in

backwards time. However, after passing near the fold, in backwards time, γf (s; c, a)

is near the slow manifoldMr
ε(c, a) and solutions near γf (s; c, a) undergo exponential

expansion. We claim that the contraction along Ws,`
ε (c, a) compensates for this

expansion.

We proceed by determining the balance of contraction/expansion along the slow

manifolds Mr,`
ε (c, a) in backwards time from Σm to Σh,r. We break this into three

pieces: first the transition from Σm to Σout, where γf (s; c, a) exits a neighborhood

UF of the upper right fold point along the fast jump ϕb, second the transition from

Σout to Σi,− encompassing the passage near the fold point, and finally the transition

from Σi,− to Σh,r describing the passage near the right slow manifold Mr
ε(c, a).

We first follow γf (s; c, a) backwards from Σm into a neighborhood of M`
ε(c, a)
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at a height w = ∆w, so that we are away from the lower fold point. By construc-

tion γf (s; c, a) lies in Ws,`
ε (c, a) and remains in this neighborhood of M`

ε(c, a) until

some height w = w† + O(ε2/3, a) corresponding to the fast jump to Σout in the

neighborhood UF of the upper right fold point. During this entire passage, solu-

tions corresponding to the fiber {(0, yf2 (s; c, a), z) : |z| ≤ ∆z} in the section Σm are

contracted exponentially to γf (s; c, a) in backwards time, and hence we have the

following.

Lemma 5.4.6. For each sufficiently small ∆w, there exists ∆ > 0, ε0 > 0 and

sufficiently small choice of the intervals Ic, Ia, such that for each 0 < ε < ε0, each

(c, a) ∈ Ic×Ia, and each s ∈ (w†+∆w, 2w
†−∆w), the following holds. The backwards

evolution B(s; c, a) of the fiber {(0, yf2 (s; c, a), z) : |z| ≤ ∆z} in Σm reaches the section

Σout near the upper right fold point in a curve which is O
(
eΛ`(∆w,w†−∆w)

)
close to

γf (s; c, a) uniformly in (c, a, zB) ∈ Ic × Ia × [−∆z,∆z] where

Λ`(∆w, w
† −∆w) =

∫ u1(w†−∆w)

u1(∆w)

c+
√
c2 − 4f ′(u)

2ε(u− γf(u))
f ′(u)du

< 0.

(4.36)

Furthermore the derivatives of the transition map from Σm to Σout for solutions on

B(s; c, a) with respect to (c, a, zB) are also O
(
eΛ`(∆w,w†−∆w)

)
.

Proof. To see this, we consider the flow in a neighborhood of M`
ε(c, a); essentially

we perform coordinate transformations to explicitly determine the expansion along

Ws,`
ε (c, a) away from the fold at the origin. Away from the origin, we can parametrize

M`
ε(c, a) by w, that is, the slow manifold M`

ε(c, a) is given as a graph

u = H(w, ε) = f−1(w) + εh(w, ε)

v = G(w, ε) = εg(w, ε),

(4.37)
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where we take the negative root u1(w) for f−1(w), and the functions H,G satisfy

εDwH(w, ε)(H(w, ε)− γw) = G(w, ε)

εDwG(w, ε)(H(w, ε)− γw) = cG(w, ε)− f(H(w, ε)) + w,

(4.38)

and the flow on M`
ε(c, a) is given by

ẇ = ε(H(w, ε)− γw). (4.39)

We now write

u = ũ+H(w, ε)

v = ṽ +G(w, ε),

(4.40)

and compute the flow nearby for small ũ, ṽ as

˙̃u = ṽ − εũDwH(w, ε)

˙̃v = cṽ − ũf ′(H(w, ε))− εũDwG(w, ε) +O(ũ2)

ẇ = ε(ũ+H(w, ε)− γw).

(4.41)

We consider the linearization of the two dimensional (ũ, ṽ) system about (ũ, ṽ, ε) =

(0, 0, 0) for each w. There is one stable and one unstable eigenvalue

λ± =
c±

√
c2 − 4f ′(f−1(w))

2
, (4.42)

with corresponding eigenvectors

e± =




1

λ±


 . (4.43)
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We now introduce the coordinates

U = ṽ − λ+ũ

V = ṽ − λ−ũ,
(4.44)

which, using the identities

λ+λ− = f ′(f−1(w))

λ± = c− λ∓,
(4.45)

results in the system

U̇ = λ−U + F−(U, V, w, ε)

V̇ = λ+V + F+(U, V, w, ε)

ẇ = ε(f−1(w)− γw + F s(U, V, w, ε)),

(4.46)

where

F±(U, V, w, ε) = O
(
εU, εV, U2, UV, V 2

)

F s(U, V, w, ε) = O(U, V, ε).

(4.47)

We now identify the part ofWs,`
ε (c, a) which intersects this neighborhood as a graph

V = V ∗(U,w, ε). This manifold is foliated by strong unstable fibers tangent to lines

(U,w) =const for ε = 0. Setting Ṽ = V − V ∗(U,w, ε) and performing a coordinate

change




U

w


→




Ũ

W̃


 =




U

w


+O(Ṽ ), (4.48)
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to straighten out the unstable fibers, we arrive at the system

˙̃U = λ−Ũ + F̃−(Ũ , W̃ , ε)

˙̃V = λ+Ṽ + F̃+(Ũ , Ṽ , W̃ , ε)Ṽ

˙̃W = ε(f−1(W̃ )− γW̃ + F̃ s(Ũ , W̃ , ε)),

(4.49)

where

F̃−(Ũ , W̃ , ε) = O
(
Ũ2, εŨ

)

F̃+(Ũ , Ṽ , W̃ , ε) = O
(
Ũ , Ṽ , ε

)

F̃ s(Ũ , W̃ , ε) = O(Ũ , ε).

(4.50)

We can now estimate the contraction rate Λ`(W̃1, W̃2) in backwards time along the

fiber of a given trajectory lying onWs,`
ε (c, a) between heights W̃1 and W̃2, under the

assumption that this trajectory remains in a small neighborhood of M`
ε(c, a), say

|Ũ |, |Ṽ | ≤ ∆� 1, for W̃ ∈ [W̃1, W̃2]. We compute

Λ`(W̃1, W̃2) =

∫ W̃2

W̃1

λ+ + F̃+(Ũ , Ṽ , W̃ , ε)

ε(f−1(W̃ )− γW + F̃ s(Ũ , W̃ , ε))
dw̃

=

∫ W̃2

W̃1

λ+

ε(f−1(W̃ )− γW̃ )
(1 +O(ε,∆)) dW̃

=

∫ W̃2

W̃1

c+
√
c2 − 4f ′(f−1(W̃ ))

2ε(f−1(W̃ )− γW̃ )
(1 +O(ε,∆)) dW̃

=

∫ u1(W̃2)

u1(W̃1)

c+
√
c2 − 4f ′(u)

2ε(u− γf(u))
f ′(u) (1 +O(ε,∆)) du.

(4.51)

Hence, by fixing ∆w > 0 small, and taking ∆, ε > 0 sufficiently small, we obtain the

result.

We proceed by considering the flow near the upper right fold point. Using the

analysis in [8, 38], it is clear that the transition in backwards time from Σout to Σi,−
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in the neighborhood UF of the upper right fold point can be bounded by eη/ε for

each η > 0 by taking the neighborhood UF sufficiently small, that is, by shrinking

∆w. The derivatives of the transition map also satisfy the same bounds.

Finally, we consider the transition from Σi,− to Σh,r. We first prove the following

technical lemma.

Lemma 5.4.7. For each sufficiently small ∆w and (c, a) ∈ Ic × Ia, we have that

∫ u1(∆w)

u1(w†−∆w)

c+
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du+

∫ u3(w†)

u3(−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du > 0.

(4.52)

Proof. We first write

∫ u3(w†)

u3(−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du

=

∫ u3(w†−∆w)

u3(∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du+O (∆w) .

(4.53)

Hence it suffices to show that there exists C > 0 such that

∫ u1(∆w)

u1(w†−∆w)

c+
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du+

∫ u3(w†−∆w)

u3(∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du > C,

(4.54)

for (c, a) = (1/
√

2, 0) uniformly in ∆w > 0 sufficiently small; the result then follows

by continuity provided ∆w and the intervals Ic, Ia are sufficiently small. For (c, a) =

(1/
√

2, 0), we have that w† = 4
27

, and the following identities hold for each w ∈ (0, w†)
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and u < 0.

u3(w) =
2

3
− u1(w† − w)

f(u) =
4

27
− f

(
2

3
− u
)

f ′(u) = f ′
(

2

3
− u
)
.

(4.55)

Hence

∫ u3(w†−∆w)

u3(∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du =

∫ 2
3
−u1(∆w)

2
3
−u1(w†−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du

= −
∫ u1(∆w)

u1(w†−∆w)

c−
√
c2 − 4f ′

(
2
3
− u
)

2
3
− u− γf

(
2
3
− u
) f ′

(
2

3
− u
)
du

=

∫ u1(∆w)

u1(w†−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u) + 4γ
27
− 2

3

f ′(u)du

>

∫ u1(∆w)

u1(w†−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du,

(4.56)

since 0 < γ < 4. We therefore have that

∫ u1(∆w)

u1(w†−∆w)

c+
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du+

∫ u3(w†−∆w)

u3(∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du

>

∫ u1(∆w)

u1(w†−∆w)

c+
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du+

∫ u1(∆w)

u1(w†−∆w)

c−
√
c2 − 4f ′(u)

u− γf(u)
f ′(u)du

=

∫ u1(∆w)

u1(w†−∆w)

c

u− γf(u)
f ′(u)du

> C,

(4.57)

uniformly in ∆w > 0 sufficiently small, which completes the proof.

In combination with the above results, we now have the following.
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Lemma 5.4.8. For each sufficiently small ∆w, there exists ε0, q > 0 and sufficiently

small choice of the intervals Ic, Ia, such that for each 0 < ε < ε0, each (c, a) ∈ Ic×Ia,

and each s ∈ (w† + ∆w, 2w
† − ∆w), the following holds. In Σh,r, B(s; c, a) is given

by a set of points (u, v, w) in Σh,r satisfying

(u, v, w) =
(
2/3, vf (s; c, a), 2w† − s

)
+ (0, vB(zB, s; c, a), wB(zB, s; c, a)) , (4.58)

where

|vB(zB, s; c, a)| , |wB(zB, s; c, a)| = O(e−q/ε), (4.59)

along with their derivatives with respect to (zB, c, a) uniformly in |zB| ≤ ∆z and

(c, a) ∈ Ic × Ia.

Proof. In a neighborhood ofMr
ε(c, a), we can put the flow into the Fenichel normal

form

U̇ = −λ−U + F−(U, V, w̃, ε)U

V̇ = −λ+V + F+(U, V, w̃, ε)V

˙̃w = ε(−f−1(w̃) + γw̃ + F sl(U, V, w̃, ε)),

(4.60)

where

F−(U, V, w̃, ε) = O (U, V, ε)

F+(U, V, w̃, ε) = O (U, V, ε)

F sl(U, V, w̃, ε) = O(UV, ε),

(4.61)
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λ± =
c±

√
c2 − 4f ′(f−1(w̃))

2
, (4.62)

and f−1(w̃) refers to the largest root u3(w̃) of f(u) = w̃. We note that the flow is

now in backwards time. By construction, up to a reparameterization of γf (s; c, a) ac-

cording to the smooth coordinate transformation (u, v, w)→ (U, V, w̃), in backwards

time γf (s; c, a) exits at height w̃ = 2w†− s. Between w̃ = 2w†− s and w̃ = w†−∆w,

γf (s; c, a) is given as a solution

U = U f (t; c, a, ε)

V = V f (t; c, a, ε)

w̃ = w̃f (t; c, a, ε)

(4.63)

where |U f |, |V f | ≤ ∆ for w̃ ∈ (2w† − s, w† −∆w). We now obtain estimates on this

solution and its derivatives. We first recall/comment on how the solution γf (s; c, a)

is constructed.

For a given value of (s, c, a), γf (s; c, a) is defined as the unique transverse inter-

section of the forward evolution of the line {u = 2/3, w = 2w†−s} with the manifold

Ws,`
ε (c, a). Equivalently, for the same effect we could have worked in this Fenichel

neighborhood ofMr
ε(c, a) and considered constructing γf (s; c, a) as the unique trans-

verse intersection of the forward evolution of the line {U = ∆, |V | ≤ ∆, w̃ = 2w†−s}

with the manifoldWs,`
ε (c, a). Using arguments similar to those in [8, §5] in the proof

of Proposition 5.3.1, we obtain the solution γf (s; c, a) = (U f , V f , w̃f ) which satisfies

(U f , V f ) = (O(e−q/ε),O(e−η/ε)) at w̃ = w† − ∆w and (U f , V f ) = (∆,O(e−q/ε)) at

w̃ = 2w† − s, where q > η > 0. Furthermore, the derivatives with respect to (c, a)

of these boundary values satisfy similar bounds, where q, η may need to be taken

slightly smaller.
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We now obtain more precise bounds for this solution and its derivatives. We

write w̃ = w∗ +W where w∗(t) is the solution to

˙̃w = ε(−f−1(w̃) + γw̃ + F sl(0, 0, w̃, ε)), (4.64)

satisfying w̃(0) = w† −∆w, w̃(T ) = 2w† − s, where we note that ε/C < T < C/ε for

some C > 0. This results in the equations

U̇ = Λu(t)U +G−(U, V,W, ε)U

V̇ = −Λs(t)V +G+(U, V,W, ε)V

Ẇ = ε(−(f−1)′(w∗)W + γW + F sl
w̃ (0, w∗, ε)W +Gsl(U, V,W, ε)),

(4.65)

where

Λu(t) = −λ−(w∗(t)) +O(ε)

Λs(t) = λ+(w∗(t)) +O(ε)

G−(U,W, ε) = O (U, V,W )

G+(U, V,W, ε) = O (U, V,W )

Gsl(U, V,W, ε) = O(UV,W 2).

(4.66)

We now define for each sufficiently small δ > 0 the functions

β−δ (t, s) =

∫ t

s

Λu(τ)− δdτ

β+
δ (t, s) =

∫ t

s

−Λs(τ) + δdτ

βsl(t, s) = ε

∫ t

s

−(f−1)′(w∗(τ)) + γ + F sl
w̃ (0, w∗(τ), ε)dτ.

(4.67)
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Hence the solution γf (s; c, a) given by (U f , V f ,W f ), W f = wf − w∗, solves

U(t) = eβ
−
0 (t,T )∆ +

∫ t

T

eβ
−
0 (t,s)G−(U(s), V (s),W (s), ε)U(s)ds

:= F−(U, V,W,∆, V0; c, a)(t)

V (t) = eβ
+
0 (t,0)V0 +

∫ t

0

eβ
+
0 (t,s)G+(U(s), V (s),W (s), ε)V (s)ds

:= F+(U, V,W,∆, V0; c, a)(t)

W (t) =

∫ t

T

εeβ
sl(t,s)Gsl(U(s), V (s),W (s), ε)ds

:= F sl(U, V,W,∆, V0; c, a)(t).

(4.68)

We define the spaces

V −δ =

{
U : [0, T ]→ R2 : ‖U‖−δ = sup

t∈[0,T ]

eβ
−
δ (T,t)|U(t)| <∞

}

V +
δ =

{
V : [0, T ]→ R : ‖V ‖+

δ = sup
t∈[0,T ]

eβ
+
δ (0,t)|V (t)| <∞

}

V sl =

{
W : [0, T ]→ R : ‖W‖sl = sup

t∈[0,T ]

|W (t)| <∞
}
,

(4.69)

and for each fixed small δ > 0 we have that

‖F−(U, V,W,∆, V0; c, a)‖−δ = ∆ +O
(
‖U‖−δ

(
‖U‖−δ + ‖V ‖+

δ + ‖W‖sl
))

‖F+(U, V,W,∆, V0; c, a)‖+
δ = VT +O

(
‖V ‖+

δ

(
‖U‖−δ + ‖V ‖+

δ + ‖W‖sl
))

‖F sl(U, V,W,∆, V0; c, a)‖sl = O
(
(‖W‖sl)2, ‖U‖−δ ‖V ‖+

δ

)
,

(4.70)

and hence γf (s; c, a) satisfies

‖U f‖−δ = O(∆)

‖V f‖+
δ = O(V0) = O(e−η/ε)

‖W f‖sl = O
(
e−η/ε

)
.

(4.71)
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Taking derivatives of (4.68) with respect to the parameters (c, a) and taking δ slightly

larger and η slightly smaller if necessary, we can bound the derivatives

‖DνU
f‖−δ = O(∆)

‖DνV
f‖+

δ = O(e−η/ε)

‖DνW
f‖sl = O

(
e−η/ε

)
,

(4.72)

for ν = (c, a).

To determine the contraction/expansion of solutions along γf (s; c, a), we write

U = U f (t; c, a, ε) + Ũ

V = V f (t; c, a, ε) + Ṽ

W = W f (t; c, a, ε) + W̃

(4.73)

and obtain the equations

˙̃U = ΛuŨ + G̃−1 (Ũ , Ṽ , W̃ , ε)Ũ + G̃−2 (Ũ , Ṽ , W̃ , ε)U f

˙̃V = −ΛsṼ + G̃+
1 (Ũ , Ṽ , W̃ , ε)Ṽ + G̃+

2 (Ũ , Ṽ , W̃ , ε)V f

˙̃W = ε(−(f−1)′(w∗)W̃ + γW̃ + F sl
w̃ (0, w∗, ε)W̃ + G̃sl(Ũ , Ṽ , W̃ , ε)),

(4.74)

where

G̃−1 (Ũ , Ṽ , W̃ , ε) = O
(
U f , V f ,W f , Ũ , Ṽ , W̃

)

G̃−2 (Ũ , Ṽ , W̃ , ε) = O
(
Ũ , Ṽ , W̃

)

G̃+
1 (Ũ , Ṽ , W̃ , ε) = O

(
U f , V f ,W f , Ũ , Ṽ , W̃

)

G̃+
2 (Ũ , Ṽ , W̃ , ε) = O

(
Ũ , Ṽ , W̃

)

G̃sl(Ũ , W̃ , ε) = O(ŨV f , U f Ṽ , Ũ Ṽ , W̃W f , W̃ 2).

(4.75)
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We can write this as the integral equation

Ũ(t) = eβ
−
0 (t,T )ŨT

+

∫ t

T

eβ
−
0 (t,s)G̃−1 (Ũ(s), Ṽ (s), W̃ (s), ε)Ũ(s) + G̃−2 (Ũ(s), Ṽ (s), W̃ (s), ε)U f (s)ds

Ṽ (t) = eβ
+
0 (t,0)Ṽ0

+

∫ t

0

eβ
+
0 (t,s)G̃+

1 (Ũ(s), Ṽ (s), W̃ (s), ε)Ṽ (s) + G̃+
2 (Ũ(s), Ṽ (s), W̃ (s), ε)V f (s)ds

W̃ (t) = eβ
sl(t,0)W̃0 +

∫ t

0

εeβ
sl(t,s)G̃sl(Ũ(s), Ṽ (s), W̃ (s), ε)ds.

(4.76)

Provided |ŨT |, |Ṽ0|, and |W̃0| are sufficiently small, we can solve this by the implicit

function theorem and obtain a solution satisfying

‖Ũ‖−δ = O
(
|ŨT |+ ∆(|Ṽ0|+ |W̃0|)

)

‖Ṽ ‖+
δ = O

(
|Ṽ0|+ e−η/ε(|ŨT |+ |W̃0|)

)

‖W̃‖sl = O
(
|W̃0|+ e−η/ε|ŨT |+ ∆|Ṽ0|

)
.

(4.77)

Taking derivatives of (4.76) with respect to the parameters (c, a) and taking δ slightly

larger if necessary, we can bound the derivatives

‖DνŨ‖−δ = O
(
|ŨT |+ |DνŨT |+ ∆(|Ṽ0|+ |DνṼ0|+ |W̃0|+ |DνW̃0|)

)

‖DνṼ ‖+
δ = O(|Ṽ0|+ |DνṼ0|+ e−η/ε(|ŨT |+ |DνŨT |+ |W̃0|+ |DνW̃0|))

‖DνW̃‖sl = O
(
|W̃0|+ |DνW̃0|+ e−η/ε(|ŨT |+ |DνŨT |) + ∆(|Ṽ0|+ |DνṼ0|)

)
,

(4.78)

for ν = (zB, c, a).

By Lemma 5.4.6, at t = 0 the manifold B(s; c, a) is O(eΛ`(∆w,w†−∆w))-close to

γf (s; c, a). That is, the solutions on B(s; c, a) can be represented in the above coor-
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dinates by solutions (Ũ , Ṽ , W̃ ) satisfying

(Ũ , Ṽ , W̃ )(0) = (ŨB
0 , Ṽ

B
0 , W̃

B
0 ) = O(eΛ`(∆w,w†−∆w))

uniformly along with their derivatives with respect to (zB, c, a). We now solve for

the solution to (4.76) which satisfies (Ṽ0, W̃0) = (Ṽ B
0 , W̃

B
0 ) and

ŨB
0 = eβ

−
0 (0,T )ŨT

+

∫ 0

T

eβ
−
0 (0,s)G̃−1 (Ũ(s), Ṽ (s), W̃ (s), ε)Ũ(s) + G̃−2 (Ũ(s), Ṽ (s), W̃ (s), ε)U f (s)ds.

(4.79)

Provided eβ
−
0 (T,0)ŨB

0 is sufficiently small, we can find a solution ŨT satisfying (4.79).

Performing a similar computation as in the proof of Lemma 5.4.6 shows that the

expansion β−0 (T, 0) in backwards time from w = w† − ∆w to w = 2w† − s can be

estimated by

Λr(w† −∆w, 2w
† − s) =

∫ u3(2w†−s)

u3(w†−∆w)

c−
√
c2 − 4f ′(u)

2ε(u− γf(u))
(1 +O(ε,∆)) f ′(u)du. (4.80)

Using this in combination with the O(eΛ`(∆w,w†−∆w)) bounds on ŨB
0 , Ṽ

B
0 , W̃

B
0 for

the contraction/expansion from Σm to Σout and Σout to Σi,− and Lemma 5.4.7, we

deduce that B(s; c, a) is O(e−q/ε)-close to γf (s; c, a) in Σh,r.

Matching conditions for pulses Γ(s,
√
ε), s ∈ (w† + ∆w, 2w

† −∆w)

Evolving B(s; c, a) backwards and using Lemma 5.4.8, we have that B̂(s; c, a) is

exponentially close to Mm
ε (c, a) in Σm. Thus we have that in Σm, B̂(s; c, a) is given
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by a curve (y2, z) = (yb2, z
b)(zB, s; c, a) which satisfies

|yb2(zB, s; c, a)− yM,m
2 | = O(e−q/ε)

|zb(zB, s; c, a)| = O(e−q/ε),

(4.81)

uniformly in |zB| ≤ ∆z.

Recall from §5.4.3 that in the section Σm, the tail manifold Tε(c, a) is defined by

the graph of a smooth function given by z = zTε (y2; c, a) for y2 ≥ y`,∗2,0(c, a) where

zTε (y2; c, a) =





0 y2 ≥ ŷ`2,0(c, a)

z`,∗(y2; c, a) y`,∗2,0(c, a) ≤ y2 ≤ ŷ`2,0(c, a)
(4.82)

and the function z`,∗ and its derivatives are O(e−q/ε). We have the following analogue

of Lemma 5.4.5 which will be proved in §5.6.

Lemma 5.4.9. For each sufficiently small ∆w > 0 , there exists ε0,∆z > 0 and

sufficiently small choice of the intervals Ic, Ia such that for each s ∈ (w†+ ∆w, 2w
†−

∆w) and each 0 < ε < ε0, the backwards evolution of the manifold B̂(s; c, a) intersects

Σm in a curve (y2, z) = (yb2, z
b)(zB, s; c, a) which satisfies

|yb2(zB, s; c, a)− yM,m
2 | = O(e−q/ε)

|zb(zB, s; c, a)| = O(e−q/ε),

(4.83)

uniformly in |zB| ≤ ∆z and (c, a) ∈ Ic× Ia. The derivatives of the above expressions

with respect to (c, a, zB) are also O(e−q/ε). Furthermore

y`,∗2,0(c, a) < inf
|zB |≤∆z

yb2(zB, s; c, a), (4.84)

for all (c, a) ∈ Ic × Ia.
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The first assertion of Lemma 5.4.9 follows from the analysis above; the proof of

the second assertion will be given in §5.6.

The final matching conditions can then be obtained analogously as in the case

of type 2 pulses. Starting in Σh,r, we evolve B̂(s; c, a) back to the section Σm and

show that for each |zB| ≤ ∆z, Wu
ε (0; c, a) can be matched with the corresponding

solution on B̂(s; c, a) by adjusting (c, a) using Lemma 5.4.9. We then evolve B(s; c, a)

forwards from Σh,r to Σm and show that B(s; c, a) transversely intersects Tε(c, a) for

each such (c, a) as zB varies. Convergence of the tails is proved in §5.5. The setup

for the matching conditions in the section Σm is shown in Figures 5.10 and 5.12.

From Proposition 5.4.1, we have that the distance between the manifoldsM`
ε(c, a)

and Mm
ε (c, a) in Σm is given by

yM,`
2 − yM,m

2 = D0(α2, r2; c) = dα2α2 + dr2r2 +O(2) . (4.85)

Thus we can match Wu
ε (0; c, a) with any solution in B̂(s; c, a) by solving

D0(α2, r2; c) = yu2 (z; c, a)− yM,`
2 −

(
yb2(zB, s; c, a)− yM,m

2

)

z = zb(zB, s; c, a),

(4.86)

for each |zB| ≤ ∆z. For each such zB, we obtain a solution by solving

a = 2c1/2ε1/2(αc2 +O(e−q/ε))

c = c̆ (a, ε) +O(e−q/ε),

(4.87)

by the implicit function theorem to find (a, c) = (au, cu)(zB; s,
√
ε). We now evolve

Wu
ε (0; c, a) forwards; for each zB we can hit the corresponding point on B(s; c, a),
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henceWu
ε (0; c, a) intersects Σm at the point (yf2 (s; c, a), zB) when (c, a) = (cu, au)(zB)

defined above. We now match with the tail manifold Tε(c, a) by solving

zB = zTε (yf2 (s; c, a); cu(zB), au(zB)), (4.88)

which, using Lemma 5.4.9, we can solve by the implicit function theorem when

zB = zsB = O(e−q/ε) to find the desired pulse solution when

a = a(s,
√
ε) := au(zsB; s,

√
ε)

c = c(s,
√
ε) := au(zsB; s,

√
ε).

(4.89)

5.4.6 Type 3 pulses

Finally, we consider type 3 pulses. Type 3 pulses are those with secondary heights

which are close to the upper right fold point; these pulses encompass the transition

from left pulses to right pulses and hence form a bridge between type 2 pulses and

type 4 pulses. We construct these in a manner similar to type 2 pulses, but they

are not parametrized naturally by the height of the secondary pulse. To set up a

parametrization of these pulses, we change to local coordinates in a neighborhood of

the upper right fold point [8, §4].

The fold point is given by the fixed point (u∗, 0, w∗) of the layer problem (3.1)

where

u∗ = 1
3

(
a+ 1 +

√
a2 − a+ 1

)
,

and w∗ = f(u∗). The linearization of (3.1) about this fixed point has one positive

real eigenvalue c > 0 and a double zero eigenvalue, since f ′(u∗) = 0. As in [8] we can
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perform for any r ∈ Z>0 a Cr-change of coordinates Φε : UF → R3 to (1.1), which is

Cr-smooth in c, a and ε for (c, a, ε)-values restricted to the set Ic× Ia× [0, ε0], where

ε0 > 0 is chosen sufficiently small. We apply Φε in the neighborhood UF of the fold

point and rescale time by a positive constant θ0 given by

θ0 =
1

c2/3

(
a2 − a+ 1

)1/6
(u∗ − γw∗)1/3 > 0, (4.90)

uniformly in (c, a) ∈ Ic × Ia, so that (1.1) becomes

x′ =
(
y + x2 + h(x, y, ε; c, a)

)
,

y′ = εg(x, y, ε; c, a),

z′ = z

(
c

θ0

+O(x, y, z, ε)

)
,

(4.91)

where h, g are Cr-functions satisfying

h(x, y, ε; c, a) = O(ε, xy, y2, x3),

g(x, y, ε; c, a) = 1 +O(x, y, ε),

uniformly in (c, a) ∈ Ic × Ia. In the transformed system (4.91), the x, y-dynamics

is decoupled from the dynamics in the z-direction along the straightened out strong

unstable fibers. Thus, the flow is fully described by the dynamics on the two-

dimensional invariant manifold z = 0 and by the one-dimensional dynamics along

the fibers in the z-direction.

We consider the flow of (4.91) on the invariant manifold z = 0. We append an
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equation for ε, arriving at the system

x′ = y + x2 + h(x, y, ε; c, a),

y′ = εg(x, y, ε; c, a),

ε′ = 0.

(4.92)

For ε = 0, this system possesses a critical manifold given by {(x, y) : y + x2 +

h(x, y, 0, c, a) = 0}, which in a sufficiently small neighborhood of the origin is shaped

as a parabola opening downwards. The branch of this parabola for x < 0 is attracting

and corresponds to the manifold Mr
0. We define Mr,+

0 to be the singular trajectory

obtained by appending the fast trajectory given by the line {(x, 0) : x > 0} to

the attracting branch Mr
0 of the critical manifold. In [8] it was shown that, for

sufficiently small ε > 0, Mr,+
0 perturbs to a trajectory Mr,+

ε on z = 0, represented

as a graph y = sε(x; c, a), which is a-uniformly C0 − O
(
ε2/3
)
-close to Mr,+

0 (see

Figure 5.14 – note that in this figure, x increases to the left). The branch of the

critical manifold corresponding to x > 0, which we denote by S−0 (c, a), is repelling

and corresponds to the manifoldMm
0 and is normally hyperbolic away from the fold

point. Thus by Fenichel theory, this critical manifold persists as an attracting slow

manifold S−ε (c, a) for sufficiently small ε > 0 and consists of a single solution. This

slow manifold is unique up to exponentially small errors. We will be concerned with

trajectories which are exponentially contracted to S−ε (c, a) in backwards time (see

Figure 5.14).

Remark 5.4.10. We use the notation S−ε (c, a) rather than Mm
ε (c, a) as in general

these manifolds do not coincide. This is due to the fact that the choice of Mm
ε (c, a)

was made so that Mm
ε (c, a) would lie in the manifold Ws,`

ε (c, a) in a neighborhood of

the canard point at the origin.

We determine the location of Ws,`
ε (c, a) in the neighborhood UF . From [8, §5],
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Mr,+
✏

x y

Ws,`
✏

⌃i,�

S�
✏

Figure 5.14: Shown is the setup near the upper right fold point. Note that x increases to the left.

we know thatWs(M`
0(c∗(0), 0)) intersectsWu(Mr,+

0 (c∗(0), 0)) transversely for ε = 0

along the Nagumo back ϕb, and this intersection persists for (c, a, ε) ∈ Ic×Ia×(0, ε0).

This means thatWs,`
ε (c, a) will transversely intersect the manifoldWu,r

ε (c, a) which is

composed of the union of the unstable fibers of the continuation of the slow manifold

Mr,+
ε (c, a) found in [8, §4]. We recall the exit section Σout defined by

Σout = {z = ∆′}. (4.93)

For (c, a, ε) ∈ Ic × Ia × (0, ε0), the intersection of Ws,`
ε (c, a) and Wu,r

ε (c, a) occurs at

a point

(x, y, z) = (x`(c, a, ε), sε(x`(c, a, ε); c, a),∆′) ∈ Σout, (4.94)

and thus we may expand Ws,`
ε (c, a) in Σout as

(x, y) = (x`(c, a, ε) +O(y − sε(x; c, a), ε), y), y ∈ [−∆y,∆y], (4.95)

for some small ∆y > 0. The goal is now to parametrize the construction of type 3

pulses by the coordinate y, which parametrizes trajectories on the manifoldWs,`
ε (c, a).
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By taking ∆w sufficiently small, it is clear that there is overlap with the construction

of type 2 pulses. We will argue that there is also overlap with the construction of

type 4 pulses by considering an appropriate range of y-values.

We now place a section Σi,− defined by

Σi,− = {(x, y, z) : 0 ≤ x ≤ 2ρ, y = −ρ2, |z| ≤ ∆′}, (4.96)

and we note that the manifold S−ε (c, a) intersects Σi,− for all sufficiently small ε > 0.

We define two other sections

Σi,+ = {(x, y, z) : −2ρ ≤ x ≤ 0, y = −ρ2, |z| ≤ ∆′} (4.97)

Σi,v = {(x, y, z) : x = −2ρ, |y| ≤ ρ2, |z| ≤ ∆′}. (4.98)

We now note that, provided ∆y is sufficiently small, any trajectoryWs,`
ε (c, a) in Σout

leaves a neighborhood of the fold point through one of the sections Σi,−,Σi,+,Σi,v

in backwards time. We construct type 3 pulses by considering only heights y which

correspond to trajectories on Ws,`
ε (c, a) which exit via Σi,− in backwards time. The

setup is shown in Figure 5.14.

Firstly, all solutions in Σi,− are exponentially contracted in backwards time to

Mm
ε (c, a) upon arrival in the section Σm near the lower left fold point. We first

consider the trajectory S−ε (c, a). Tracking backwards down the middle slow manifold,

we have that S−ε (c, a) is uniformly O(e−q/ε)-close to Mm
ε (c, a) in Σm for (c, a) ∈

Ic × Ia.

Using similar arguments as in the construction of type 2 pulses, for each suf-

ficiently small ε > 0 we can find values of (c, a) = (c−, a−)(
√
ε) such that the
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backwards evolution of S−ε (c, a) can be matched with Wu
ε (0; c, a) in the section Σm.

We now consider trajectories on Ws,`
ε (c, a) in Σout which pass through Σi,− in back-

wards time. As stated above, trajectories on Ws,`
ε (c, a) in Σout are parametrized by

y ∈ [−∆y,∆y]. For (c, a) = (c−, a−), for each ȳ sufficiently small, (for instance,

−∆y < ȳ < −∆y/2), for all ε ∈ (0, ε0), the trajectory which intersects Ws,`
ε (c, a) in

Σout at ȳ contracts exponentially in backwards time to S−ε (c, a) and therefore passes

through Σi,−. We can therefore define the supremum of all such values of ȳ to be y−ε .

That is, y−ε is defined as the supremum of ȳ-values such that the trajectory which

intersects Ws,`
ε (c−, a−) in Σout at height ȳ passes through Σi,− in backwards time.

We now show that for each sufficiently small ε > 0 and each ȳ ∈ [−∆y, y
−
ε ], we

can construct a transitional pulse with secondary excursion which passes near the

upper right fold and intersects the section Σout passing exponentially close to the

point (x, y) = (x`(c, a, ε) +O(ȳ− sε(x; c, a), ε), ȳ) on the manifold Ws,`
ε (c, a). In this

sense, ȳ will serve as a parameterization of such transitional pulses passing near the

fold. We then argue below that there is overlap between these and the construction

of pulses of type 2 and 4.

To proceed, we show that for each such ȳ, a transitional pulse can be constructed

following the same procedure as with type 2 pulses, though extra care is needed

to make sure that the passage near the fold does not cause the argument to break

down. We define the solution γf (ȳ; c−, a−) on the stable foliationWs,`
ε (c−, a−) which

intersects the section Σout at height y = ȳ. This solution is exponentially attracted

in forward time to M`
ε(c
−, a−) and hence intersects Σm at the point (yf2 (c−, a−), 0)

where

e−q1/ε/C ≤ yf2 (c−, a−)− yu2 (0; c−, a−) ≤ Ce−q2/ε. (4.99)
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Define the manifold B(ȳ; c−, a−) to be the backwards evolution of the fiber

{(0, yf2 (c−, a−), z) : |z| ≤ ∆z}. (4.100)

In backwards time, this fiber is exponentially contracted to the solution γf (ȳ; c−, a−)

and hence intersects Σout in a one-dimensional curve which is O(e−q/ε)-close to

γf (ȳ; c−, a−). Because ȳ < y−ε , in backwards time γf (ȳ; c−, a−) hits the section

Σi,−. The passage from Σout to Σi,− defines a map which is at worst expands expo-

nentially at a rate eη/ε, where η can be made arbitrarily small by shrinking the fold

neighborhood. In particular, we can ensure that η � q. Hence we can ensure that

this potential expansion is always compensated by the contraction occurring along

the fibers ofWs,`
ε (c, a) in the passage in backwards time from Σm to Σout. Hence the

backwards evolution of B̂(ȳ; c−, a−) also defines a one-dimensional manifold in Σi,−

which is O(e−q/ε)-close to γf (ȳ; c−, a−), where q may have to be slightly decreased.

We will now show that the results above hold for an interval of parameters (c, a)

exponentially close to (c−, a−), that is, we write (c, a) = (c−, a−)+(c̃, ã) and consider

values |c̃|, |ã| ≤ Ce−2η/ε. For all sufficiently small ε > 0, we claim that the above

assertions continue to hold uniformly for all such (c̃, ã). We define the solution

γf (ȳ; c, a) on Ws,`
ε (c, a) which intersects the section Σout at height y = ȳ. This

solution intersects Σm at the point (yf2 (ȳ; c, a), 0) where

e−q1/ε/C ≤ yf2 (ȳ; c, a)− yu2 (0; c, a) ≤ Ce−q2/ε. (4.101)

uniformly in (c, a). Again we define the manifold B(ȳ; c, a) to be the intersection

of the backwards evolution of the fiber {(0, yf2 (ȳ; c, a), z) : |z| ≤ ∆z} with the sec-

tion Σout. In backwards time, this fiber is exponentially contracted to the solution

γf (ȳ; c, a) and hence intersects Σout in a one-dimensional curve which is O(e−q/ε)-
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close to γf (ȳ; c, a). In backwards time, for any |c̃|, |ã| ≤ Ce−2η/ε, γf (ȳ; c, a) hits the

section Σi,−, and the backwards evolution of B̂(ȳ; c, a) also defines a one-dimensional

manifold in Σi,− which is O(e−q/ε)-close to γf (ȳ; c, a) uniformly in |c̃|, |ã| ≤ Ce−2η/ε,

where q may have to be slightly decreased. Similar estimates also hold for the deriva-

tives of the transition maps from Σm to Σi,−.

Since B(ȳ; c, a) defines a vertical fiber {(0, yf2 (ȳ; c, a), z) : |z| ≤ ∆z} in Σm, we

parameterize B(ȳ; c, a) by |zB| ≤ ∆z, where zB denotes the height along the fiber.

Evolving B̂(ȳ; c, a) backwards, for any |c̃|, |ã| ≤ Ce−2η/ε, we have that B̂(ȳ; c, a) is

O(e−q/ε)-close to Mm
ε (c, a) in Σm. Thus we have that in Σm, B̂(w̄; c, a) is given by

a curve (y2, z) = (yb2, z
b)(zB, ȳ; c, a) which satisfies

|yb2(zB, ȳ; c, a)− yM,m
2 | = O(e−q/ε)

|zb(zB, ȳ; c, a)| = O(e−q/ε),

(4.102)

uniformly in |zB| ≤ ∆z and |c̃|, |ã| ≤ Ce−2η/ε.

We can now repeat argument in the construction of type 2 pulses, given the

uniformity of the above estimates in |c̃|, |ã| ≤ Ce−2η/ε and the fact that we only need

freedom in the variation in the bifurcation parameters (c, a) of O(e−q/ε) for perhaps

a slightly smaller value of q to solve the corresponding matching conditions.

Overlap with pulses of type 2, 4

The pulses now form a one-parameter family parametrized by the height ȳ. By

taking ∆w sufficiently small with respect to ∆y, it is clear that there is overlap

in the construction of type 3 pulses above and the construction of type 2 pulses.

That is, type 3 pulses for ȳ near ∆y are constructed in much the same manner as
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type 2 pulses for s near w† − ∆w. Furthermore, again with ∆w sufficiently small

with respect to ∆y, there is also overlap in the construction of type 4 pulses. Type

4 pulses constructed for s near w† + ∆w will pass through the section Σi,− before

passing O(ε2/3 + |a|)-close to the fold and leaving the section Σout exponentially close

to Ws,`
ε (c, a). These pulses therefore overlap with the construction of type 3 pulses

for ȳ near y−ε .

As all pulses of types 2, 3, 4 were constructed using the implicit function theorem,

by local uniqueness the one-parameter families of pulses of types 2, 3, 4 in fact form

one continuous family. Hence we reparameterize the family of type 3 pulses by

s ∈ (w† −∆w, w
† + ∆w) rather than the height ȳ.

5.5 Analysis of tails

In this section, we show that any transitional pulse landing inWs,`
ε (c, a) in the section

Σh,` := {u = 0,∆w < w < w† − ∆w} at a height no higher than w ≤ wA + ∆w in

fact lies in the stable manifold Ws
ε (0; c, a) of the equilibrium (u, v, w) = (0, 0, 0). We

break down the argument into the following two steps:

(i) By possibly shrinking ∆w if necessary, we show that for sufficiently small ε > 0,

any trajectory on Ws,`
ε (c, a) starting in Σh,` at a height w ≤ wA + ∆w returns

at a height w ≤ wA −∆w and remains in Ws,`
ε (c, a).

(ii) Next we show any such trajectory remains inWs,`
ε (c, a) with the height on each

return to Σh,` monotonically decreasing until entering an arbitrarily small O(1)

neighborhood of the equilibrium, and any such trajectory which reaches this

neighborhood in fact converges to the equilibrium. This amounts to showing
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that any periodic orbits lying in Ws,`
ε (c, a) are repelling.

5.5.1 Way-in-way-out function

We define a way-in-way-out function as in [39] which essentially determines the dif-

ference in contraction/expansion rates along the critical manifold M0. We consider

the slow flow restricted to the critical manifold {v = 0, w = f(u)} for (a, ε) = (0, 0);

the flow satisfies

u′ =
u− γf(u)

f ′(u)
, (5.1)

where f(u) = u2(1 − u). For w ∈ (0, w†), the equation f(u) − w = 0 has three

solutions ui(w), i = 1, 2, 3 where the zeros are indexed in increasing order. For

w+, w− ∈ (0, wA), we now define the way-in-way-out function

R(w+, w−) :=

∫ u2(w−)

u1(w+)

(
c−

√
c2 − 4f ′(u)

) f ′(u)

u− γf(u)
du, (5.2)

and for short, we denote R(w) := R(w,w). We note that −u1(w) < u2(w) < 2
3

for

all w ∈ (0, w†); hence for γ > 0 and w ∈ (0, wA), we have that

R(w) >
1

2

∫ −u1(w)

u1(w)

(
c−

√
c2 − 4f ′(u)

)
(2− 3u)du

> −2cu1(w)− 16

3
(−u1(w))3/2

> 0.

(5.3)
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5.5.2 Initial exit point

In this section, we primarily refer to the results of [12] in which entry-exit or way-

in-way-out functions are described for systems with a critical manifold containing a

turning point. We consider the flow on a piece ofWs,`
ε (c, a) which contains everything

below w = wA−∆w as well as trajectories to the left of Σh,` for w ∈ [wA−∆w, wA +

∆w]. Within this manifold, away from the fold point, define S`R/L,SmR/L to be sections

transverse to the strong stable (resp. unstable) fibers of M`
ε(c, a) (resp. Mm

ε (c, a)),

where the R,L notation refers to whether the sections sit to the left or right of the

corresponding slow manifold. That is, S`R sits to the right of M`
ε(c, a) and SmL sits

to the left of Mm
ε (c, a).

We define boundary entry/exit points within S`R,SmL as follows. Let w+ ∈

[∆w, wA + ∆w] and w− ∈ [∆w, wA − ∆w], and let b`ε(c, a), brε(c, a) define points on

S`R,SmL depending continuously on (c, a, ε) satisfying limε→0 b
`
ε(c, a) = b`0(c, a) ∈

S`R ∩ {w = w+} and limε→0 b
m
ε (c, a) = bm0 (c, a) ∈ SmL ∩ {w = w−} so that the

limits b`0, b
m
0 lie on the stable (resp. unstable) foliation of M`

0 (resp. Mm
0 ).

The next result follows from [12, §9].

Proposition 5.5.1. Suppose that for each sufficiently small ε > 0 there exists (c, a)

such that there is a canard trajectory γCε (c, a) which meets the sections S`R,SmL at

the entry/exit points b`ε(c, a), brε(c, a). Suppose R(w−, w+) > 0. Then there exists

we < w− such that the following holds. Take any other entry point b+
ε ∈ S`R/L with

limε→0 b
+
ε = b+

0 ∈ S`R/L∩{w = wC} where wC > w+. Then there is a canard solution

connecting b+
ε with a corresponding exit point b−ε ∈ SmR satisfying limε→0 b

−
ε = b−0 ∈

SmR ∩ {w = we}.
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We claim that the trajectory onWs,`
ε (c, a) starting in Σh,` at height w = wA+∆w

returns to Σh,` at a height w ≤ wA − ∆w. Suppose for contradiction that the

backwards evolution of the trajectory starting in Σh,` at height w = wA −∆w ends

up in Σh,` at a height w = wC < wA + ∆w. Proposition 5.5.1 implies the existence

of we < wA−∆w such that all trajectories entering S`R above w = wA + ∆w exit SmR
at height we. However we know the basepoint of the second excursion of our pulse

solution (which is above w = w+ ∆w) does not exit near this buffer point but rather

continues up to have a tail at some wA −∆w ≤ w ≤ ŵε; this is a contradiction.

Hence the backwards evolution of the trajectory starting in Σh,` at height w =

wA−∆w ends up in Σh,` at a height w = wC ≥ wA+ ∆w. In other words, this means

that the trajectory on Ws,`
ε (c, a) starting in Σh,` at height w = wA + ∆w returns to

Σh,` at a height w ≤ wA −∆w. We therefore have the following.

Proposition 5.5.2. For each sufficiently small ∆w > 0, for sufficiently small ε > 0,

let (c, a) ∈ Ic×Ia be such that there exists a transitional pulse with a tail inWs,`
ε (c, a)

starting in Σh,` at a height w ≤ wA + ∆w. Then this tail trajectory remains in

Ws,`
ε (c, a), returning to Σh,` at a height w ≤ wA −∆w.

5.5.3 Periodic orbits

Once a tail trajectory ends up below w = wA−∆w, it is stuck in the two-dimensional

manifoldWs,`
ε (c, a) and its height is monotonically decreasing on each return to Σh,`.

Hence such a trajectory is approaching the equilibrium; the only way it can fail to

lie in the stable manifold Ws
ε (0; c, a) is if it is blocked by a periodic orbit (in this

caseWs
ε (0; c, a) would topologically take the form of a disc). The aim of this section

is to show that any periodic orbit lying in Ws,`
ε (c, a) must be repelling.
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In [39], the authors constructed periodic canard orbits in a class of planar systems.

Although the entire canard explosion is not possible to construct in the same manner

in our case (there is no such two-dimensional invariant manifold which contains the

entire S-shaped critical manifold), the construction procedure is valid in the two-

dimensional manifold Ws,`
ε (c, a) for canard orbits up to height w = wA − ∆w. We

collect the following results from [39] regarding such periodic solutions.

Proposition 5.5.3. For each c ∈ Ic and ε > 0 sufficiently small, there exists a

family of periodic orbits

(w, ε)→ (a(w, ε),Γ(w, ε)) (5.4)

parameterized by the height w ∈ (0, wA −∆w) such that Γ(w, ε) ⊂ Ws,`
ε (c, a(w, ε)).

(i) Any periodic orbit passing near the critical manifold M0 which is entirely con-

tained in Ws,`
ε (c, a) for −∆w ≤ w ≤ wA −∆w is part of this family.

(ii) For ∆w < w < wA −∆w, the Floquet exponent P (w, ε) satisfies

P (w, ε) =
1

ε
(R(w) + θ(w, ε)) , (5.5)

where θ and ∂θ
∂w
→ 0 uniformly as ε→ 0.

(iii) For 0 < w < ∆w all of the Γ(w, ε) are repelling.

In particular, the above implies that for any sufficiently small ε > 0, there are

no nonrepelling periodic orbits in Ws,`
ε (c, a) between −∆w ≤ w ≤ wA −∆w.
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5.5.4 Convergence of tails

We now combine Propositions 5.5.2 and 5.5.3 to obtain the following.

Proposition 5.5.4. Fix ∆w sufficiently small. For each sufficiently small ε > 0,

consider a transitional pulse with tail landing in the manifold Ws,`
ε (c, a) in Σh,` at a

height w ≤ wA + ∆w. Then the tail of this pulse in fact lies in the stable manifold

Ws
ε (0; c, a) of the equilibrium (u, v, w) = (0, 0, 0). In particular, every solution on

the tail manifold Tε(c, a) lies on Ws
ε (0; c, a).

5.6 Flow near the Airy point

The goal of this section is to prove Proposition 5.4.4, regarding properties of the

backwards evolution of certain trajectories onWs,`
ε (c, a) between the sections Σh,` and

Σm. We need to track the manifoldWs,`
ε (c, a) in backwards time into a neighborhood

of Mm
ε (c, a) and determine its behavior near the canard point, in particular its

transversality with respect to the strong unstable fibers in the section Σm. For

trajectories on Ws,`
ε (c, a) for w < wA −∆w, this behavior is clear: these trajectories

are attracted exponentially close toMm
ε (c, a) and remain in the manifold Ws,`

ε (c, a)

upon entering a neighborhood of the canard point. This is due to the fact that the

backwards evolution of Ws,`
ε (c, a) from Σh,` to Σm and forwards evolution from Σm

to Σh,` in fact coincide for w < wA −∆w. Hence transversality with respect to the

strong unstable fibers in Σm is clear.

However, for w ≥ wA − ∆w, the behavior is not so clear since near Mm
ε (c, a),

the manifold Ws,`
ε (c, a) is not defined for w ≥ wA −∆w due to the lack of spectral

gap in the linearization of the vector field. Such trajectories on Ws,`
ε (c, a) are still
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exponentially attracted toMm
ε (c, a) in backwards time, but in general do not coincide

with Ws,`
ε (c, a) upon reaching w = wA−∆ due to the interaction with the focus-like

properties of the manifold Mm
ε (c, a) (see Figure 5.15 – note that the flow direction

is reversed in this figure). To understand the transition from node to focus, we must

understand the flow near the Airy point. The goal is to show that even though the

backwards and forward evolution ofWs,`
ε (c, a) between Σh,` and Σm do not coincide,

we retain the desired transversality properties for trajectories on Ws,`
ε (c, a) a bit

above the Airy point, specifically for w < wA + Cε2/3 for some C > 0.

The Airy point (uA, wA) is defined by the conditions c2 = 4f ′(uA) and wA =

f(uA). In a neighborhood of this point, the manifold Mm
ε (c, a) can be written as a

graph (u, v) = (uA + h(w, ε), g(w, ε)) where

h(w, ε) =
1

f ′(uA)
(w − wA) +O

(
ε, (w − wA)2

)

g(w, ε) = O (ε, (w − wA)) .

(6.1)

We make the coordinate transformation

x =
2

c
(v − g(w, ε))− (u− uA − h(w, ε))

y =
4f ′′(uA)

c2f ′(uA)
(w − wA)

z = u− uA − h(w, ε),

(6.2)

and rescale time by −(c/2) to arrive at the system

ẋ = −x+ yz +O(z2, εz, y2z)

ż = −x− z

ẏ = ε (−k +O(y, z, ε)) ,

(6.3)
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where

k =
4f ′′(uA)

c2f ′(uA)
> 0. (6.4)

Note that the flow direction has been reversed. We make a final coordinate change

y → y +O(y2, ε) to simplify the equation for ẋ and arrive at the system

ẋ = −x+ yz +O(z2)

ż = −x− z

ẏ = ε (−k +O(x, y, z, ε)) ,

(6.5)

We consider solutions entering via the section

Σin
A = {(x, y, z, ε) : x = ρ4, |y| ≤ ρ2, |z| ≤ ρ3µ, 0 < ε ≤ ρ3δ}. (6.6)

Such solutions exit via the section

Σout
A = {(x, y, z, ε) : |x| ≤ ρ4, y = −ρ2, |z| ≤ ρ3µ, 0 < ε ≤ ρ3δ}. (6.7)

The goal of this section is to prove Proposition 5.4.4, that is, we track Ŵs,`
ε (c, a)

near the Airy point until it exits via Σout
A , where we then use an exchange lemma

type argument to track the rest of the way to Σm. To start, we have the following

regarding the entry of the manifolds Ŵs,`
ε (c, a), Ŵs,r

ε (c, a) in Σin
A .

Lemma 5.6.1. For each sufficiently small ∆y > 0 there exists ε0 > 0 and sufficiently

small choice of the intervals Ic×Ia, such that for (c, a, ε) ∈ Ic×Ia×(0, ε0), the man-

ifolds Ŵs,`
ε (c, a), Ŵs,r

ε (c, a) intersect Σin
A in smooth curves z = zs,`ε (y; c, a), zs,rε (y; c, a)
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for |y| ≤ ∆y. Furthermore, there exists a constant κ = κ(ρ) > 0 such that

zs,rε (y; c, a)− zs,`ε (y; c, a) > ρ3κ(ρ) (6.8)

uniformly in |y| ≤ ∆y.

Proof. Using Proposition 5.3.2, we find that for (c, a, ε) = (1/
√

2, 0, 0), the front ϕ`

is asymptotic (in forward time according to 6.5) to the Airy point (x, y, z) = (0, 0, 0)

and satisfies

x(s) = 2
√

2B`e
−s
2
√
2 +O(s2e

−s√
2 )

z(s) = (A` −B`s)e
−s
2
√
2 +O(s2e

−s√
2 ).

(6.9)

Therefore, ϕ` intersects Σin
A at the point (x, y, z) = (ρ4, 0, z`0) where

z`0 = ρ4

(
A`

2
√

2B`

+ log

(
ρ4

2
√

2B`

))
+ o(ρ4)

= 4ρ4 log

(
ρ

2
√

2B`

)
+O(ρ4).

(6.10)

Therefore, by a regular perturbation argument, we have for sufficiently small ∆y and

any (c, a) ∈ Ic × Ia, for |y| ≤ ∆y, the manifold Ws,`
0 (c, a) intersects Σin

A in a curve

z = zs,`0 (y; c, a) given by

zs,`0 (y; c, a) = z`0 +O(y, (c− c∗), a). (6.11)

By using standard geometric singular perturbation theory, for sufficiently small ε >

0, this manifold perturbs to a locally invariant manifold Ws,`
ε (c, a) which intersects

Σin
A in a smooth curve z = zs,`ε (y; c, a) given by

zs,`ε (y; c, a) = z`0 +O(y, (c− c∗), a, ε), (6.12)
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for |y| ≤ ∆y. We similarly obtain that Ws,r
ε (c, a) intersects Σin

A in a smooth curve

z = zs,rε (y; c, a) given by

zs,rε (y; c, a) = zr0 +O(y, (c− c∗), a, ε), (6.13)

for |y| ≤ ∆y. Using Proposition 5.3.2, and taking ∆y � ρ4 sufficiently small, we

deduce that there exists κ = κ(ρ) > 0 such that

zs,rε (y; c, a)− zs,`ε (y; c, a) > ρ3κ(ρ) (6.14)

uniformly in |y| ≤ ∆y.

By taking ∆y := 2k∆w sufficiently small, we reduce the study of Proposition 5.4.4

to just understanding the passage of trajectories on Ws,`
ε (c, a) which enter a neigh-

borhood of the Airy point in backwards time in a manner governed by Lemma 5.6.1;

these solutions interact with the flow near the Airy point in a nontrivial manner

(see Figure 5.15). All solutions on Ws,`
ε (c, a) entering a neighborhood of Mm

ε (c, a)

in backwards time at heights lower than this remain in Ws,`
ε (c, a) until arriving at

the section Σm due to the nature of the construction of this manifold in §5.3.2.

To accomplish this, we need to understand detailed properties of the flow of (6.5).

Ultimately, we will show that the flow of (6.5) is qualitatively similar to the flow of

the simpler system

ẋ = −x+ yz

ż = −x− z

ẏ = −ε,

(6.15)

which are essentially the Airy equations on a slow timescale coupled with exponential
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y

Mm
✏

Ws,`
✏

⌃out
A

⌃in
A

cWs,`
✏

z̃

x̃

��y

�⇢2

x̃t

yt

Figure 5.15: Shown is the schematic of the flow near the Airy point. Note that the flow direction
corresponds to that of (6.5), which is the reverse of (1.1).

decay. The solutions of this system are given in terms of the Airy functions Ai,Bi,

and their derivatives, which are shown in Figure 5.16.

We begin by solving the simpler system (6.15) to demonstrate why it is reason-

able to expect that the transversality properties of Proposition 5.4.4 should indeed

hold. Then we will use blow up techniques to study (6.5) directly to show that

Proposition 5.4.4 continues to be valid when including the higher order terms.

5.6.1 A simpler system

In this section, we consider the simpler system (6.15), which are essentially the Airy

equations on a slow timescale coupled with exponential decay. To see this, we rescale



275

-0.5

0

0.5

1

-10 -5 0 5y

Ai(y)

Bi(y)

(a) The Airy functions Ai(y) (blue)
and Bi(y) (dashed red).
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(b) The derivatives Ai′(y) (blue) and
Bi′(y) (dashed red) of the Airy func-
tions Ai(y),Bi(y).

Figure 5.16: Shown are graphs of the Airy functions Ai,Bi and their derivatives.

(x, z) = (e−tx̄, e−tz̄) and obtain the equations

˙̄x = yz̄

˙̄z = −x̄

ẏ = −ε.

(6.16)

The solutions of this system can be given explicitly in terms of Airy functions Ai,Bi

(see Figure 5.16)

x̄(t) = π
[(

Ai
(
− y0

ε2/3

)
Bi′
(
− y0

ε2/3
+ ε1/3t

)
− Bi

(
− y0

ε2/3

)
Ai′
(
− y0

ε2/3
+ ε1/3t

))
x0

+ ε1/3
(

Ai′
(
− y0

ε2/3

)
Bi′
(
− y0

ε2/3
+ ε1/3t

)
− Bi′

(
− y0

ε2/3

)
Ai′
(
− y0

ε2/3
+ ε1/3t

))
z0

]

z̄(t) =
π

ε1/3

[(
Bi
(
− y0

ε2/3

)
Ai
(
− y0

ε2/3
+ ε1/3t

)
− Ai

(
− y0

ε2/3

)
Bi
(
− y0

ε2/3
+ ε1/3t

))
x0

+ ε1/3
(

Bi′
(
− y0

ε2/3

)
Ai
(
− y0

ε2/3
+ ε1/3t

)
− Ai′

(
− y0

ε2/3

)
Bi
(
− y0

ε2/3
+ ε1/3t

))
z0

]

y(t) = y0 − εt,

(6.17)
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where y0 = y(0), x0 = x̄(0) = x(0), and z0 = z̄(0) = z(0). This solution reaches

y = −ρ2 at time T = y0+ρ2

ε
with

x(T ) = πe−
y0+ρ

2

ε

[(
Ai
(
− y0

ε2/3

)
Bi′
(
ρ2

ε2/3

)
− Bi

(
− y0

ε2/3

)
Ai′
(
ρ2

ε2/3

))
x0

+ ε1/3

(
Ai′
(
− y0

ε2/3

)
Bi′
(
ρ2

ε2/3

)
− Bi′

(
− y0

ε2/3

)
Ai′
(
ρ2

ε2/3

))
z0

]

z(T ) =
π

ε1/3
e−

y0+ρ
2

ε

[(
Bi
(
− y0

ε2/3

)
Ai

(
ρ2

ε2/3

)
− Ai

(
− y0

ε2/3

)
Bi

(
ρ2

ε2/3

))
x0

+ ε1/3

(
Bi′
(
− y0

ε2/3

)
Ai

(
ρ2

ε2/3

)
− Ai′

(
− y0

ε2/3

)
Bi

(
ρ2

ε2/3

))
z0

]

y(T ) = −ρ2.

(6.18)

Using asymptotic properties of Airy functions [1, §10.4], we have the following

Lemma 5.6.2. The Airy functions Ai(y),Bi(y) have the following asymptotics for

all sufficiently large y � 1

Ai(y) =
e−

2
3
y3/2

2
√
πy1/4

(
1− 15

144y3/2
+O

(
y−3
))

,

Ai′(y) =
−y1/4e−

2
3
y3/2

2
√
π

(
1 +

21

144y3/2
+O

(
y−3
))

,

Bi(y) =
e

2
3
y3/2

√
πy1/4

(
1 +

15

144y3/2
+O

(
y−3
))

,

Bi′(y) =
y1/4e

2
3
y3/2

√
π

(
1 +

21

144y3/2
+O

(
y−3
))

.

(6.19)

Considering the linearization of (6.15) for ε = 0 in the plane y = −ρ2, we see

that there are two eigenvalues λ = −1± ρ with corresponding eigenvectors (∓ρ, 1).

We now change coordinates x̃ = x − ρz, z̃ = x + ρz and using Lemma 5.6.2 under

the assumption that 0 < ε2/3 � ∆y � ρ2 � 1, we can expand the terms dependent
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on the fixed argument ρ2

ε2/3
to obtain

x̃(T ) =
ρ1/2
√
π

ε1/6
e−

y0+ρ
2

ε

[(
x0 Ai

(
− y0

ε2/3

)
+ ε1/3z0 Ai′

(
− y0

ε2/3

))
e

2ρ3

3ε (2 +O(ε))

+
(
x0 Bi

(
− y0

ε2/3

)
+ ε1/3z0 Bi′

(
− y0

ε2/3

))
e−

2ρ3

3ε

(
ε

8ρ3
+O

(
ε2
))]

z̃(T ) =
ρ1/2
√
π

ε1/6
e−

y0+ρ
2

ε

[(
x0 Ai

(
− y0

ε2/3

)
+ ε1/3z0 Ai′

(
− y0

ε2/3

))
e

2ρ3

3ε

(
ε

24ρ3
+O

(
ε2
))

+
(
x0 Bi

(
− y0

ε2/3

)
+ ε1/3z0 Bi′

(
− y0

ε2/3

))
e−

2ρ3

3ε (1 +O(ε))

]

y(T ) = −ρ2.

(6.20)

We now consider solutions on Ŵs,`
ε (c, a) which enter via Σin

A , with (x, y, z)(0) =

(x0, y0, z0) = (ρ4, y0, z
s,`
ε (y0; c, a)), where zs,`ε (y0; c, a) < 0, so that Ŵs,`

ε (c, a) is pa-

rameterized in Σin
A by |y0| ≤ ∆y. Using the above analysis, Ŵs,`

ε (c, a) exits via Σout
A

in a curve (x̃, z̃) = (x̃`, z̃`)(y0) given by

x̃`(y0) =
ρ1/2
√
π

ε1/6
e−

y0+ρ
2

ε X̃`(y0)

z̃`(y0) =
ρ1/2
√
π

ε1/6
e−

y0+ρ
2

ε Z̃`(y0)

(6.21)

where

X̃`(y0) =
(
ρ4 Ai

(
− y0

ε2/3

)
+ ε1/3zs,`ε (y0) Ai′

(
− y0

ε2/3

))
e

2ρ3

3ε (2 +O(ε))

+
(
ρ4 Bi

(
− y0

ε2/3

)
+ ε1/3zs,`ε (y0) Bi′

(
− y0

ε2/3

))
e−

2ρ3

3ε

(
ε

8ρ3
+O

(
ε2
))

Z̃`(y0) =
(
ρ4 Ai

(
− y0

ε2/3

)
+ ε1/3zs,`ε (y0) Ai′

(
− y0

ε2/3

))
e

2ρ3

3ε

(
ε

24ρ3
+O

(
ε2
))

+
(
ρ4 Bi

(
− y0

ε2/3

)
+ ε1/3zs,`ε (y0) Bi′

(
− y0

ε2/3

))
e−

2ρ3

3ε (1 +O(ε)) .

(6.22)

We now want to understand the transversality of this curve with respect to the fibers
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of the manifold Ws,`
ε (c, a) in the section Σout

A . Then, using the exchange lemma, we

deduce that the transversality holds in the section Σm as well. We note that for

trajectories entering Σin
A for y < −∆y, this transversality is clear as due to the

construction of the manifold Ws,`
ε (c, a) in §5.3.2, the forward/backward evolution of

Ws,`
ε (c, a) coincide in this region.

Hence we are primarily concerned with the trajectories above, which conveniently

we have explicitly computed for y0 > −∆y. This is precisely the regime in which

the manifolds Ws,`
ε (c, a) and Ŵs,`

ε (c, a) begin to deviate. Under the transformation

to the ∼ coordinates corresponding to the strong/weak eigenspaces of the lineariza-

tion of (6.15), the manifold Ws,`
ε (c, a) will manifest as a curve in Σout

A aligned ap-

proximately with the subspace z̃ = 0 and its fibers will manifest as curves aligned

approximately with x̃ ≈ const. It is clear from the expressions above that the same

does not hold for Ŵs,`
ε (c, a) when y0 gets too large, as the Airy functions transition

to oscillatory behavior.

We compute the derivatives

(x̃`)′(y0) = −ρ
1/2
√
π

ε7/6
e−

y0+ρ
2

ε

(
X̃`(y0) + ε(X̃`)′(y0)

)

(z̃`)′(y0) = −ρ
1/2
√
π

ε7/6
e−

y0+ρ
2

ε

(
Z̃`(y0) + ε(Z̃`)′(y0)

)
,

(6.23)

and hence Ŵs,`
ε (c, a) can be written as a graph z̃ = z̃(x̃) with

dz̃

dx̃
=

(z̃`)′(y0)

(x̃`)′(y0)
=

Z̃`(y0) + ε(Z̃`)′(y0)

X̃`(y0) + ε(X̃`)′(y0)
, (6.24)

provided that the denominator does not vanish. Points at which the denominator

vanishes are essentially those at which this curve becomes tangent to the fibers x̃ ≈

const of Ws,`
ε (c, a). Hence we reduce our study to finding zeros of this expression.
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This will be carried out in detail in the following sections, but we note that they

occur approximately at the zeros of X̃`(y0), which are approximately the zeros of

Ai
(
−y0/ε

2/3
)

for all sufficiently small ε > 0. Hence we are primarily concerned with

studying the Airy function Ai. We have the following [1, §10.4]

Lemma 5.6.3. There exists y∗ < 0 such that the Airy function Ai satisfies the

following

(i) Ai(y∗) = 0

(ii) Ai′(y∗) > 0

(iii) Ai(y) > 0 for all y > y∗.

We can therefore find the first zero of the denominator or equivalently, the first

turning point of Ŵs,`
ε (c, a), which occurs when y0 = yt0 ≈ −y∗ε2/3 > 0. Therefore

Ŵs,`
ε (c, a) is transverse to the fibers of Ws,`

ε (c, a) in Σout
A up to the fiber passing

through the point (x̃t, z̃(x̃t)) = (x̃`(yt0 ), z̃`(yt0 )). A schematic of this result is depict-

ing in Figure 5.15.

Using the exchange lemma, we continue to track Ŵs,`
ε (c, a) backwards from Σout

A

to the section Σm and deduce that this transversality holds there also.

In the coming sections, we consider the full system (6.5), and we make the above

computations precise in this context.
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5.6.2 Blow up transformation

To study the flow of the full equations (6.5)

ẋ = −x+ yz +O(z2)

ż = −x− z

ẏ = ε (−k +O(x, y, z, ε)) ,

we will use blow up techniques. The blow up is a rescaling which blows up the

degenerate point (x, y, z, ε) = (0, 0, 0, 0) to a 3-sphere. The blow up transformation

is given by

x = r̄4x̄, y = r̄2ȳ, z = r̄3z̄, ε = r̄3ε̄ . (6.25)

Defining BA = S3 × [0, r̄0] for some sufficiently small r̄0, we consider the blow

up as a mapping BA → R4 with (x̄, ȳ, z̄, ε̄) ∈ S3 and r̄ ∈ [0, r̄0]. The point

(x, y, z, ε) = (0, 0, 0, 0) is now represented as a copy of S3 (i.e. r̄ = 0) in the blow

up transformation. To study the flow on the manifold BA, there are three relevant

coordinate charts. The first is the chart K1 which uses the coordinates

x = r4
1, y = r2

1y1, z = r3
1z1, ε = r3

1ε1 , (6.26)

the second chart K2 uses the coordinates

x = r4
2x2, y = r2

2y2, z = r3
2z2, ε = r3

2 , (6.27)

and the third chart K3 uses the coordinates

x = r4
3x3, y = −r2

3, z = r3
3z3, ε = r3

3ε3 , (6.28)
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With these three sets of coordinates, a short calculation gives the following.

Lemma 5.6.4. The transition map κ12 : K1 → K2 between the coordinates in K1

and K2 is given by

x2 =
1

ε
4/3
1

, y2 =
y1

ε
2/3
1

, z2 =
z1

ε1

, r2 = r1ε
1/3
1 , for ε1 > 0, (6.29)

the transition map κ13 : K1 → K3 between the coordinates in K1 and K3 is given by

x3 =
1

y2
1

, r3 = r1(−y1)1/2, z3 =
z1

(−y1)3/2
, ε3 =

ε1

(−y1)3/2
, for y1 < 0, (6.30)

and the transition map κ23 : K2 → K3 between the coordinates in K2 and K3 is given

by

x3 =
x2

y2
2

, r3 = r2(−y2)1/2, z3 =
z2

(−y2)3/2
, ε3 =

1

(−y2)3/2
, for y2 < 0. (6.31)

Solutions on Ŵs,`
ε (c, a) will enter via the section Σin

A and exit via Σout
A . During

this passage, it will be necessary to track different parts of the manifold Ŵs,`
ε (c, a)

in the different charts K1,K2,K3. A diagram of the sequence through which the

solutions will be tracked is shown in Figure 5.17. We begin in §5.6.3 with a study of

the chart K1, where all solutions enter via the section Σin
A .
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⌃in
A = ⌃in

1

⌃12

⌃13

⌃14

⌃23

⌃out
3 = ⌃out

A

K2
K3K1

(i)

(ii)
(iii)

(iv)

(v)

(vi)

(i) (ii) (iii) (iv) (v) (vi)
K1 K1 K1 K2 K3 K3

§5.6.3 §5.6.3 §5.6.3 §5.6.4 §5.6.5 §5.6.5

Figure 5.17: Shown is the sequence of sections through which the manifold Ŵs,`
ε (c, a) will be

tracked. The table displays the charts and sections in the text in which the various transitions will
be studied.

5.6.3 Dynamics in K1

In the K1 coordinates, the equations are given by

ṙ1 = −1

4
r1 +

1

4
r2

1y1z1 +O
(
r3

1z
2
1

)

ż1 = −1

4
z1 − r1 −

3

4
r1y1z

2
1 +O

(
r2

1z
3
1

)

ẏ1 =
1

2
y1 − kr1ε1 −

1

2
r1y

2
1z1 +O

(
r2

1y1z
2
1 , r

5
1ε1, r

3
1ε1y1, r

4
1ε1z1, r

4
1ε

2
1

)

ε̇1 =
3

4
ε1 −

3

4
r1y1z1ε1 +O

(
r2

1z
2
1ε1

)
.

(6.32)

In these coordinates, the section Σin
A is given by

Σin
1 = {(r1, y1, z1, ε1) : r1 = ρ, |y1| ≤ 1, |z1| ≤ µ, 0 < ε1 ≤ δ}. (6.33)

Define the set

D1 = {(r1, y1, z1, ε1) : 0 ≤ r1 ≤ ρ, |y1| ≤ 1, |z1| ≤ µ, 0 ≤ ε1 ≤ δ}. (6.34)
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Figure 5.18: Shown is the setup in the chart K1.

Under the flow of (6.32), any solution starting in Σin
1 exits D1 via one of the sections

Σ12 = {(r1, y1, z1, ε1) : r1 ≤ ρ, |y1| ≤ 1, |z1| ≤ µ, ε1 = δ} (6.35)

Σ13 = {(r1, y1, z1, ε1) : r1 ≤ ρ, y1 = −1, |z1| ≤ µ, 0 < ε1 ≤ δ} (6.36)

Σ14 = {(r1, y1, z1, ε1) : r1 ≤ ρ, y1 = 1, |z1| ≤ µ, 0 < ε1 ≤ δ}. (6.37)

The setup in the chart K1 is shown in Figure 5.18 It turns out that we only need

to consider those solutions exiting via Σ12 and Σ13, which will be tracked in the

charts K2 and K3, respectively (see Figure 5.17). Solutions exiting via Σ14 will not

be analyzed.

The following result gives estimates for solutions on the manifolds Ŵs,`
ε (c, a) and

Ŵs,r
ε (c, a) which exit via the sections Σ12 and Σ13.

Proposition 5.6.5. For each sufficiently small ρ, δ > 0, there exists ε0 > 0 and

sufficiently small choice of the intervals Ic, Ia such that the following holds. For

each sufficiently small ∆y1 > 0 and each (c, a, ε) ∈ Ic × Ia × (0, ε0), the manifolds

Ŵs,`
ε (c, a) and Ŵs,r

ε (c, a) intersect Σin
1 in smooth curves z1 = z`1,0(y1; c, a, ε) and

z1 = zr1,0(y1; c, a, ε) for |y1| ≤ ∆y1. Furthermore, there exists C > 0 independent of
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c, a, ε and 0 < κ(ρ) ≤ C0ρ |log ρ| where C0 is independent of c, a, ε, ρ, δ such that for

any (c, a, ε) ∈ Ic × Ia × (0, ε0), the following hold

(i) The parts of the manifolds Ŵs,`
ε (c, a), Ŵs,r

ε (c, a) which exit via Σ13 intersect Σ13

in curves z1 = z`,r1 (r1) which satisfy
∣∣∣dz

`,r
1

dr1

∣∣∣ ≤ C| log ε| uniformly in y1.

(ii) The parts of the manifolds Ŵs,`
ε (c, a), Ŵs,r

ε (c, a) which exit via Σ12 intersect Σ12

in curves z1 = z`,r1 (y1) which satisfy

∣∣∣z`,r1

∣∣∣ ≤ Cε1/3| log ε|
∣∣∣∣∣
dz`,r1

dy1

∣∣∣∣∣ ≤ Cε| log ε|
(6.38)

and

0 < κ(ρ)ε1/3 < zr1(y1)− z`1(y1) < Cε1/3| log ε|. (6.39)

uniformly in y1.

Proof. We focus on the manifold Ŵs,`
ε (c, a); the computations for Ŵs,r

ε (c, a) are sim-

ilar.

First we consider the function z`1,0(y1; c, a, ε). By taking ∆y1 � ρ2, for any

sufficiently small ρ we have that

sup
|y1|≤∆y1

|z`1,0(y1; c, a, ε)| ≤ C0ρ| log ρ|

sup
|y1|≤∆y1

∣∣∣∣∣
dz`1,0(y1; c, a, ε)

dy1

∣∣∣∣∣ ≤
C0

ρ
,

for some C0 independent of (c, a, ε, ρ, δ), provided ε and the intervals Ic, Ia are suffi-
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ciently small. This follows from Lemma 5.6.1 by taking ρ2∆y1 = ∆y � ρ4.

To prove (i), for each sufficiently small |y1,0| ≤ ∆y1 , we consider solutions starting

in Σin
A with (r1, z1, y1, ε1)(0) = (ρ, z`1,0(y1,0), y1,0, ε/ρ

3) which exit via Σ13 at time

T ∗1 (y1,0; c, a, ε). As the solution exits via Σ13, we must have y1(T ∗1 ) = −1 and ε/ρ3 <

ε1(T ∗1 ) = ε∗1 ≤ δ.

We define Φ1(t, s) to be the linear evolution of the constant coefficient system




ṙ1

ż1


 =



−1/4 0

−1 −1/4







r1

z1


 . (6.40)

We set

U1 =




r1

z1


 (6.41)

U1,0 =




r1,0

z`1,0(y1,0)


 , (6.42)

and we rewrite (6.32) as the integral equation

U1(t) = Φ1(t, 0)U1,0 +

∫ t

0

Φ1(t, s)gU1(r1(s), z1(s), y1(s), ε1(s))ds

=: FU1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)

y1(t) = −e 1
2

(t−T ∗1 ) +

∫ t

T ∗1

e
1
2

(t−s)gy1(r1(s), z1(s), y1(s), ε1(s))ds

=: Fy1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)

ε1(t) =
ε

ρ3
e

3
4
t +

∫ t

0

e
3
4

(t−s)gε1(r1(s), z1(s), y1(s), ε1(s))ds

=: Fε1(U1, y1, ε1, U1,0, T
∗
1 ; c, a),

(6.43)
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where

gU1(r1, z1, y1, ε1) =




1
4
r2

1y1z1 +O (r3
1z

2
1)

−3
4
r1y1z

2
1 +O (r2

1z
3
1)




= O
(
|U1|3

)

gy1(r1, z1, y1, ε1) = −kr1ε1 −
1

2
r1y

2
1z1 +O

(
r2

1y1z
2
1 , r

5
1ε1, r

3
1ε1y1, r

4
1ε1z1, r

4
1ε

2
1

)

= O
(
|U1||ε1|+ |U1|2|y1|

)

gε1(r1, z1, y1, ε1) = −3

4
r1y1z1ε1 +O

(
r2

1z
2
1ε1

)

= O
(
|U1|2|ε1|

)
,

(6.44)

and we assume T ∗1 ≥ 0 is such that
∣∣∣ ερ3 e

3
4
T ∗1

∣∣∣ ≤ 2δ. We define the spaces

V −1
4

=

{
U1 : [0, T ∗1 ]→ R2 : ‖U1‖−1

4

= sup
t∈[0,T ∗1 ]

e
1
4
t

1 + |t| |U1(t)| <∞
}

V +
1
2

=

{
y1 : [0, T ∗1 ]→ R : ‖y1‖+

1
2

= sup
t∈[0,T ∗1 ]

e
1
2

(T ∗1−t)|y1(t)| <∞
}

V +
3
4

=

{
ε1 : [0, T ∗1 ]→ R : ‖ε1‖+

3
4

= sup
t∈[0,T ∗1 ]

e
3
4

(T ∗1−t)|ε1(t)| <∞
}
,

(6.45)

and search for solutions (U1, y1, ε1) ∈ V −1
4

× V +
1
2

× V +
3
4

to (6.43). We note that

‖U1‖∞ ≤ ‖U1‖−1
4

, ‖y1‖∞ ≤ ‖y1‖+
1
2

, ‖ε1‖∞ ≤ ‖ε1‖+
3
4

, (6.46)

where ‖X‖∞ = supt∈[0,T ∗1 ] |X(t)| denotes the C0-norm.

First we show that for each fixed (U1,0, T
∗
1 ), the mapping

(U1, y1, ε1)→ F1(U1, y1, ε1, U1,0, T
∗
1 ; c, a), (6.47)
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defined by

F1(U1, y1, ε1, U1,0, T
∗
1 ; c, a) =




FU1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)

Fy1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)

Fε1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)




(6.48)

maps the space V −1
4

× V +
1
2

× V +
3
4

into itself. We compute

‖FU1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)‖−1

4

= sup
t∈[0,T ∗1 ]

e
1
4
t

1 + |t|

(
Φ1(t, 0)U1,0 +

∫ t

0

Φ1(t, s)gU1(r1(s), z1(s), y1(s), ε1(s))ds

)

≤ C|U1,0|+ C
(
‖U1‖−1

4

)3

,

(6.49)

where we used (6.46) and the fact that |Φ1(t, s)| ≤ |t− s|e− 1
4

(t−s).

Similarly, we compute

‖Fy1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)‖+

1
2

= sup
t∈[0,T ∗1 ]

e
1
2

(T ∗1−t)

(
e

1
2

(t−T ∗1 ) +

∫ t

T ∗1

e
1
2

(t−s)gy1(r1(s), z1(s), y1(s), ε1(s))ds

)

≤ 1 + Ce
1
2
T ∗1

∫ T ∗1

0

e−
1
2
s
(
|U1(s)||ε1(s)|+ |U1(s)|2|y1(s)|

)
ds

≤ 1 + C

(
‖U1‖−1

4

‖ε1‖+
3
4

+
(
‖U1‖−1

4

)2

‖y1‖+
1
2

)
,

(6.50)
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and

‖Fε1(U1, y1, ε1, U1,0, T
∗
1 ; c, a)‖+

3
4

= sup
t∈[0,T ∗1 ]

e
3
4

(T ∗1−t)
(
ε

ρ3
e

3
4
t +

∫ t

0

e
3
4

(t−s)gε1(r1(s), z1(s), y1(s), ε1(s))ds

)

≤
∣∣∣∣
ε

ρ3
e

3
4
T ∗1

∣∣∣∣+ Ce
3
4
T ∗1

∫ T ∗1

0

e−
3
4
s
(
|U1(s)|2|ε1(s)|

)
ds

≤
∣∣∣∣
ε

ρ3
e

3
4
T ∗1

∣∣∣∣+ C
(
‖U1‖−1

4

)2

‖ε1‖+
3
4

.

(6.51)

Provided ρ, δ are sufficiently small, for each sufficiently small U1,0 and for
∣∣∣ ερ3 e

3
4
T ∗1

∣∣∣ ≤

2δ sufficiently small, that is T ∗1 is not too large, we can solve (6.43) to find a unique

solution satisfying

‖U1‖−1
4

= O(|U1,0|)

‖y1‖+
1
2

= 1 +O (|U1,0|(δ + |U1,0|))

‖ε1‖+
3
4

= O(δ)

(6.52)

By our assumption that we consider only solutions exiting via Σ13, and so ε1 ≤ δ,

the time T ∗1 satisfies 0 ≤ T ∗1 ≤ C(ρ, δ)| log ε| for all sufficiently small ε > 0.

To obtain estimates on the derivatives of the solutions with respect to U1,0, c, a,

we consider the variational equation

˙dU1 =



−1/4 0

−1 −1/4


 dU1 + dgU1(r1, z1, y1, ε1)

ḋy1 =
1

2
dy1 + dgy1(r1, z1, y1, ε1)

ḋε1 =
3

4
dε1 + dgε1(r1, z1, y1, ε1),

(6.53)
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where

dgU1(r1, z1, y1, ε1) = O
(
|U1|2dU1, |U1|3(|dy1|+ |dε1|), |U1|3

)

dgy1(r1, z1, y1, ε1) = O
(
|U1|dε1, (|ε1|+ |U1|)dU1,

(|U1|2 + |U1||ε1|)|dy1|, |U1|2|y1|, |U1||ε1|
)

dgε1(r1, z1, y1, ε1) = O
(
|U1||ε1|dU1, |U1|2dε1, |U1|2|ε1|dy1, |U1|2|ε1|

)
.

(6.54)

Proceeding as above, we can rewrite this as an integral equation; using the es-

timates obtained for the solutions (U1, y1, ε1) and noting that the derivatives of k

with respect to (c, a) are uniformly bounded, we can solve for the derivatives of the

solutions on the same spaces and obtain

‖DνU1‖−1
4

, ‖Dνy1‖+
1
2

, ‖Dνε1‖+
3
4

≤ C, (6.55)

ν = U1,0, c, a, uniformly in (U1,0, T
∗
1 , c, a, ε) for all sufficiently small ρ, δ.

We also need estimates on the derivatives with respect to T ∗1 . First, we show

that these derivatives exist; then we show that they are in fact bounded uniformly

in T ∗1 . To compute the derivative with respect to T ∗1 at some T ∗1 = T0, we rescale

time by t = (1 + ω)τ , which results in the differential equation

˙̂
X = (1 + ω)F (X̂), (6.56)

where X = (r1, z1, y1, ε1) and F (X) denotes the RHS of (6.32). Proceeding as above,

we can now find solutions to this new system, keeping T0 fixed and allowing ω to

vary as a small parameter, with |ω| ≤ ω0, where ω0 is sufficiently small. We obtain
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a new integral equation

U1(t) = Φ1,ω(t, 0)U1,0 +

∫ t

0

Φ1,ω(t, s)gU1(r1(s), z1(s), y1(s), ε1(s))ds

y1(t) = −e 1
2

(1+ω)(t−T0) +

∫ t

T0

e
1
2

(1+ω)(t−s)gy1(r1(s), z1(s), y1(s), ε1(s))ds

ε1(t) =
ε

ρ3
e

3
4

(1+ω)t +

∫ t

0

e
3
4

(1+ω)(t−s)gε1(r1(s), z1(s), y1(s), ε1(s))ds,

(6.57)

where the functions gU1 , gy1 , gε1 are defined as in (6.44), and Φ1,ω denotes the evolu-

tion of the constant coefficient system




ṙ1

ż1


 =



−(1 + ω)/4 0

−(1 + ω) −(1 + ω)/4







r1

z1


 . (6.58)

We now slightly decrease the exponential weights and solve (6.57) for (U1, y1, ε1) ∈

V −1
4

(1−ω0)
×V +

1
2

(1−ω0)
×V +

3
4

(1−ω0)
, where the spaces V ±η are defined analogously to (6.45).

Further, as above we can use the corresponding variational equation to estimate the

derivatives of the solution with respect to the parameters, including ω, noting that

they are bounded uniformly in T0.

Let X̂(τ ;T0, ω, U1,0, c, a) = (U1, y1, ε1)(τ ;T0, ω, U1,0, c, a) denote a solution to (6.57),

and let X(t;T ∗1 , U1,0, c, a) = (U1, y1, ε1)(t;T ∗1 , U1,0, c, a) denote a solution to the orig-

inal equation (6.43). By uniqueness, we have that X̂(T0, ω, U1,0, c, a) = X((1 +

ω)T0, U1,0, c, a). We now differentiate

DωX̂(τ ;T0, ω, U1,0, c, a) = τẊ((1 + ω)τ ; (1 + ω)T0, U1,0, c, a)

+ T0DT ∗1
X((1 + ω)τ ; (1 + ω)T0, U1,0, c, a),

(6.59)
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from which we deduce that the derivative DT ∗1
X exists and is bounded in the norms

‖DT ∗1
U1‖−1

4
(1−ω0)

, ‖DT ∗1
y1‖+

1
2

(1−ω0)
, ‖DT ∗1

ε1‖+
3
4

(1−ω0)
≤ C (6.60)

uniformly in (U1,0, T
∗
1 , c, a, ε) for all sufficiently small ρ, δ.

We can now write the unique solution of (6.43) satisfying

r1(0) = ρ

z1(0) = z`1,0(y1,0),

(6.61)

for sufficiently small 0 > y1,0 > −∆y1 so that z`1(y1,0) = O(ρ log ρ). Recalling

U1 = (r1, z1), we have that this solution is given by




r1(t)

z1(t)


 =




ρe−
1
4
t

z`1,0(y1,0)e−
1
4
t + ρte−

1
4
t




+

∫ t

0

Φ1(t, s)gU1(r1(s), z1(s), y1(s), ε1(s))ds,

(6.62)

where

y1,0 = −e− 1
2
T ∗1 +

∫ 0

T ∗1

e−
1
2
sgy1(r1(s), z1(s), y1(s), ε1(s))ds. (6.63)

We consider only T ∗1 large enough so that y1,0 ≥ −∆y1 , and we recall that ∆y1 < ρ2.

This gives

−ρ2 ≤ −e− 1
2
T ∗1 +

∫ 0

T ∗1

e−
1
2
sgy1(r1(s), z1(s), y1(s), ε1(s))ds

= −e− 1
2
T ∗1 +O

(
e−

1
2
T ∗1 ‖U1‖−1/4

(
‖ε1‖+

3/4 + ‖U1‖−1/4
))

= −e− 1
2
T ∗1
(
1 +O(ρ2, ρδ)

)
,

(6.64)
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so that

e−
1
2
T ∗1 ≤ ρ2

(
1 +O

(
ρ2, ρδ

))
, (6.65)

and

dy1,0

dT ∗1
=

1

2
e−

1
2
T ∗1 + e−

1
2
T ∗1 gy1(r1(T ∗1 ), z1(T ∗1 ), y1(T ∗1 ), ε1(T ∗1 ))

+

∫ 0

T ∗1

e−
1
2
s d

dT ∗1
[gy1(r1(s), z1(s), y1(s), ε1(s))]ds

= e−
1
2
T ∗1

(
1

2
+O (ρ log ρ, δ)

)

= ρ2 (1 +O (ρ log ρ, δ))

(6.66)

where we used (6.44), (6.60), and (6.65).

We have




r1(T ∗1 )

z1(T ∗1 )


 =




ρe−
1
4
T ∗1

z`1,0(y1,0)e−
1
4
T ∗1 + ρT ∗1 e

− 1
4
T ∗1




+

∫ T ∗1

0

Φ1(T ∗1 , s)gU1(r1(s), z1(s), y1(s), ε1(s))ds,

(6.67)

and we now compute

d

dT ∗1




r1(T ∗1 )

z1(T ∗1 )




=




−ρ
4
e−

1
4
T ∗1

(
− z`1,0(y1,0)

4
+ (z`1,0)′(y1,0)dy1,0

dT ∗1
+ ρ− ρ

4
T ∗1

)
e−

1
4
T ∗1




+ gU1(r1(T ∗1 ), z1(T ∗1 ), y1(T ∗1 ), ε1(T ∗1 ))

+

∫ T ∗1

0

d

dT ∗1
[Φ1(T ∗1 , s)gU1(r1(s), z1(s), y1(s), ε1(s))] ds,

(6.68)
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where

z`1,0(y1,0) = O(ρ log ρ)

(z`1,0)′(y1,0)
dy1,0

dT ∗1
= O

(
1

ρ
e−

1
2
T ∗1 (1 +O(ρ log ρ, δ))

)
= O(ρ),

by (6.66), and

gU1(r1(T ∗1 ), z1(T ∗1 ), y1(T ∗1 ), ε1(T ∗1 )) = O
(

(ρ log ρ)3e−
3
4
T ∗1

)

∫ T ∗1

0

d

dT ∗1
[Φ1(T ∗1 , s)gU1(r1(s), z1(s), y1(s), ε1(s))] ds =




O
(

(ρ log ρ)2e−
1
4
T ∗1

)

O
(
T ∗1 (ρ log ρ)2e−

1
4
T ∗1

)



,

by (6.44), (6.52), and (6.60).

Therefore we have that

dr1(T ∗1 )

dT ∗1
=
(
−ρ

4
+O

(
(ρ log ρ)2

))
e−

1
4
T ∗1

dz1(T ∗1 )

dT ∗1
= (O (ρ log ρ, (1 + T ∗1 )ρ)) e−

1
4
T ∗1

(6.69)

so that in Σ13, for each fixed ρ, δ sufficiently small, we obtain a curve z1 = z1(r1)

satisfying

∣∣∣∣
dz1

dr1

∣∣∣∣ ≤ C(ρ, δ)(1 + T ∗1 ), (6.70)

uniformly. Using the fact that |T ∗1 | ≤ C(ρ, δ)| log ε|, we therefore obtain

∣∣∣∣
dz1

dr1

∣∣∣∣ ≤ C(ρ, δ)| log ε|, (6.71)

uniformly in (c, a, ε), which completes the proof of (i).
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The proof of (ii) is similar and we omit the details.

5.6.4 Dynamics in K2

In the K2 coordinates, the equations are given by

ẋ2 = −x2 + r2y2z2 +O
(
r2

2z
2
2

)

ż2 = −z2 − r2x2

ẏ2 = −kr2 +O
(
r3

2y2, r
4
2

)

ṙ2 = 0.

(6.72)

Solutions enter via Σ12 which is given in the K2 coordinates by

Σ12 =

{
(x2, y2, z2, r2) : x2 =

1

δ4/3
, |y2| ≤

1

δ2/3
, |z2| ≤

µ

δ
, 0 < r2 ≤ ρδ1/3

}
, (6.73)

and exit via

Σ23 =

{
(x2, y2, z2, r2) : |x2| ≤

1

δ4/3
, y2 = − 1

δ2/3
, |z2| ≤

µ

δ
, 0 < r2 ≤ ρδ1/3

}
.

(6.74)

The setup in the chart K2 is shown in Figure 5.19.

In this chart we can determine formulae for the solutions as follows. First, we

consider solutions starting in Σ12 as time t = 0. We set x2 = e−tx̃2, z2 = e−tz̃2 and
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✏

y2

x2

z2

x2 = 1/�4/3

y2 = 1/�2/3

y2 = �1/�2/3

⌃23

⌃12

Figure 5.19: Shown is the setup in the chart K2.

obtain the system

˙̃x2 = r2y2z̃2 +O
(
e−tr2

2 z̃
2
2

)

˙̃z2 = −r2x̃2

ẏ2 = −kr2 +O
(
r3

2

)

ṙ2 = 0.

(6.75)

We now rescale time by t = t2/r2 to desingularize the system

x̃′2 = y2z̃2 +O(e−t2/r2r2)

z̃′2 = −x̃2

y′2 = −k +O
(
r2

2

)

r′2 = 0,

(6.76)
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where ′ denotes d
dt2

. Setting r2 = 0 we obtain the Airy equations

x̃′2 = y2z̃2

z̃′2 = −x̃2

y′2 = −k,

(6.77)

which have the following explicit solutions in terms of Airy functions Ai,Bi

x̃2 = π

[(
Ai
(
− y2,0

k2/3

)
Bi′
(
− y2,0

k2/3
+ k1/3t2

)

− Bi
(
− y2,0

k2/3

)
Ai′
(
− y2,0

k2/3
+ k1/3t2

)) 1

δ4/3

+ k1/3

(
Ai′
(
− y2,0

k2/3

)
Bi′
(
− y2,0

k2/3
+ k1/3t2

)

− Bi′
(
− y2,0

k2/3

)
Ai′
(
− y2,0

k2/3
+ k1/3t2

))
z2,0

]

z̃2 =
π

k1/3

[(
Bi
(
− y2,0

k2/3

)
Ai
(
− y2,0

k2/3
+ k1/3t2

)

− Ai
(
− y2,0

k2/3

)
Bi
(
− y2,0

k2/3
+ k1/3t2

)) 1

δ4/3

+ k1/3

(
Bi′
(
− y2,0

k2/3

)
Ai
(
− y2,0

k2/3
+ k1/3t2

)

− Ai′
(
− y2,0

k2/3

)
Bi
(
− y2,0

k2/3
+ k1/3t2

))
z2,0

]

y2 = y2,0 − kt2,

(6.78)

where y2,0 = y2(0) and z2,0 = z̃2(0) = z2(0).

Lemma 5.6.6. For each fixed δ, µ > 0, there exists r2,0 > 0 such that for any 0 <

r2 < r2,0, any solution of (6.75) with initial condition in Σ12 given by (x2, y2, z2)(0) =
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(1/δ4/3, y2,0, z2,0) reaches Σ23 with

x2 = πe
−

1

δ2/3
+y2,0

kr2

[(
Ai
(
− y2,0

k2/3

)
Bi′
(

1

k2/3δ2/3

)
− Bi

(
− y2,0

k2/3

)
Ai′
(

1

k2/3δ2/3

))
1

δ4/3

+ k1/3

(
Ai′
(
− y2,0

k2/3

)
Bi′
(

1

k2/3δ2/3

)
− Bi′

(
− y2,0

k2/3

)
Ai′
(

1

k2/3δ2/3

))
z2,0 +O(r2

2)

]

z2 =
πe
−

1

δ2/3
+y2,0

kr2

k1/3

[(
Bi
(
− y2,0

k2/3

)
Ai

(
1

k2/3δ2/3

)
− Ai

(
− y2,0

k2/3

)
Bi

(
1

k2/3δ2/3

))
1

δ4/3

+ k1/3

(
Bi′
(
− y2,0

k2/3

)
Ai

(
1

k2/3δ2/3

)
− Ai′

(
− y2,0

k2/3

)
Bi

(
1

k2/3δ2/3

))
z2,0 +O(r2

2)

]

y2 = − 1

δ2/3
.

(6.79)

Proof. Considering the equations (6.77), solutions given by (6.78) with initial con-

ditions (x2, y2, z2)(0) = (1/δ4/3, y2,0, z2,0) in Σ12 exit Σ23 in time

T2 =
1

k

(
y2,0 +

1

δ2/3

)
. (6.80)

For each fixed δ > 0, T2 is bounded uniformly in |y2,0| ≤ 1/δ2/3. Hence by a regular

perturbation argument, and returning to the original coordinates x2, z2, we obtain

the result.
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5.6.5 Dynamics in K3

In the K3 coordinates, the equations are given by

ẋ3 = −x3 − r3z3 − 2kr3x3ε3 +O
(
r2

3z
2
3 , r

3
3ε3x3

)

ż3 = −z3 − r3x3 −
3

2
kr3ε3z3 +O

(
r3

3z3ε3

)

ṙ3 =
1

2
r2

3ε3

(
k +O

(
r2

3

))

ε̇3 = −3

2
r3ε

2
3

(
k +O

(
r2

3

))

(6.81)

Solutions enter via Σ13 or Σ23 which are given in the K3 coordinates by

Σ13 = {(x3, z3, r3, ε3) : x3 = 1, |z3| ≤ µ, 0 < r3 ≤ ρ, 0 < ε3 ≤ δ} (6.82)

Σ23 = {(x3, z3, r3, ε3) : |x3| ≤ 1, |z3| ≤ µ, 0 < r3 ≤ ρ, ε3 = δ} , (6.83)

respectively, and exit via

Σout
3 = {(x3, z3, r3, ε3) : |x3| ≤ 1, |z3| ≤ µ, r3 = ρ, 0 < ε3 ≤ δ} . (6.84)

We need to determine the behavior of solutions which enter via Σ13 or Σ23 upon

exit in Σout
3 . The setup is shown in Figure 5.20. Between these sections, due to

the relation r3
3ε3 = ε, such solutions are restricted to the region (ε/δ)1/3 ≤ r3 ≤ ρ

in which r3 is strictly increasing. The linearization of (6.81) in the (x3, z3)-plane

has approximate eigenvalues (−1± r3). Hence, informally one expects that the flow

should separate into strong and weak stable directions with an exponential separation

that is initially O(ε1/3) and grows to O(1) at Σout
3 . We begin by deriving a change

of coordinates (x3, z3) → (x̃3, z̃3) which more clearly separates these strong/weak

directions.
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r3 = ⇢

x̃t
3

x̃i
3

x̃�
3

x̃3

z̃3

⌃23

⌃13

⌃out
3

r3

r3 = �r3

r3 = (✏/�)
1/3

cWs,`
✏

Figure 5.20: Shown is the setup in the chart K3, including a schematic of the results of
Lemma 5.6.10, Lemma 5.6.11, and Lemma 5.6.12.

To see this, we add an equation for the ratio θ3 := z3/x3

θ̇3 =
ż3

x3

− θ3
ẋ3

x3

= −r3 + r3θ
2
3 −

3

2
kr3ε3θ3 + 2kr3ε3θ3 +O

(
r3

3θ3ε3, r
2
3θ

2
3

)

= r3

(
θ2

3 − 1 +
1

2
kε3θ3

)
+O

(
r2

3

)
,

(6.85)

and we consider the extended system

ẋ3 = −x3 − r3z3 − 2kr3x3ε3 +O
(
r2

3(|x3|+ |z3|)
)

ż3 = −z3 − r3x3 −
3

2
kr3ε3z3 +O

(
r3

3z3ε3

)

θ̇3 = r3

(
θ2

3 − 1 +
1

2
kε3θ3

)
+O

(
r2

3

)

ṙ3 =
1

2
r2

3ε3

(
k +O

(
r2

3

))

ε̇3 = −3

2
r3ε

2
3

(
k +O

(
r2

3

))
.

(6.86)

Solutions are exponentially attracted to the subspace x3 = z3 = 0 on which the
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flow is given by

θ̇3 = r3

(
θ2

3 − 1 +
1

2
kε3θ3

)
+O

(
r2

3

)

ṙ3 =
1

2
r2

3ε3

(
k +O

(
r2

3

))

ε̇3 = −3

2
r3ε

2
3

(
k +O

(
r2

3

))
.

(6.87)

Rescaling time by t3 = r3t, we obtain

θ′3 = θ2
3 − 1 +

1

2
kε3θ3 +O (r3)

r′3 =
1

2
r3ε3

(
k +O

(
r2

3

))

ε′3 = −3

2
ε2

3

(
k +O

(
r2

3

))
.

(6.88)

Firstly, there are two invariant subspaces for the dynamics of (6.88): the plane

r3 = 0 and the plane ε3 = 0. Their intersection is the invariant line l3 = {(θ3, 0, 0) :

θ3 ∈ R}, and the dynamics on l3 evolve according to θ′3 = −1 + θ2
3. There are two

equilibria p− = (−1, 0, 0) and p+ = (1, 0, 0), with eigenvalues −2 and 2, respectively,

for the flow along l3. In the plane ε3 = 0, the dynamics are given by

θ′3 = θ2
3 − 1 +O(r3) (6.89)

r′3 = 0 .

This system has normally hyperbolic curves S±0,3(c, a) of equilibria emanating from

p± (see Figure 5.21). Along S±0,3(c, a) the linearization has one zero eigenvalue and

one eigenvalue close to ±2 for small r3.
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✏3 = �
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M+
3
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3
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0,3
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Figure 5.21: Shown are the invariant manifolds M±3 (c, a) corresponding to the dynamics of (6.88).

In the invariant plane r3 = 0, the dynamics are given by

θ′3 = θ2
3 − 1 +

1

2
kε3θ3 (6.90)

ε′3 = −3

2
ε2

3 .

Here we still have the equilibria p± which now have an additional zero eigenvalue due

to the second equation. The corresponding eigenvector is (−k, 4) and hence there

exist one-dimensional center manifolds N±3 (c, a) at p± along which ε3 decreases. Note

that the branch of N+
3 (c, a) in the half space ε1 > 0 is unique.

Restricting attention to the set

D3 = {(θ3, r3, ε3) : θ3 ∈ R, 0 ≤ r3 ≤ ρ, 0 ≤ ε1 ≤ δ} , (6.91)

we have the following (see Figure 5.21).

Proposition 5.6.7. For any (c, a) ∈ Ic × Ia and any sufficiently small ρ, δ > 0, the

following assertions hold for the dynamics of (6.88):
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3
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r3, ✏3
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3
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Figure 5.22: Shown are the invariant manifolds M̄±3 (c, a) corresponding to the dynamics of (6.86).

(i) There exists a repelling two-dimensional center manifold M+
3 (c, a) at p+ which

contains the line of equilibria S+
0,3(c, a) and the center manifold N+

3 (c, a). In

D3, M+
3 (c, a) is given as a graph θ3 = h+(r3, ε3, c, a) = 1 + O(r3, ε3). The

branch of N+
3 (c, a) in r3 = 0, ε3 > 0 is unique.

(ii) There exists an attracting two-dimensional center manifold M−
3 (c, a) at p−

which contains the line of equilibria S−0,3(c, a) and the center manifold N−3 (c, a).

In D3, M−
3 (c, a) is given as a graph θ3 = h−(r3, ε3, c, a) = −1 +O(r3, ε3).

We now return to the full system (6.86), in which the flow on the subspace x3 =

z3 = 0 is foliated by flow along strong stable fibers. Hence in the full five-dimensional

space, there exist four-dimensional invariant manifolds M̄±
3 (c, a) (see Figure 5.22)

given by the strong stable foliations of the two-dimensional manifolds M±
3 (c, a). The

manifolds M̄±
3 (c, a) can be written as graphs θ3 = H±(x3, z3, r3, ε3, c, a) = ±1 +

O(r3, ε3).

Now using the relation θ3 = z3/x3, we see that the dynamics are in fact restricted
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to three-dimensional invariant submanifolds M̃±
3 (c, a) of M̄±

3 (c, a). The manifolds

M̃±
3 (c, a) are given by z3 = x3H

±(x3, z3, r3, ε3, c, a). By the implicit function theo-

rem, for any sufficiently small ρ, δ > 0, we can now solve to find M̃±
3 (c, a) as graphs

z3 = F−(x3, r3, ε3, c, a) = x3(−1 +O(r3, ε3))

x3 = F+(z3, r3, ε3, c, a) = z3(1 +O(r3, ε3)).

(6.92)

We now change coordinates by

z̃3 = z3 − F−(x3, r3, ε3, c, a) = z3 + x3(1 +O(r3, ε3))

x̃3 = x3 − F+(z3, r3, ε3, c, a) = x3 − z3(1 +O(r3, ε3))

(6.93)

In these coordinates, (6.81) becomes

˙̃x3 = (−1 + r3 + r3h+(x̃3, z̃3, r3, ε3)) x̃3

˙̃z3 = (−1− r3 + r3h−(x̃3, z̃3, r3, ε3)) z̃3

ṙ3 =
1

2
r2

3ε3 (k + g1(x̃3, z̃3, r3, ε3))

ε̇3 = −3

2
r3ε

2
3 (k + g2(x̃3, z̃3, r3, ε3)) ,

(6.94)

where

h+(x̃3, z̃3, r3, ε3) = O (r3, ε3)

h−(x̃3, z̃3, r3, ε3) = O (r3, ε3)

g1(x̃3, z̃3, r3, ε3) = O
(
r2

3

)

g2(x̃3, z̃3, r3, ε3) = O
(
r2

3

)
.

(6.95)

In (6.94), it is clear that the strong attraction in the variables (x3, z3) splits into

strong/weak directions where the exponential splitting increases as r3 increases. By

changing coordinates to (x̃3, z̃3), we straighten out the invariant manifolds M̃±
3 (c, a)
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Figure 5.23: Shown are the invariant manifolds M̃±3 (c, a) transformed to the (x̃3, z̃3)-coordinates.

(see Figure 5.23).

Solutions with initial conditions in Σ23

We first consider solutions entering K3 via Σ23. Using r3
3ε3 = ε, we have that such

solutions satisfy ε3 = δ, r3 = (ε/δ)1/3 in Σ23. We have the following.

Lemma 5.6.8. For all sufficiently small ρ, δ > 0, any solution to (6.94) with initial

condition (x̃3, z̃3, r3, ε3)(0) = (x̃3,0, z̃3,0, (ε/δ)
1/3, δ) ∈ Σ23 which reaches the section

Σout
3 at time t = T ∗ = T ∗(ρ, δ, x̃3,0, z̃3,0, ε) satisfies

x̃3(T ∗) = x̃3,0 exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃3,0, z̃3,0, ε)

)

z̃3(T ∗) = z̃3,0 exp
(
β2
−(ρ, δ, ε) + η2

−(ρ, δ, x̃3,0, z̃3,0, ε)
)

r3(T ∗) = ρ

ε3(T ∗) =
ε

ρ3
,

(6.96)
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where

β2
−(ρ, δ, ε) =

ρ2

ε

(
−1− 2ρ

3
+O(ρ2, ρδ)

)

β2
+(ρ, δ, ε) =

ρ2

ε

(
−1 +

2ρ

3
+O(ρ2, ρδ)

)

η2
±(ρ, δ, x̃3,0, z̃3,0, ε) = O

((ε
δ

)1/3

(|x̃3,0|+ |z̃3,0|)
)
.

(6.97)

Proof. It is clear from (6.94) that the (x̃3, z̃3)-coordinates decay exponentially for all

sufficiently small ρ, δ > 0. By directly integrating (6.94), we obtain the following

expressions

x̃3(T ∗) = x̃3,0 exp

(
−T ∗ +

∫ T ∗

0

r3(t) (1 + h+(x̃3(t), z̃3(t), r3(t), ε3(t))) dt

)

z̃3(T ∗) = z̃3,0 exp

(
−T ∗ −

∫ T ∗

0

r3(t) (1 + h−(x̃3(t), z̃3(t), r3(t), ε3(t))) dt

)

r3(T ∗) = ρ

ε3(T ∗) =
ε

ρ3
.

(6.98)

We determine the functions β2
+, η

2
+. The computation of β2

−, η
2
− is similar. We now

write

T ∗ =

∫ ρ

(ε/δ)1/3

1

ṙ3

dr3

=
2

ε

∫ ρ

(ε/δ)1/3
r3

(
1 +O

(
r2

3

))
dr3,

(6.99)

using r3
3ε3 = ε. We also have

∫ T ∗

0

r3(t) (1 + h+(x̃3(t), z̃3(t), r3(t), ε3(t))) dt =
2

ε

∫ ρ

(ε/δ)1/3
r2

3 (1 +O (r3, ε3)) dr3,

(6.100)
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and hence

−T ∗ +

∫ T ∗

0

r3(t) (1 +O (r3(t), ε3(t))) dt

= −2

ε

∫ ρ

(ε/δ)1/3
r3 − r2

3 +O
(
r3

3, r
2
3ε3

)
dr3

= −2

ε

∫ ρ

(ε/δ)1/3
r3 − r2

3 + h1(r3, ε3) + h2(r3, ε3, x̃3, z̃3)dr3,

(6.101)

where we have separated out the x̃3, z̃3 dependence through the functions h1, h2.

That is, we have ∂x̃3h1 = ∂z̃3h1 = 0 and

h1(r3, ε3) = O
(
r3

3, r
2
3ε3

)

h2(r3, ε3, x̃3, z̃3) = O
(
r2

3(|r3|+ |ε3|)(|x̃3|+ |z̃3|)
)
.

(6.102)

We now define

β2
+(ρ, δ, ε) = −2

ε

∫ ρ

(ε/δ)1/3
r3 − r2

3 + h1(r3, ε3)dr3

= −2

ε

(
ρ2

2
− ρ3

3
+O

(
ρ4, ρ3δ

))

η2
+(ρ, δ, x̃3,0, z̃3,0, ε) = −2

ε

∫ ρ

(ε/δ)1/3
h2(r3, ε3, x̃3, z̃3)dr3.

(6.103)

To estimate η2
+, we first note that for any sufficiently small ρ, δ, we can bound

|x̃3(t)| ≤ x̃3,0 exp (−t/2)

|z̃3(t)| ≤ z̃3,0 exp (−t/2) ,

(6.104)
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for any 0 ≤ t ≤ T ∗. Furthermore, we have

t =

∫ r3(t)

(ε/δ)1/3

1

ṙ3

dr3

=
2

ε

∫ r3(t)

(ε/δ)1/3
r3

(
1 +O

(
r2

3

))
dr3

>
1

2ε

(
r3(t)2 − (ε/δ)2/3

)
,

(6.105)

for each sufficiently small fixed ρ, δ > 0. Hence we have

η2
+(ρ, δ, x̃3,0, z̃3,0, ε)

= −2

ε

∫ ρ

(ε/δ)1/3
h2(r3, ε3, x̃3, z̃3)dr3

= −2

ε

∫ ρ

(ε/δ)1/3
O
(
r2

3(|r3|+ |ε3|)(|x̃3|+ |z̃3|)
)
dr3

= −2

ε

∫ ρ

(ε/δ)1/3
O
(
r2

3(|r3|+ |ε3|)(|x̃3,0|+ |z̃3,0|) exp

(
− 1

4ε

(
r2

3 − (ε/δ)2/3
)))

dr3

= O
((ε

δ

)1/3

(|x̃3,0|+ |z̃3,0|)
)

(6.106)

that is, the dependence on the initial (x̃3,0, z̃3,0) of the exponential contraction be-

tween Σ23 and Σout
3 is very small.

We now consider solutions on Ŵs,j
ε (c, a), j = `, r passing through Σin

A = Σin
1 →

Σ12 → Σ23. We obtain estimates for these solutions upon entry in the chart K3 in

Σ23 and exit via Σout
3 .

Lemma 5.6.9. Solutions on the manifolds Ŵs,j
ε (c, a), j = `, r, which have initial
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conditions in Σ23 define curves in Σ23 parametrized by |y2,0| ≤ 1/δ2/3 given by

x̃j3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kε1/3

k1/6δ1/6
X̃j

3(y2,0)

z̃j3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kε1/3

k1/6δ1/6
Z̃j

3(y2,0),

(6.107)

where

X̃j
3(y2,0) =

(
Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e

2
3

1
kδ (2 +O (δ))

+O (δ)
(

Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e−

2
3

1
kδ +O(ε2/3)

Z̃j
3(y2,0) =

(
Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e−

2
3

1
kδ (1 +O (δ))

+O (δ)
(

Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e

2
3

1
kδ +O(ε2/3),

(6.108)

for j = `, r,where

∣∣zj2,0(y2,0)
∣∣ ≤ Cε1/3| log ε|

∣∣∣∣∣
dzj2,0
dy2,0

∣∣∣∣∣ ≤ Cε1/3| log ε|
(6.109)

and

κε1/3 < zr2,0(y2,0)− z`2,0(y2,0) < Cε1/3| log ε|. (6.110)

uniformly in y2,0 for some C, κ > 0 independent of c, a, ε.

Proof. Using the analysis in §5.6.4, Lemma 5.6.6 and the estimates in Proposi-

tion 5.6.5 (ii), we deduce that solutions on the manifolds Ŵs,j
ε (c, a) define curves



309

in Σ23 parametrized by |y2,0| ≤ 1/δ2/3 as

x3 = xj3,0(y2,0)

= πe
−

1

δ2/3
+y2,0

kr2

(
Ai
(
− y2,0

k2/3

)
Bi′
(

1

k2/3δ2/3

)
− Bi

(
− y2,0

k2/3

)
Ai′
(

1

k2/3δ2/3

)

+ k1/3δ4/3

(
Ai′
(
− y2,0

k2/3

)
Bi′
(

1

k2/3δ2/3

)
− Bi′

(
− y2,0

k2/3

)
Ai′
(

1

k2/3δ2/3

))
zj2,0(y2,0)

+O(r2
2)

)

z3 = zj3,0(y2,0)

=
πe
−

1

δ2/3
+y2,0

kr2

k1/3δ1/3

(
Bi
(
− y2,0

k2/3

)
Ai

(
1

k2/3δ2/3

)
− Ai

(
− y2,0

k2/3

)
Bi

(
1

k2/3δ2/3

)

+ k1/3δ4/3

(
Bi′
(
− y2,0

k2/3

)
Ai

(
1

k2/3δ2/3

)
− Ai′

(
− y2,0

k2/3

)
Bi

(
1

k2/3δ2/3

))
zj2,0(y2,0)

+O(r2
2)

)

ε3 = δ,

(6.111)

for j = `, r, where

∣∣zj2,0(y2,0)
∣∣ ≤ Cε1/3| log ε|

∣∣∣∣∣
dzj2,0
dy2,0

∣∣∣∣∣ ≤ Cε| log ε|
(6.112)

and

κε1/3 < zr2,0(y2,0)− z`2,0(y2,0) < Cε1/3| log ε|. (6.113)

uniformly in y2,0 for some C, κ > 0 independent of c, a, ε. Using asymptotic properties
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of Airy functions (6.19), we have

xj3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kr2

k1/6δ1/6
Xj

3(y2,0)

zj3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kr2

k1/6δ1/6
Zj

3(y2,0),

(6.114)

where

Xj
3(y2,0) =

(
Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e

2
3

1
kδ (1 +O (δ))

+
(

Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zj2,0(y2,0)

) e− 2
3

1
kδ

2
(1 +O (δ))

+O
(
r2

2

)

Zj
3(y2,0) = −

(
Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zj2,0(y2,0)

)
e

2
3

1
kδ (1 +O (δ))

+
(

Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zj2,0(y2,0)

) e− 2
3

1
kδ

2
(1 +O (δ))

+O
(
r2

2

)
.

(6.115)

Using (6.93), in the ‘∼’ coordinates we have

z̃j3,0(y2,0) = zj3,0(y2,0)− F−
(
xj3,0(y2,0), (ε/δ)1/3, δ, c, a

)

x̃j3,0(y2,0) = xj3,0(y2,0)− F+
(
zj3,0(y2,0), (ε/δ)1/3, δ, c, a

)
,

(6.116)

from which the result follows, noting r2 = ε1/3.

We now obtain estimates for solutions on Ŵs,`
ε (c, a) with initial conditions in Σ23

upon exit in Σout
3 . We have the following lemma regarding Ŵs,`

ε (c, a) (an analogous

result holds for Ŵs,r
ε (c, a)).

Lemma 5.6.10. Consider solutions on the manifold Ŵs,`
ε (c, a), with initial condi-

tions as in Lemma 5.6.9 parameterized by |y2,0| ≤ 1/δ2/3. Such solutions exit Σout
3
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in time T ∗ = T ∗(y2,0) in a curve (x̃`3(T ∗(y2,0)), z̃`3(T ∗(y2,0))). For each sufficiently

small δ, ρ > 0, there exists C > 0 independent of (c, a, ε) and yt2,0 > 0 such that the

following holds. Let x̃i3 = x̃`3(T ∗(−1/δ2/3)), and let x̃t3 = x̃`3(T ∗(yt2,0)). Then

x̃t3 ≤ −
ε1/3

C
exp

(
β2

+(ρ, δ, ε)− C

ε1/3

)
, (6.117)

and for y2,0 ∈ (−1/δ2/3, yt2,0), the curve (x̃`3(T ∗(y2,0)), z̃`3(T ∗(y2,0))) can be expressed

as a graph z̃3 = ẑ3(x̃3; c, a, ε) for x̃3 ∈ (x̃t3 , x̃
i
3) which satisfies

|ẑ3(x̃3; c, a, ε)| ≤ C exp

(
−ρ

2

ε

(
1 +

2ρ

3
+O(ρ2, ρδ)

))

dẑ3

dx̃3

(x̃3; c, a, ε) ≤ C

ε2/3
exp

(
−4ρ3

3ε
(1 +O(ρ, δ))

) (6.118)

uniformly in x̃3 ∈ (x̃t3 (c, a, ε), x̃i3(c, a, ε)) and (c, a, ε).

Proof. Using Lemma 5.6.8, we have that solutions with initial conditions given by

Lemma 5.6.9 for |y2,0| ≤ 1/δ2/3 reach Σout
3 at time T ∗ = T ∗(y2,0) in curves

x̃`3(T ∗(y2,0)) = x̃`3,0(y2,0) exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃`3,0(y2,0), z̃`3,0(y2,0), ε)

)

z̃`3(T ∗(y2,0)) = z̃`3,0(y2,0) exp
(
β2
−(ρ, δ, ε) + η2

−(ρ, δ, x̃`3,0(y2,0), z̃`3,0(y2,0), ε)
)
,

(6.119)

where β2
+, η

2
+ are given by the integrals (6.103) (and analogously for β2

−, η
2
−). It

remains to estimate the derivatives
dx̃`3(T ∗)

dy2,0
,
dz̃`3(T ∗)

dy2,0
.

To obtain estimates on the derivatives of the solutions with respect to y2,0, c, a, we

consider the variational equation of (6.94). Using the estimates (6.119), for K = 1/2

and each small κ > 0, there exists C such that for all sufficiently small ρ, δ, we can
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estimate

dx̃`3(t)

dy2,0

≤ C
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) e−Kt

dz̃`3(t)

dy2,0

≤ C
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) e−Kt

dr`3(t)

dy2,0

≤ C
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) eκt

dε`3(t)

dy2,0

≤ C
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) eκt

(6.120)

for solutions on Ŵs,`
ε (c, a) with initial conditions

(x̃3, z̃3, r3, ε3)(0) = (x̃`3,0(y2,0), z̃`3,0(y2,0), (ε/δ)1/3, δ) ∈ Σ23. (6.121)

Differentiating (6.119), we have that

dx̃`3(T ∗)

dy2,0

=

(
(x̃`3,0)′(y2,0) + x̃`3,0

d

dy2,0

(
2

ε

∫ ρ

r3,0

O
(
r3

3(|x̃`3|+ |z̃`3|), r2
3ε3(|x̃`3|+ |z̃`3|)

)
dr3

))

× exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃`3,0, z̃

`
3,0, ε)

)
,

(6.122)

where r3,0 = (ε/δ)1/3. It remains to prove the following estimate for the second term

∣∣∣∣∣
d

dy2,0

(
2

ε

∫ ρ

r3,0

O
(
r3

3(|x̃`3|+ |z̃`3|), r2
3ε3(|x̃`3|+ |z̃`3|)

)
dr3

)∣∣∣∣∣

≤ Cδ
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) ,
(6.123)

where C > 0 is independent of δ, ρ, ε. We begin with estimating a term of the form

d

dy2,0

(
2

ε

∫ ρ

r3,0

r3
3x̃

`
3dr3

)
, (6.124)
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as the others will be similar. As the endpoints of the integral are fixed, we obtain

d

dy2,0

(
2

ε

∫ ρ

r3,0

r3
3x̃

`
3dr3

)
=

2

ε

∫ ρ

r3,0

r3
3

dx̃`3
dy2,0

dr3 +
2

ε

∫ ρ

r3,0

3r2
3

dr3

dy2,0

x̃`3dr3. (6.125)

Using the estimates (6.120) and noting that t > 1
2ε

(r3(t)2 − r2
3,0) (as in the proof of

Lemma 5.6.8), we see that we can bound the above integrals by an integral of the

form

2

ε

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣)
∣∣∣∣∣

∫ ρ

r3,0

r2
3 exp

(
− 1

4ε

(
r2

3 − r2
3,0

))
dr3

∣∣∣∣∣

≤ C
(∣∣(x̃`3,0)′(y2,0)

∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) (r3,0 +O(r2
3,0)
)
,

(6.126)

where C is independent of ρ, δ, ε. Proceeding similarly, we estimate

d

dy2,0

(
2

ε

∫ ρ

r3,0

r3ε3x̃
`
3dr3

)
≤ Cδ

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣) (1 +O(r3,0)) ,

(6.127)

where C is independent of ρ, δ, ε. Using the fact that r3,0 =
(
ε
δ

)1/3
, we obtain

dx̃`3(T ∗)

dy2,0

=
(
(x̃`3,0)′(y2,0) +O

(
δx̃`3,0(y2,0)

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣)))

× exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃`3,0(y2,0), z̃`3,0(y2,0), ε)

)

dz̃`3(T ∗)

dy2,0

=
(
(z̃`3,0)′(y2,0) +O

(
δz̃`3,0(y2,0)

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣)))

× exp
(
β2
−(ρ, δ, ε) + η2

−(ρ, δ, x̃`3,0(y2,0), z̃`3,0(y2,0), ε)
)
,

(6.128)

for j = `, r, where β2
±, η

2
± are given by Lemma 5.6.8.
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We now can compute the slope of Ŵs,`
ε (c, a) in Σout

3

dz̃`3
dx̃`3

(y2,0) =

(
(z̃`3,0)′(y2,0) +O

(
δz̃`3,0

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣)))
(
(x̃`3,0)′(y2,0) +O

(
δx̃`3,0

(∣∣(x̃`3,0)′(y2,0)
∣∣+
∣∣(z̃`3,0)′(y2,0)

∣∣)))e
(
− 4ρ3

3ε
(1+O(ρ,δ))

)

=

(
Z̃`

3 − kε1/3(Z̃`
3)′ +O

(
δz̃`3,0

(
|X̃`

3|+ |Z̃`
3|+O(ε1/3)

)))

(
X̃`

3 − kε1/3(X̃`
3)′ +O

(
δx̃`3,0

(
|X̃`

3|+ |Z̃`
3|+O(ε1/3)

)))e
(
− 4ρ3

3ε
(1+O(ρ,δ))

)

(6.129)

where we used that r2 = ε1/3. For each fixed small δ, ρ > 0, the numerator in the

above fraction is a bounded function for sufficiently small ε > 0. Hence it is clear

that the tangent space to Ŵs,`
ε (c, a) has exponentially small slope except near points

where the denominator is also exponentially small. Hence we proceed by obtaining

a lower bound for the denominator for an appropriate range of y2,0.

From properties of Airy functions in Lemma 5.6.3 and the bounds in Lemma 5.6.9,

we know that the function X̃`
3(y2,0) is smooth and is positive for y2,0 ≤ 0. For y2,0,

X̃`
3(y`2,0) transitions to oscillatory behavior: the first zero occurs at y2,0 = y`2,0 > 0

and here (X̃`
3)′(y`2,0) < 0. Hence by the implicit function theorem we can solve for

the first zero of the denominator

(
X̃`

3 − kε1/3(X̃`
3)′ +O

(
δx̃`3,0

(
|X̃`

3|+ |Z̃`
3|+O(ε1/3)

)))
= 0. (6.130)

We first argue that the O-term does not contribute to finding zeros in this expression.

To see this, we note that for δ fixed sufficiently small, we can bound

|X̃`
3|+ |Z̃`

3|+O(ε1/3) ≤ 4|X̃`
3| (6.131)

uniformly in y2,0 ∈ (−1/δ2/3,−1/δ2/3 + δ), provided ε is taken sufficiently small.

Hence there are no zeros of (6.130) for y2,0 ∈ (−1/δ2/3,−1/δ2/3 +δ) and ε sufficiently
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small. For y2,0 > −1/δ2/3 + δ, we have that

x̃`3,0 =

√
πe
−

1

δ2/3
+y2,0

kε1/3

k1/6δ1/6
X̃`

3(y2,0), (6.132)

where we used the fact that r2 = ε1/3. Hence by taking ε sufficiently small, we can

bound x̃`3,0 = O(ε2/3). Hence the first zero of (6.130) occurs when

y2,0 = y`2,0 + kε1/3 +O(ε2/3). (6.133)

Hence there exists C such that for all

y2,0 ≤ yt2,0 := y`2,0 + kε1/3 − Cε2/3, (6.134)

the slope dz̃
dx̃

(y2,0) of the manifold Ŵs,`
ε (c, a) in Σout

3 is exponentially small. We now

define

x̃t3 (c, a, ε) = x̃3,0(yt2,0) exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃3,0(yt2,0), z̃3,0(yt2,0), ε)

)

≤ −ε
1/3

C
exp

(
β2

+(ρ, δ, ε)− C

ε1/3

) (6.135)

for some C > 0 independent of (c, a, ε). The result follows.

Solutions with initial conditions in Σ13

The above takes care of the solutions on Ŵs,`
ε (c, a) entering via Σ23, but we still have

those which enter via Σ13 directly from chart K1. We have the following.

Lemma 5.6.11. For each sufficiently small ρ, δ > 0, there exists C, η, ε0 > 0 and

sufficiently small choice of the intervals Ia, Ic such that for each (c, a, ε) ∈ Ic ×

Ia × (0, ε0), there exists x∆
3 (c, a, ε) > 0 such that the following holds. Consider
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solutions on the manifold Ŵs,`
ε (c, a), with initial conditions in Σ13. All such solutions

exit Σout
3 in a curve which can be represented as a graph z̃3 = ẑ3(x̃3; c, a, ε) for

x̃3 ∈ (x̃i3(c, a, ε), x̃∆
3 (c, a, ε)) which satisfies

|ẑ3(x̃3; c, a, ε)| ≤ Ce−η/ε

dẑ3

dx̃3

(x̃3; c, a, ε) ≤ Ce−η/ε,
(6.136)

uniformly in x̃3 ∈ (x̃i3(c, a, ε), x̃∆
3 (c, a, ε)) and (c, a, ε) ∈ Ic × Ia × (0, ε0).

Proof. From Proposition 5.6.5 (i), we have that such solutions enter Σ13 in a curve

z3 = z3,0(r3,0), for r3,0 ∈ ((ε/δ)1/3 ,∆r3) which satisfies |z′3,0(r3,0)| ≤ C| log ε| uni-

formly in r3,0, where we may assume ∆r3 � ρ by taking ∆y1 smaller in Propo-

sition 5.6.5 if necessary. In the ∼ coordinates, we have that this curve can be

parameterized by r3,0 as (x̃3, z̃3) = (x̃3,0(r3,0), z̃3,0(r3,0)) where

x̃3,0(r3,0) = 1− F+ (z3,0(r3,0), r3,0, ε3,0(r3,0), c, a)

z̃3,0(r3,0) = z3,0(r3,0)− F− (1, r3,0, ε3,0(r3,0), c, a)

ε3,0(r3,0) =
ε

r3
3,0

.

(6.137)

Similarly to the proof of Lemma 5.6.8 we track these solutions through to Σout
3 , where

they intersect in a curve

x̃3(r3,0) = x̃3,0(r3,0) exp
(
β1

+(ρ, δ, r3,0, ε)
)

z̃3(r3,0) = z̃3,0(r3,0) exp
(
β1
−(ρ, δ, r3,0, ε)

)
,

(6.138)
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where

β1
−(ρ, δ, r3,0, ε) =

2

ε

∫ ρ

r3,0

(
−r3 − r2

3 +O(r3
3, r

2
3ε3)

)
dr3

=
1

ε

(
−ρ2 + r2

3,0 −
2

3
(ρ3 − r3

3,0) +O(ρ4, ρ3δ, r4
3,0)

)

β1
+(ρ, δ, r3,0, ε) =

2

ε

∫ ρ

r3,0

(
−r3 + r2

3 +O(r3
3, r

2
3ε3)

)
dr3

=
1

ε

(
−ρ2 + r2

3,0 +
2

3
(ρ3 − r3

3,0) +O(ρ4, ρ3δ, r4
3,0)

)
.

(6.139)

Using similar arguments as in the proof of Lemma 5.6.10, we estimate

dx̃3

dr3,0

=

(
dx̃3,0

dr3,0

+
2

ε
x̃3,0

(
r3,0 +O(r2

3,0)
)

+O
(
x̃3,0

(
ε−1/3 +

∣∣∣∣
dx̃3,0

dr3,0

∣∣∣∣+

∣∣∣∣
dz̃3,0

dr3,0

∣∣∣∣
)))

× exp
(
β1

+(ρ, δ, r3,0, ε)
)

dz̃3

dr3,0

=

(
dz̃3,0

dr3,0

+
2

ε
z̃3,0

(
r3,0 +O(r2

3,0)
)

+O
(
x̃3,0

(
ε−1/3 +

∣∣∣∣
dx̃3,0

dr3,0

∣∣∣∣+

∣∣∣∣
dz̃3,0

dr3,0

∣∣∣∣
)))

× exp
(
β1
−(ρ, δ, r3,0, ε)

)
,

(6.140)

and we define

x̃i3(c, a, ε) := x̃3,0((ε/δ)1/3) exp
(
β1

+(ρ, δ, (ε/δ)1/3 , ε)
)

x̃∆
3 (c, a, ε) := x̃3,0(∆r3) exp

(
β1

+(ρ, δ,∆r3 , ε)
)
,

(6.141)

noting that the definition of x̃i3(c, a, ε) coincides with that in Lemma 5.6.10. We

therefore can estimate

dz̃3

dx̃3

(r3,0) =
z̃3,0 +O

(
ε1/3 log ε

)

x̃3,0 +O (ε1/3 log ε)
exp

(
− 4

3ε

(
ρ3 − r3

3,0

)
+O

(
ρ4, ρ3δ, r4

3,0

))
, (6.142)

from which we obtain the required estimates, recalling the choice of 0 < ∆r3 � ρ.
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Estimates for Ŵs,`
ε (c, a) in Σout

3

We now fix ρ, δ sufficiently small and combine the results of Lemma 5.6.9 and

Lemma 5.6.11 into the following.

Lemma 5.6.12. For each sufficiently small ∆y > 0, there exists C, η, ε0 > 0

and sufficiently small choice of the intervals Ia, Ic such that for each (c, a, ε) ∈

Ic × Ia × (0, ε0), there exists y∗ε(c, a) > ε2/3/C such that the following holds. De-

fine Ŵs,`,∗
ε (c, a) to be the backwards evolution of initial conditions {(ρ4, y, z, ε) :

z = zs,`ε (y; c, a),−∆y ≤ y ≤ y∗ε(c, a)} on Ŵs,`
ε (c, a) in Σout

A . The intersection of

Ŵs,`,∗
ε (c, a) with Σout

A = Σout
3 is given by a curve z̃3 = ẑ3(x̃3; c, a, ε) in the K3 coordi-

nates for x̃3 ∈ (x̃t3 (c, a, ε), x̃∆
3 (c, a, ε)) which satisfies

|ẑ3(x̃3; c, a, ε)| ≤ Ce−η/ε

dẑ3

dx̃3

(x̃3; c, a, ε) ≤ Ce−η/ε,
(6.143)

uniformly in x̃3 ∈ (x̃t3 (c, a, ε), x̃∆
3 (c, a, ε)) and (c, a, ε). Here x̃t3 (c, a, ε), x̃∆

3 (c, a, ε) are

defined as in Lemma 5.6.9 and Lemma 5.6.11 and

x̃t3 (c, a, ε) ≤ −ε
1/3

C
exp

(
β2

+(ρ, δ, ε)− C

ε1/3

)
. (6.144)

5.6.6 Proofs of transversality results

To measure the transversality properties of Ŵs,`,∗
ε (c, a) with respect to the strong

unstable fibers of Ws,`
ε (c, a) in the section Σm, we use the transversality results for

the backwards evolution of fibers on Ŵs,`
ε (c, a) with height y > −∆y obtained above

in the section Σout
3 combined with the fact that the backwards/forwards evolution of

Ws,`
ε (c, a) between the sections Σm,Σh,` coincide for y < −∆w.
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Proof of Proposition 5.4.4. We note that the manifold Ŵs,`,∗
ε (c, a) is defined in terms

of the (u, v, w)-coordinates in Σh,` in Proposition 5.4.4, but defined in terms of the

(x, y, z)-coordinates in Σin
A in Lemma 5.6.12. In the analysis below, it is more nat-

ural to determine transversality properties in the section Σout
3 , and hence also more

natural to represent this manifold in the (x, y, z)-coordinates near the Airy point.

To obtain the corresponding definition in Σh,`, we evolve Ŵs,`,∗
ε (c, a) forwards from

Σin
A to Σh,` to obtain the w-coordinate endpoints w∆

ε and wt
ε corresponding to the

solutions on Ŵs,`,∗
ε (c, a) with initial conditions in Σin

A at y = −∆y and y = y∗ε(c, a),

respectively.

Using Lemma 5.6.12, we are able to track trajectories on Ŵs,`
ε (c, a) with initial

conditions in Σin
A with y ∈ (−∆y, y

∗
ε) down to the section Σout

3 . In the chart K3,

the intersection of this manifold with Σout
3 is given by a curve z̃3 = ẑ3(x̃3; c, a, ε) for

x̃3 ∈ (x̃t3 (c, a, ε), x̃∆
3 (c, a, ε)) which satisfies

|ẑ3(x̃3; c, a, ε)| ≤ Ce−η/ε,
dz̃3

dx̃3

(x̃3; c, a, ε) ≤ Ce−η/ε, (6.145)

uniformly in x̃3 ∈ (x̃t3 (c, a, ε), x̃∆
3 (c, a, ε)) and (c, a, ε).

We now investigate the intersection of Ws,`
ε (c, a) (integrated forwards from Σm

up to the section Σout
3 . This manifold will intersect Σout

3 in a curve z̃3 = z̃s3(x̃3; c, a, ε)

which satisfies

z̃s3(x̃3; c, a, ε) = z̃s3(0; c, a, ε) +
dz̃s3
dx̃3

(0; c, a, ε)x̃3 + o(x̃3) (6.146)

where

z̃s3(0; c, a, ε) = O(e−q/ε),
dz̃s3
dx̃

(0; c, a, ε) = O(e−q/ε), (6.147)
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uniformly in (c, a, ε). This follows from the fact that Ws,`
ε (c, a) contains a (non-

unique) choice of the slow manifold Mm
ε (c, a) which will be exponentially close to

the point (x̃, z̃) = (0, 0). Furthermore, at this point, Ws,`
ε (c, a) will be (up to expo-

nentially small errors) tangent to the weak unstable subspace z̃ = 0, and the strong

unstable fiber at this point will be (up to exponentially small errors) tangent to the

strong unstable subspace x̃ = 0. Therefore, the strong unstable fiber of a basepoint

(x̃3, z̃
s
3(x̃3)) on Ws,`

ε (c, a) is given by a graph

x̃s3(z̃3; x̃3, c, a, ε) = x̃3 +
dx̃s3
dz̃3

(z̃s3(x̃3); x̃3, c, a, ε)(z̃3 − z̃s3) +O
(
(z̃3 − z̃s3)2

)
(6.148)

where

dx̃s3
dz̃3

(z̃s3; x̃3, c, a, ε) = O(x̃3, z̃
s
3(x̃3), e−q/ε). (6.149)

Finally, since the forward/backward evolution ofWs,`
ε (c, a) coincide for y < −∆y,

we have that z̃s3(x̃∆
3 ; c, a, ε) = ẑ3(x̃∆

3 ; c, a, ε) and trajectories on Ws,`
ε (c, a) evolved

backwards from Σin
A for y < −∆y in fact again land in Ws,`

ε (c, a). Since Ws,`
ε (c, a) is

certainly transverse to its own strong unstable fibers, we are only concerned for values

x̃3 ∈ (x̃t3 (c, a, ε), x̃∆
3 (c, a, ε)) as here the backwards/forwards evolution of Ws,`

ε (c, a)

separates in the section Σout
3 into curves given by the two functions described above.

From the estimates above, we can deduce that the backwards evolution Ŵs,`,∗
ε (c, a)

given by the curve z̃3 = ẑ3(x̃3; c, a, ε) in the section Σout
3 remains transverse to the

strong unstable fibers of Ws,`
ε (c, a) at least up to the fiber which passes through the

point (x̃t3 , ẑ3(x̃t3 )).
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We now evolve the manifold Ŵs,`,∗
ε (c, a) backwards from Σout

3 to Σm. Using the

exchange lemma, we deduce that the above transversality also holds in the section Σm

and all trajectories are exponentially contracted toMm
ε (c, a). We denote by ỹ`2,0(c, a)

the y2 coordinate in Σm of the backwards evolution of the solution Ŵs,`,∗
ε (c, a) passing

through (x̃∆
3 (c, a, ε), ẑ3(x̃∆

3 (c, a, ε)) in Σout
3 , and we denote by y`,∗2,0(c, a) the y2 coordi-

nate in Σm of the backwards evolution of the basepoint on Ws,`
ε (c, a) corresponding

to the fiber containing the solution on Ŵs,`,∗
ε (c, a) passing through (x̃t3 , ẑ3(x̃t3 ) in

Σout
3 . With these definitions, we see that the assertions of the proposition hold in

the section Σm.

Proof of Lemma 5.4.5. The estimates (4.29) are shown in §5.4.4. Hence it remains

to show that the transversality of Ŵs,`
ε (c, a) with respect to the fibers of Ws,`,∗

ε (c, a)

in Σm includes the fibers through all points on the backwards evolution of B(s; c, a).

By Proposition 5.4.4, this amounts to proving (4.30). As in the proof of Proposi-

tion 5.4.4, we work in a neighborhood of the Airy point and determine transversality

conditions in the section Σout
3 and use this information to deduce what happens in

Σm.

Here we consider pulses of Type 2, 3 so s ∈ (wA + ∆w, w
† + wA). Evolving

B(s; c, a) backwards from Σh,`, these solutions are already exponentially contracted

to Mm
ε (c, a) above the Airy point, and we see that they eventually enter the chart

K3 via the section Σ23 where their (x̃, z̃)-coordinates are already O(e−q/ε) uniformly

in (c, a).

Suppose we take any such solution which enters Σ23 at a point (x̃b3,0, z̃
b
3,0) =

O(e−q/ε) where we drop the dependence on (c, a). This solution reaches Σout
3 at
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(x̃3, z̃3) = (x̃b3,1, z̃
b
3,1) where

x̃b3,1 = x̃b3,0 exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃b3,0, z̃

b
3,0, ε)

)

z̃b3,1 = z̃b3,0 exp
(
β2
−(ρ, δ, ε) + η2

−(ρ, δ, x̃b3,0, z̃
b
3,0, ε)

)
,

(6.150)

We then need to show that Ŵs,`,∗
ε (c, a) is transverse to the fiber in Σout

3 passing

through the point (x̃b3,1, z̃
b
3,1). One way to do this is to find the intersection of this

fiber with Ŵs,`,∗
ε (c, a) and show that it occurs for some x̃3 > x̃t3 , where we know this

transversality holds.

The fiber through (x̃3, z̃3) = (x̃b3,1, z̃
b
3,1) is given by the set of (x̃3, z̃3) satisfying

x̃3 = x̃b3,1 +O
((
|x̃b3,1|+ |z̃b3,1|+ |e−q/ε|

)
(z̃3 − z̃b3,1), (z̃3 − z̃b3,1)2

)
. (6.151)

We can solve for when this intersects Ŵs,`,∗
ε (c, a) by substituting the expressions

(x̃3, z̃3) = (x̃3, ẑ3(x̃3; c, a, ε)) to obtain

x̃3 = x̃b3,1 +O
((
|x̃b3,1|+ |z̃b3,1|+ |e−q/ε|

)
(ẑ3(x̃3)− z̃b3,1),

(
ẑ3(x̃3)− z̃b3,1

)2
)
, (6.152)

which we can solve by the implicit function theorem to find an intersection at

x̃∗3 = O
(

exp
(
−q
ε

+ β2
+(ρ, δ, ε)

))
, (6.153)

which indeed satisfies x̃∗3 > x̃t3 . As the chosen solution on B(s; c, a) was arbitrary,

this shows that Ŵs,`,∗
ε (c, a) is transverse to the fibers passing through each solution

on B(s; c, a) in the section Σout
3 for all (c, a) ∈ Ic × Ia.

As in the proof of Proposition 5.4.4, we track these solutions in backwards time
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from Σout
3 to Σm to deduce that the transversality holds there also. We recall that

y`,∗2,0(c, a) denotes the y2 coordinate in Σm of the backwards evolution of the basepoint

onWs,`
ε (c, a) in Σout

3 corresponding to the fiber containing the solution on Ŵs,`,∗
ε (c, a)

passing through (x̃t3 , ẑ3(x̃t3 ). Hence following the solutions on B(s; c, a) from Σout
3 to

Σm in backwards time gives the result (4.30).

Proof of Lemma 5.4.9. For the case of type 4 pulses, the argument proceeds as in

the proof of Lemma 5.4.5. To treat the case of Type 5 pulses, more care is needed.

Using Lemma 5.3.2 and the fact that the forward/backward evolution of Ws,`
ε (c, a)

coincide for w ≤ wA−∆w, the transversality result (4.84) hold easily for type 5 pulses

with s ∈ (2w† − wA + ∆w, 2w
† −∆w), that is, with secondary right pulses of height

w ∈ (∆w, wA −∆w). For type 5 pulses with s ∈ (2w† − wA −∆w, 2w
† − wA + ∆w),

that is, with secondary height w ∈ (wA − ∆w, wA + ∆w) the backwards evolution

of B(s; c, a) interacts with the Airy point before reaching the section Σm, and hence

the result (4.84) is not clear.

For type 5 pulses with secondary height w ∈ (wA − ∆w, wA + ∆w), the mani-

folds B(s; c, a) in fact approach the Airy point exponentially close to Ŵs,r
ε (c, a) in

backwards time. Hence these trajectories reach Σout
3 after passing through different

charts, as with Ŵs,`
ε (c, a). We need to ensure that Ŵs,`,∗

ε (c, a) is transverse to the

fibers in Σout
3 passing through each point on the intersection of Ŵs,r

ε (c, a) with Σout
3 .

Similar to the above analysis for tracking Ŵs,`,∗
ε (c, a), the manifold Ŵs,r

ε (c, a) inter-

sects Σout
3 curve defined in terms of Airy functions which winds around the origin in

an exponentially decaying manner.

We focus on the part of Ŵs,r
ε (c, a) which reaches Σout

3 after passing through the

charts K1 → K2 → K3 (see §5.6.5) as solutions entering K3 via different charts do

not cause issues. From Lemma 5.6.9, we have that Ŵs,r
ε (c, a) intersects Σout

3 in a
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curve parameterized by y2,0 as

x̃r3,1(y2,0) = x̃r3,0(y2,0) exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃r3,0, z̃

r
3,0, ε)

)

z̃r3,1(y2,0) = z̃r3,0(y2,0) exp
(
β2
−(ρ, δ, ε) + η2

−(ρ, δ, x̃r3,0, z̃
r
3,0, ε)

)
,

(6.154)

where

x̃r3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kε1/3

k1/6δ1/6
X̃r

3(y2,0), z̃r3,0(y2,0) =

√
πe
−

1

δ2/3
+y2,0

kε1/3

k1/6δ1/6
Z̃r

3(y2,0),
(6.155)

and

X̃r
3(y2,0) =

(
Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zr2,0(y2,0)

)
e

2
3

1
kδ (2 +O (δ))

+O(δ)
(

Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zr2,0(y2,0)

)
e−

2
3

1
kδ +O(ε2/3)

Z̃r
3(y2,0) =

(
Bi
(
− y2,0

k2/3

)
+ k1/3δ4/3 Bi′

(
− y2,0

k2/3

)
zr2,0(y2,0)

)
e−

2
3

1
kδ (1 +O (δ))

+O(δ)
(

Ai
(
− y2,0

k2/3

)
+ k1/3δ4/3 Ai′

(
− y2,0

k2/3

)
zr2,0(y2,0)

)
e

2
3

1
kδ +O(ε2/3).

(6.156)

The fiber through (x̃3, z̃3) = (x̃r3,1(y2,0), z̃r3,1(y2,0)) is given by (x̃3, z̃3) satisfying

x̃3 = x̃r3,1(y2,0)

+O
((
|x̃r3,1(y2,0)|+ |z̃r3,1(y2,0)|+ |e−q/ε|

)
(z̃3 − z̃r3,1(y2,0)), (z̃3 − z̃r3,1(y2,0))2

)
.

(6.157)

We can solve for when this intersects Ŵs,`,∗
ε (c, a) by plugging in (x̃3, z̃3) = (x̃3, ẑ3(x̃3))

to obtain

x̃3 = x̃r3,1(y2,0)

+O
((
|x̃r3,1(y2,0)|+ |z̃r3,1(y2,0)|+ |e−q/ε|

)
(ẑ3(x̃3)− z̃r3,1(y2,0)),

(
ẑ3(x̃3)− z̃r3,1(y2,0)

)2
)
,

(6.158)
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which we can solve by the implicit function theorem to find an intersection at

x̃∗3(y2,0) = x̃r3,1(y2,0) +O
(
e2β2

+(ρ,δ,ε)
)
, (6.159)

provided x̃∗3 > x̃t3 (i.e. we need to be careful not to leave the domain on which

ẑ3(x̃3; c, a, ε) is both well-defined and transverse to the fibers of Ws,`
ε (c, a)). To

determine this, we note that the minimum possible x̃∗3(y2,0)-value achieved is at a

value of y2,0 which is exponentially close to that which gives the minimum value of

x̃r3,1(y2,0). We hence proceed as above by computing the first ‘turning point’ on this

curve, that is, the minimum (or largest negative) x̃3-value achieved by x̃r3,1(y2,0).

Similar to the proof of Lemma 5.6.10, we search for the first zero of (x̃r3,1)′(y2,0),

which amounts to solving for the first zero of

(
X̃r

3(y2,0)− kε1/3(X̃r
3)′(y2,0) +O

(
δx̃r3,0(y2,0)

(
|X̃r

3 |+ |Z̃r
3 |+O(ε1/3)

)))
= 0,

(6.160)

which occurs when

y2,0 = yr2,0 + kε1/3 +O(ε2/3), (6.161)

where yr2,0 is the first zero of X̃r
3(y2,0). Hence the minimum of x̃∗3(y2,0) occurs at some

y∗,r2,0 = yr2,0 + kε1/3 +O(ε2/3). (6.162)
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We now note that for y2,0 near yr2,0, for all sufficiently small ε, we have that

X̃r
3(y2,0) = X̃`

3(y2,0) +
((
k1/3δ4/3 Ai′

(
− y2,0

k2/3

))
e

2
3

1
kδ (2 +O (δ))

+ O
(
δe−

2
3

1
kδ

(
k1/3δ4/3 Bi′

(
− y2,0

k2/3

))) (
zr2,0(y2,0)− z`2,0(y2,0)

)
+O(ε2/3)

)
,

(6.163)

and hence

0 = X̃r
3(yr2,0) = X̃ ′3(y`2,0)(yr2,0 − y`2,0) +O

(
(yr2,0 − y`2,0)2

)

+

((
k1/3δ4/3 Ai′

(
− y

r
2,0

k2/3

))
e

2
3

1
kδ (2 +O (δ))

+ O
(
δe−

2
3

1
kδ

(
k1/3δ4/3 Bi′

(
− y

r
2,0

k2/3

)))(
zr2,0(yr2,0)− z`2,0(yr2,0)

)
+O(ε2/3)

)
,

(6.164)

from which we deduce that

yr2,0 − y`2,0 = µ
(
zr2,0(yr2,0)− z`2,0(yr2,0)

)
+O

(
(zr2,0(yr2,0)− zr2,0(yr2,0))2, ε2/3

)
, (6.165)

for some constant µ > 0 bounded away from zero uniformly in ε. Hence we have

y∗,r2,0 − yt2,0 = µ
(
zr2,0(yr2,0)− z`2,0(yr2,0)

)
+O

(
(zr2,0(yr2,0)− zr2,0(yr2,0))2, ε2/3

)
. (6.166)

Finally, using (6.130), (6.160), (6.166), Lemma 5.6.9, and the definitions of y∗,r2,0, y
t
2,0,

we have that

X̃r
3(y∗,r2,0)− X̃`

3(yt2,0) = kε1/3
(

(X̃r
3)′(y∗,r2,0)− (X̃`

3)′(yt2,0)
)

+O
(
ε2/3
)

= O
(
ε1/3

(
y∗,r2,0 − yt2,0

)
, ε2/3

)
.

(6.167)
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We now estimate

x̃∗3 − x̃t3 = x̃r3,1(y∗,r2,0)− x̃t3 +O
(
eβ

2
+(ρ,δ,ε)−q/ε

)

= x̃r3,0(y∗,r2,0) exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃r3,0(y∗,r2,0), z̃r3,0(y∗,r2,0), ε)

)

− x̃3,0(yt2,0) exp
(
β2

+(ρ, δ, ε) + η2
+(ρ, δ, x̃`3,0(yt2,0), z̃`3,0(yt2,0), ε)

)

+O
(
eβ

2
+(ρ,δ,ε)−q/ε

)

=
(
x̃r3,0(y∗,r2,0)(1 +O(ε2/3))− x̃`3,0(yt2,0)(1 +O(ε2/3)) +O

(
e−q/ε

))
eβ

2
+(ρ,δ,ε)

=

(√
πe
−

1

δ2/3
+y
∗,r
2,0

kε1/3

k1/6δ1/6
X̃r

3(y∗,r2,0)(1 +O(ε2/3))

−
√
πe
−

1

δ2/3
+yt2,0

kε1/3

k1/6δ1/6
X̃`

3(yt2,0)(1 +O(ε2/3)) +O
(
e−q/ε

)
)
eβ

2
+(ρ,δ,ε)

=

(
X̃r

3(y∗,r2,0)(1 +O(ε2/3))− e
y
∗,r
2,0−y

t
2,0

kε1/3 X̃`
3(yt2,0)(1 +O(ε2/3)) +O

(
e−q/ε

)
)

×
√
πe
−

1

δ2/3
+y
∗,r
2,0

kε1/3

k1/6δ1/6
eβ

2
+(ρ,δ,ε)

=

((
X̃`

3(yt2,0) +O
(
ε1/3

(
y∗,r2,0 − yt2,0

)
, ε2/3

))
(1 +O(ε2/3))

− e
y
∗,r
2,0−y

t
2,0

kε1/3 X̃`
3(yt2,0)(1 +O(ε2/3))

)√
πe
−

1

δ2/3
+y
∗,r
2,0

kε1/3

k1/6δ1/6
eβ

2
+(ρ,δ,ε)

=

(
X̃`

3(yt2,0)

(
1− e

y
∗,r
2,0−y

t
2,0

kε1/3 (1 +O(ε2/3))

)
+O

(
ε1/3

(
y∗,r2,0 − yt2,0

)
, ε2/3

)
)

×
√
πe
−

1

δ2/3
+y
∗,r
2,0

kε1/3

k1/6δ1/6
eβ

2
+(ρ,δ,ε)

>

(
ε1/3(X̃`

3)′(yt2,0)

(
−µκ(ρ)

δ
+O

((
κ(ρ)

δ

)2
))

+O
(
ε2/3 log ε

)
)

×
√
πe
−

1

δ2/3
+y
∗,r
2,0

kε1/3

k1/6δ1/6
eβ

2
+(ρ,δ,ε)

> 0,



328

for all sufficiently small ε > 0. From this we deduce that x̃∗3 > x̃t3 as required. The

remainder of the proof follows as in the proof of Lemma 5.4.5.



Chapter Six

Conclusion
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In the preceding we showed that the FitzHugh–Nagumo system

ut = uxx + f(u)− w

wt = ε(u− γw),

(0.1)

admits a traveling pulse solution (u,w)(x, t) = (u,w)(x + ct) with wave speed c =

c(a, ε) for 0 < a < 1/2 and sufficiently small ε > 0. We showed that the region of

existence near a = 0 encompasses a Belyakov transition occurring at the equilibrium

(u, v, w) = (0, 0, 0) where two real stable eigenvalues split as a complex conjugate

pair and thus describes the onset of small scale oscillations in the tails of the pulses.

This result extends the classical existence result for traveling pulses in FitzHugh–

Nagumo.

We employed many of the same techniques used in the classical existence proof

in the context of geometric singular perturbation theory. Fenichel’s theorems and

the exchange lemma were used to construct the pulse up to understanding the flow

near two non-hyperbolic fold points of the critical manifold. To understand the flow

near the folds, we used blow up techniques to extend results from [38] and obtain

estimates on the flow in small neighborhoods of these points.

We next proved the spectral and nonlinear stability of fast pulses with oscillatory

tails in the regime where 0 < a, ε� 1. We showed that the linearization of this PDE

about a fast pulse has precisely two eigenvalues near the origin when considered in

an appropriate weighted function space. One of these eigenvalues λ0 is situated at

the origin due to translational invariance, and we proved that the second nontrivial

eigenvalue λ1 is real and strictly negative, thus yielding stability. Our proof also

recovers the known result that fast pulses with monotone tails, which exist for fixed

0 < a < 1
2
, are stable. Comparing the case of monotone versus oscillatory tails, there
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are some challenges present in the oscillatory case due to the nonhyperbolicity of the

slow manifolds at the two fold points where the Nagumo front and back jump off to

the other branches of the slow manifold. Our results show that these challenges are

not just technical but rather result in qualitatively different behaviors. First, the

fold at the equilibrium rest state facilitates the onset of the oscillations in the tails of

the pulses. Second, the symmetry present due to the cubic nonlinearity means that

the back has to jump off the other fold point. Due to the interaction of the back with

this second fold point, the scaling of the critical eigenvalue λ1 in the oscillatory case

is given by ε2/3, in contrast to the monotone case where it scales with ε. Moreover,

the criterion that needs to be checked to ascertain the sign of λ1 is different in these

two cases.

Our proof of spectral stability is based on Lyapunov-Schmidt reduction, and,

more specifically, on the approach taken in [31] to prove the stability of fast pulses

with monotone tails for the discrete FitzHugh-Nagumo system. We begin with the

linearization of the FitzHugh-Nagumo equation about the fast pulse and write the

associated eigenvalue problem as

ψξ = A(ξ, λ)ψ, (0.2)

where A(ξ, λ)→ Â(λ) as |ξ| → ∞. The ξ-dependence in the matrix A(ξ, λ) reflects

the passage of the fast pulse along the front, through the right branch of the slow

manifold, the jump-off at the upper-right knee along the back, and down the left

branch of the slow manifold. Key to our approach is the fact that the spectrum

of the matrix A(ξ, λ) near the slow manifolds has a consistent splitting into one

unstable and two center-stable eigenvalues, and that an exponential weight moves

the center eigenvalue into the left half-plane. Eigenfunctions therefore correspond to

solutions that decay exponentially as ξ → −∞, while they may grow algebraically or
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even with a small exponential rate (corresponding to the center-stable matrix eigen-

values) as ξ →∞. The splitting along the slow manifolds guarantees the existence of

exponential dichotomies along the slow manifolds and shows that they cannot con-

tribute point eigenvalues. The splitting allows us also to decide whether the front

and the back will contribute eigenvalues. For the FitzHugh-Nagumo system, both

will contribute because their derivatives decay exponentially as ξ → −∞ so that they

emerge along the unstable direction. In contrast, for the cases studied in [5, 29], the

back decays algebraically as ξ → −∞ and therefore emerges from the center-stable

direction instead of the unstable direction as required for eigenfunctions: hence, the

back does not contribute an eigenvalue. Thus, for FitzHugh-Nagumo, both front

and back will contribute an eigenvalue, and our approach consists of constructing,

for each prospective eigenvalue λ in the complex plane, a piecewise continuous eigen-

function of the linearization, that is a piecewise continuous solution to (0.2), where

we allow for precisely two jumps that occur in the middle of the front and the back.

Finding eigenvalues then reduces to identifying values of λ for which these jumps

vanish. Melnikov theory allows us to find expressions for these jumps that can then

be solved.

We emphasize that this approach applies to the more general situation of a pulse

that is constructed by concatenating several fronts and backs with parts of the slow

manifolds: as long as there is a consistent splitting of eigenvalues, we can decide

which fronts and backs contribute an eigenvalue, and then construct prospective

eigenfunctions with as many jumps as expected eigenvalues, where the jumps occur

near the fronts and backs that contribute. Equation (0.2) will have exponential

dichotomies along the slow manifolds and along the fronts and backs that do not

contribute eigenvalues, which allows for a reduction to a finite set of jumps with

expansions that can be calculated using Melnikov theory.
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Our method provides a piecewise continuous eigenfunction for any prospective

eigenvalue λ. Thus, by finding the eigenvalues λ for which the finite set of jumps

vanishes, we have therefore determined the corresponding eigenfunctions. In our

analysis, this amounts to the observation that eigenfunctions are found by piecing

together multiples of the derivatives of the Nagumo front βfφ
′
f and back βbφ

′
b, where

the ratio of the amplitudes (βf , βb) is determined by the corresponding eigenvalue

(see Remark 4.5.12). As expected, the eigenfunction corresponding to the trans-

lational eigenvalue λ0 = 0 is represented by (βf , βb) = (1, 1). Moreover, assuming

the second eigenvalue λ1 < 0 lies to the right of the essential spectrum, the cor-

responding eigenfunction is centered at the back as we have (βf , βb) = (0, 1). The

implications for the dynamics of the pulse profile under small perturbations are as

follows. If a perturbation is localized near the back of the pulse, then it excites only

the eigenfunction corresponding to λ1, and the back will move with exponential rate

back to its original position relative to the front without interacting with the front.

On the other hand, perturbations that affect also the front will cause a shift of the

full profile. These two mechanisms provide a detailed description of the way in which

solutions near the traveling pulse converge over time to an appropriate translate of

the pulse.

Finally, we described a phenomenon, previously observed numerically [9, 22, 23]

in which the branch of fast pulse solutions to (0.1) described in [8] turns sharply

when continued numerically in the parameters (c, a). In addition, we contextualized

the above existence result in the study of FitzHugh–Nagumo as a “CU-system”,

and we described a geometric mechanism for how the onset of oscillations leads

to the addition of a full second pulse and the appearance of a homoclinic banana

bifurcation diagram. This transition also explains the termination of the branch of

pulses constructed above as we approach the region in parameter space containing
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canard solutions arising from the singular Hopf bifurcation occurring at the origin.

Using geometric singular perturbation theory and blow-up techniques, we con-

structed this transition analytically. Our results guarantee, for sufficiently small

ε > 0, the existence of a one-parameter family of traveling pulse solutions, which

encompasses the onset of oscillations in the tails and all intermediate pulses between

the single and double pulse. The procedure works for constructing pulses along

the transition which are arbitrarily close to the double pulse, but not all double

pulses along the homoclinic banana. This seems in line with the observation that

for sufficiently small ε > 0, the homoclinic banana cannot be continued beyond the

Belyakov transition [9]. Further study is required to determine exactly how this

branch terminates.

The analysis in the construction may also shed light on the phenomenon of spike

adding, which has been studied and observed in a variety of contexts [13, 21, 44, 45,

52, 53]. A common theme in such studies is the connection with a canard explo-

sion type mechanism, and previous studies have been primarily numerical. A first

question is whether there is a common geometric set-up which generates this type

of behavior. The single-to-double pulse transition described above in relation to the

FitzHugh-Nagumo system is a starting point for understanding the geometry and

analysis required in constructing such a transition.
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