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R is an associative ring with identity.
“module” means left R-module.



Filtrations

Definitions.

1. A filtration of a module A is a continuous chain of submodules
{Aα : α < σ} of A whose union is A such that A0 = 0 and Aβ =

⋃
α<β Aα

for all limit ordinals β < σ.
2. Let C be a class of modules.
A module A is said to be C-filtered if it has a filtration as above s.t. ,
Aα+1/Aα ∈ C for all α + 1 < σ.

Examples.

1. Every module A has a filtration {Aα : α < σ} where σ = the size of a
minimal generating set and each Aα is < σ-generated.
2. Every free module is {R}-filtered. (And conversely.)



Projective modules

Theorem. (Kaplansky)

A module is projective if and only if it is C-filtered, where C is the set of
countably-generated projective modules.

Recall: P is projective iff it is a direct summand of a free module iff for
every epimorphism f : M → N and every homomorphism g : P → N, there
is h : P → M such that g = f ◦ h.

Definitions

A class A of modules is κ-deconstructible if every module in A is
C-filtered, where C is the set of ≤ κ-generated elements of A.
A is deconstructible (or bounded) if it is κ-deconstructible for some κ.



Singular Compactness

Shelah’s Singular Compactness Theorem (v.1)

Let λ be a singular cardinal and M an R-module which is ≤ λ-generated.
Let R be a p.i.d.
Assume that for every regular cardinal κ < λ, every < κ-generated
submodule of M is free.
Then M is free.

(λ is singular if the cofinality of λ is < λ iff there is a strictly increasing
sequence {µν : ν < τ} of cardinals < λ and length τ < λ whose
supremum is λ.)



Singular Compactness, version 2

Shelah’s Singular Compactness Theorem (v.2)

Let λ be a singular cardinal and M an R-module which is ≤ λ-generated.
Let R be an hereditary ring
Assume that for every regular cardinal κ < λ, every < κ-generated
submodule of M is projective.
Then M is projective.

(λ is singular if the cofinality of λ is < λ iff there is a strictly increasing
sequence {µν : ν < τ} of cardinals < λ and length τ < λ whose
supremum is λ.)

(R is hereditary if every submodule of a projective module is projective iff
every left ideal is projective.)



Singular Compactness, version 3

Shelah’s Singular Compactness Theorem (v.3)

Let λ be a singular cardinal and M an R-module which is ≤ λ-generated.
Let R be any ring
Assume that for every regular cardinal κ < λ, “enough” < κ-generated
submodules of M are projective.
Then M is projective.

“ enough”: There is a set Sκ of < κ-generated projective submodules of
M such that every subset of M of cardinality < κ is contained in a member
of Sκ; and Sκ is closed under unions of well-ordered chains of length < κ.



Singular Compactness, version 4

Let C be a set of countably-presented modules.

Shelah’s Singular Compactness Theorem (v.4)

Let λ be a singular cardinal and M an R-module which is ≤ λ-generated.
Let R be any ring
Assume that for every regular cardinal κ < λ, “enough” < κ-generated
submodules of M are C-filtered.
Then M is C-filtered.

“ enough”: There is a set Sκ of < κ-generated C-filtered submodules of
M such that every subset of M of cardinality < κ is contained in a member
of Sκ; and Sκ is closed under unions of well-ordered chains of length < κ.

(Recall: A is C-filtered if it has a filtration s.t. , Aα+1/Aα ∈ C for all α.)



Singular Compactness, version 5

Let C be a set of ≤ µ-presented modules.

Shelah’s Singular Compactness Theorem (v.5)

Let λ be a singular cardinal > µ and M an R-module which is
≤ λ-generated.
Let R be any ring
Assume that for every regular cardinal κ < λ and > µ, “enough”
< κ-generated submodules of M are C-filtered.
Then M is C-filtered.

“ enough”: There is a set Sκ of < κ-generated C-filtered submodules of
M such that every subset of M of cardinality < κ is contained in a member
of Sκ; and Sκ is closed under unions of well-ordered chains of length < κ.

(Recall: A is C-filtered if it has a filtration s.t. , Aα+1/Aα ∈ C for all α.)



Classes defined by Ext

S a class of modules

Definitions
⊥S = {N | Ext1(N,M) = 0 for all M ∈ S}
S⊥ = {N | Ext1(M,N) = 0 for all M ∈ S}

Recall:
Ext1(A,B) = 0 iff every short exact sequence

0 → B → M → A → 0

splits,
i.e., up to isomorphism the only one is

0 → B → B ⊕ A → A → 0



Examples/Definitions.

{Projective modules} = ⊥{all modules}
{Injective modules} = {all modules}⊥
⊥{R} = the class of Whitehead modules

(R an ID)
⊥{torsion modules} = the class of Baer modules



Deconstructibility

Let A = ⊥B.
Fact: If A is the union of a filtration {Aα : α < σ} such that
Aα+1/Aα ∈ A for all α < σ, then A ∈ A.

The key question

Can we reduce knowledge of members of A to knowledge of its “small”
members?
i.e., is A bounded?
i.e., is there κ such that every A ∈ A is κ-deconstructible?
i.e., is every every A ∈ A the union of a continuous chain of submodules
{Aα : α < σ} such that each Aα+1/Aα is ≤ κ-generated and belongs to
A?



The regular case

Let κ be a regular cardinal.

The regular theorem. (v.1 Shelah)

Assume V = L . Let R be a hereditary ring and let A = ⊥{N} and
κ > |R|+ |N|+ ℵ0.
If A is ≤ κ-generated and has a filtration {Aα : α < κ} of < κ-generated
submodules belonging to A, then
there is a subfiltration {Af (α) : σ < κ} such that Af (α+1)/Af (α) ∈ A for all
α < κ. (Here f : κ → κ is a continuous increasing function.)



Application: Whitehead groups

Theorem. (Shelah, et. al.)

Assume V = L. If R is a hereditary ring, then for any R-module N,
⊥{N} is |R|+ |N|+ ℵ0-deconstructible.

Consequences

(i) (1973) Assuming V = L, every Whitehead group (Z-module) is free.
(ii) Assuming V = L, if R is a p.i.d. of cardinality ≤ ℵ1 which is not a
complete discrete valuation ring, then every Whitehead R-module is free.

Remarks.
(i) and (ii) are not provable in ZFC.
For some p.i.d’s of cardinality ≥ ℵ2, the conclusion of (ii) is provably false
(in ZFC).
(iii) Saroch - Trlifaj: can replace “R is hereditary” by “A is closed under
pure submodules.”



Regular case, version 2 (in ZFC)

A = ⊥B where B is closed under direct sums.

The regular theorem. (v.2 E-Fuchs-Shelah)

Assume B is closed under arbitrary direct sums. If A is ≤ κ-generated and
has a filtration {Aα : α < κ} of < κ-generated submodules belonging to A
and s.t. proj. dim.(A + α/Aα+1) ≤ 1, then
there is a subfiltration {Af (α) : σ < κ} such that Af (α+1)/Af (α) ∈ A for all
α < κ.



A word about the proof
A subset S of κ is called stationary if it has non-empty intersection with
the range of every continuous increasing f : κ → κ.

It suffices to prove that

S
def
= {α < κ : ∃µα > α s.t. Aµα/Aα /∈ A}

is not stationary, for then any f missing S will do.

Aiming for a contradiction, we assume S is stationary and show
Ext1(A,B) 6= 0 for some B ∈ B (B = N in v. 1), i.e. A /∈ ⊥B.

Version 2 : W.l.o.g. if α ∈ S , µα = α + 1, i.e. there is Bα ∈ B such that
Ext1(Aα+1/Aα,Bα) 6= 0.
We construct a non-splitting short exact sequence

0 → ⊕β∈SBβ → M → A → 0

as the union of a chain

0 → ⊕β<νBβ → Mν → Aν → 0.



If there were a splitting g : A → M of

0 → ⊕β∈SBβ → M → A → 0

there would be α ∈ S such that g � Aα : Aα → Mα.
But we choose

0 → ⊕β<α+1Bβ → Mα+1 → Aα+1 → 0

to prevent any such from extending.

In Version 1, we must construct a chain

0 → N → Mν → Aν → 0

and we must use the ♦ prediction principles to predict and kill a particular
splitting : Aα → Mα for each α ∈ S .



Application: Baer modules

Baer (1936): countable Baer Z-modules are free.
Griffith (1969): all Baer Z-modules are free.
Kaplansky (1962): Baer modules over arbitrary IDs are flat and of proj.
dim ≤ 1. Are they all projective?

Consequence (1990)

(R an ID) The class of Baer modules is ℵ0-deconstructible. Hence, if every
countably generated Baer R-module is projective, then every Baer
R-module is projective.

(Recall: A is Baer if A ∈ ⊥{torsion modules}.)

Theorem. (Angeleri Hugel-Bazzoni-Herbera 2005)

Every countably generated Baer module over an arbitrary ID is projective.
Hence, every Baer module is projective.



Regular case, version 3

A = ⊥B where B is closed under direct sums.

The regular theorem. (v.3 Šťov́ıček-Trlifaj)

Assume B is closed under arbitrary direct sums. If A is ≤ κ-generated and
has a filtration {Aα : α < κ} of < κ-generated submodules belonging to
A, then
there is a subfiltration {Af (α) : σ < κ} such that Af (α+1)/Af (α) ∈ A for all
α < κ.



Cotorsion pairs

Definition. (Salce 1979)

A cotorsion pair is a pair of classes of modules (A,B) such that A = ⊥B
and B = A⊥

Examples

(Projectives, R-modules)

(R-modules, Injectives)

(⊥(S⊥),S⊥)
(⊥S, (⊥S)⊥)

Case of S = {Pure-injective modules}:
{Flat modules} = ⊥S
{Flat modules}⊥ = {(Enoch) Cotorsion modules}

(Flat, Cotorsion) is a cotorsion pair.



Tilting cotorsion pairs

Definition/Theorem

A cotorsion pair (A,B) is n-tilting if

Every element of A is of proj. dim. ≤ n;

Exti (A,B) = 0 for all i ≥ 2 and all A ∈ A,B ∈ B; and

B is closed under direct sums.

Example/Theorem

Let S be a set of modules (of proj. dim ≤ n) such that each member M of
S has a projective resolution

0 → Pn → Pn−1 → ... → P0 → M → 0

where each P` is finitely-generated.

Let B = S⊥∞ def
= {N | Exti (M,N) = 0 for all M ∈ S and all i ≥ 1}.

Then (⊥B,B) is an n-tilting cotorsion pair of finite type.

There is an analogous definition for countable type.



Key question

Is every tilting cotorsion pair of finite type?

Theorems

1. (Bazzoni-E-Trlifaj 2003) All 1-tilting pairs are of countable type.

2. (Bazzoni-Herbera 2005) All 1-tilting pairs are of finite type.

3. (Šťov́ıček-Trlifaj 2005) All n-tilting cotorsion pairs are of countable
type.

4. (Bazzoni-Šťov́ıček 2005) All n-tilting cotorsion pairs are of finite type.



Complete cotorsion pairs

Definition. A cotorsion pair (A,B) is complete if it has enough projectives
and injectives, i.e., for every module M, there is a short exact sequence

0 → B → A → M → 0

such that A ∈ A and B ∈ B; or, equivalently (Salce), for every module M,
there is a short exact sequence

0 → M → B → A → 0

such that A ∈ A and B ∈ B.

Theorem. (E-Trlifaj)

The cotorsion pair (A,B) is complete if it is generated by a set, i.e.,
B = {M}⊥ for some module M.



Application: Flat covers

(A,B) is generated by a set iff A is deconstructible.
(Enochs for if; Šťov́ıček-Trlifaj for only if)

Theorem (Enochs 2000)

The (Flat, Cotorsion) pair is deconstructible,
hence complete, so flat covers exist for modules over any ring.



R = Z

Theorems.

1. (E-Trlifaj) (A,B) is deconstructible, and hence complete, if every
member of B is cotorsion.

2. (E-Shelah-Trlifaj) It is consistent with ZFC + GCH that for every N
which is not cotorsion, the cotorsion pair (⊥{N}, (⊥{N})⊥) is not
generated by a set, hence not deconstructible.

3. (E-Shelah) It is consistent with ZFC + GCH that (⊥{Z}, (⊥{Z})⊥) is
not complete.


