SET-THEORETIC METHODS IN MODULE THEORY

Paul C. Eklof University of California, Irvine

Second Czech-Catalan Conference in Mathematics Barcelona, September 2006 (corrected version)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

R is an associative ring with identity. "module" means left *R*-module.

Filtrations

Definitions.

1. A filtration of a module A is a continuous chain of submodules $\{A_{\alpha}: \alpha < \sigma\}$ of A whose union is A such that $A_0 = 0$ and $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$ for all limit ordinals $\beta < \sigma$. 2. Let C be a class of modules. A module A is said to be C-filtered if it has a filtration as above s.t., $A_{\alpha+1}/A_{\alpha} \in C$ for all $\alpha + 1 < \sigma$.

Examples.

Every module A has a filtration {A_α : α < σ} where σ = the size of a minimal generating set and each A_α is < σ-generated.
 Every free module is {R}-filtered. (And conversely.)

Projective modules

Theorem. (Kaplansky)

A module is projective if and only if it is C-filtered, where C is the set of countably-generated projective modules.

Recall: P is projective iff it is a direct summand of a free module iff for every epimorphism $f : M \to N$ and every homomorphism $g : P \to N$, there is $h : P \to M$ such that $g = f \circ h$.

Definitions

A class \mathcal{A} of modules is κ -deconstructible if every module in \mathcal{A} is \mathcal{C} -filtered, where \mathcal{C} is the set of $\leq \kappa$ -generated elements of \mathcal{A} . \mathcal{A} is deconstructible (or bounded) if it is κ -deconstructible for some κ .

Singular Compactness

Shelah's Singular Compactness Theorem (v.1)

Let λ be a singular cardinal and M an R-module which is $\leq \lambda$ -generated. Let R be a p.i.d. Assume that for every regular cardinal $\kappa < \lambda$, every $< \kappa$ -generated submodule of M is free. Then M is free.

(λ is singular if the cofinality of λ is $< \lambda$ iff there is a strictly increasing sequence $\{\mu_{\nu} : \nu < \tau\}$ of cardinals $< \lambda$ and length $\tau < \lambda$ whose supremum is λ .)

Shelah's Singular Compactness Theorem (v.2)

Let λ be a singular cardinal and M an R-module which is $\leq \lambda$ -generated. Let R be an hereditary ring Assume that for every regular cardinal $\kappa < \lambda$, every $< \kappa$ -generated submodule of M is projective. Then M is projective.

(λ is singular if the cofinality of λ is $< \lambda$ iff there is a strictly increasing sequence $\{\mu_{\nu} : \nu < \tau\}$ of cardinals $< \lambda$ and length $\tau < \lambda$ whose supremum is λ .)

(R is *hereditary* if every submodule of a projective module is projective iff every left ideal is projective.)

Shelah's Singular Compactness Theorem (v.3)

Let λ be a singular cardinal and M an R-module which is $\leq \lambda$ -generated. Let R be any ring Assume that for every regular cardinal $\kappa < \lambda$, "enough" $< \kappa$ -generated submodules of M are projective. Then M is projective.

"enough": There is a set S_{κ} of $< \kappa$ -generated projective submodules of M such that every subset of M of cardinality $< \kappa$ is contained in a member of S_{κ} ; and S_{κ} is closed under unions of well-ordered chains of length $< \kappa$.

Let $\ensuremath{\mathcal{C}}$ be a set of countably-presented modules.

Shelah's Singular Compactness Theorem (v.4) Let λ be a singular cardinal and M an R-module which is $\leq \lambda$ -generated. Let R be any ring Assume that for every regular cardinal $\kappa < \lambda$, "enough" $< \kappa$ -generated submodules of M are C-filtered. Then M is C-filtered.

"enough": There is a set S_{κ} of $< \kappa$ -generated C-filtered submodules of M such that every subset of M of cardinality $< \kappa$ is contained in a member of S_{κ} ; and S_{κ} is closed under unions of well-ordered chains of length $< \kappa$. (Recall: A is C-filtered if it has a filtration s.t. , $A_{\alpha+1}/A_{\alpha} \in C$ for all α .)

Let C be a set of $\leq \mu$ -presented modules.

Shelah's Singular Compactness Theorem (v.5)

Let λ be a singular cardinal $> \mu$ and M an R-module which is $\leq \lambda$ -generated. Let R be any ring Assume that for every regular cardinal $\kappa < \lambda$ and $> \mu$, "enough" $< \kappa$ -generated submodules of M are C-filtered. Then M is C-filtered.

"enough": There is a set S_{κ} of $< \kappa$ -generated C-filtered submodules of M such that every subset of M of cardinality $< \kappa$ is contained in a member of S_{κ} ; and S_{κ} is closed under unions of well-ordered chains of length $< \kappa$. (Recall: A is C-filtered if it has a filtration s.t. , $A_{\alpha+1}/A_{\alpha} \in C$ for all α .)

Classes defined by Ext

 $\ensuremath{\mathcal{S}}$ a class of modules

Definitions

$$^{\perp}\mathcal{S} = \{N \mid \mathsf{Ext}^{1}(N, M) = 0 \text{ for all } M \in \mathcal{S}\}$$

 $\mathcal{S}^{\perp} = \{ N \mid \mathsf{Ext}^1(M, N) = 0 \text{ for all } M \in \mathcal{S} \}$

Recall: $Ext^1(A, B) = 0$ iff every short exact sequence

$$0 \rightarrow B \rightarrow M \rightarrow A \rightarrow 0$$

splits,

i.e., up to isomorphism the only one is

$$0 \rightarrow B \rightarrow B \oplus A \rightarrow A \rightarrow 0$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Examples/Definitions.

- {*Projective modules*} = $^{\perp}$ {*all modules*}
- {Injective modules} = {all modules}^ \perp
- \bot {*R*} = the class of Whitehead modules

• (R an ID)

 $^{\perp}$ {torsion modules} = the class of Baer modules

Deconstructibility

Let $\mathcal{A} = {}^{\perp}\mathcal{B}$. **Fact:** If A is the union of a filtration $\{A_{\alpha} : \alpha < \sigma\}$ such that $A_{\alpha+1}/A_{\alpha} \in \mathcal{A}$ for all $\alpha < \sigma$, then $A \in \mathcal{A}$.

The key question

Can we reduce knowledge of members of ${\mathcal A}$ to knowledge of its "small" members?

- i.e., is \mathcal{A} bounded?
- i.e., is there κ such that every $A \in \mathcal{A}$ is κ -deconstructible?

i.e., is every every $A \in \mathcal{A}$ the union of a continuous chain of submodules $\{A_{\alpha} : \alpha < \sigma\}$ such that each $A_{\alpha+1}/A_{\alpha}$ is $\leq \kappa$ -generated and belongs to \mathcal{A} ?

The regular case

Let κ be a regular cardinal.

The regular theorem. (v.1 Shelah)

Assume V = L. Let R be a hereditary ring and let $\mathcal{A} = {}^{\perp}\{N\}$ and $\kappa > |R| + |N| + \aleph_0$. If A is $\leq \kappa$ -generated and has a filtration $\{A_{\alpha} : \alpha < \kappa\}$ of $< \kappa$ -generated submodules belonging to \mathcal{A} , then there is a subfiltration $\{A_{f(\alpha)} : \sigma < \kappa\}$ such that $A_{f(\alpha+1)}/A_{f(\alpha)} \in \mathcal{A}$ for all $\alpha < \kappa$. (Here $f : \kappa \to \kappa$ is a continuous increasing function.)

Application: Whitehead groups

Theorem. (Shelah, et. al.)

Assume V = L. If R is a hereditary ring, then for any R-module N, $^{\perp}{N}$ is $|R| + |N| + \aleph_0$ -deconstructible.

Consequences

(i) (1973) Assuming V = L, every Whitehead group (\mathbb{Z} -module) is free. (ii) Assuming V = L, if R is a p.i.d. of cardinality $\leq \aleph_1$ which is not a complete discrete valuation ring, then every Whitehead R-module is free.

Remarks.

(i) and (ii) are not provable in ZFC.

For some p.i.d's of cardinality $\geq \aleph_2$, the conclusion of (ii) is provably false (in ZFC).

(iii) Saroch - Trlifaj: can replace "R is hereditary" by "A is closed under pure submodules."

Regular case, version 2 (in ZFC)

 $\mathcal{A} = {}^{\perp}\mathcal{B}$ where \mathcal{B} is closed under direct sums.

The *regular* theorem. (v.2 E-Fuchs-Shelah)

Assume \mathcal{B} is closed under arbitrary direct sums. If A is $\leq \kappa$ -generated and has a filtration $\{A_{\alpha} : \alpha < \kappa\}$ of $< \kappa$ -generated submodules belonging to \mathcal{A} and s.t. proj. dim. $(A + \alpha/A_{\alpha+1}) \leq 1$, then there is a subfiltration $\{A_{f(\alpha)} : \sigma < \kappa\}$ such that $A_{f(\alpha+1)}/A_{f(\alpha)} \in \mathcal{A}$ for all $\alpha < \kappa$.

A word about the proof

A subset S of κ is called stationary if it has non-empty intersection with the range of every continuous increasing $f : \kappa \to \kappa$. It suffices to prove that

$$S \stackrel{\mathsf{def}}{=} \{ \alpha < \kappa : \exists \mu_{\alpha} > \alpha \text{ s.t. } A_{\mu_{\alpha}} / A_{\alpha} \notin \mathcal{A} \}$$

is not stationary, for then any f missing S will do.

Aiming for a contradiction, we assume S is stationary and show $\operatorname{Ext}^{1}(A, B) \neq 0$ for some $B \in \mathcal{B}$ (B = N in v. 1), i.e. $A \notin {}^{\perp}\mathcal{B}$. *Version 2*: W.I.o.g. if $\alpha \in S$, $\mu_{\alpha} = \alpha + 1$, i.e. there is $B_{\alpha} \in \mathcal{B}$ such that $\operatorname{Ext}^{1}(A_{\alpha+1}/A_{\alpha}, B_{\alpha}) \neq 0$.

We construct a non-splitting short exact sequence

$$0 o \oplus_{eta \in S} B_{eta} o M o A o 0$$

as the union of a chain

$$0 \to \oplus_{\beta < \nu} B_{\beta} \to M_{\nu} \to A_{\nu} \to 0.$$

If there were a splitting $g: A \rightarrow M$ of

$$0 \to \bigoplus_{\beta \in S} B_{\beta} \to M \to A \to 0$$

there would be $\alpha \in S$ such that $g \upharpoonright A_{\alpha} : A_{\alpha} \to M_{\alpha}$. But we choose

$$0 \to \oplus_{\beta < \alpha + 1} B_{\beta} \to M_{\alpha + 1} \to A_{\alpha + 1} \to 0$$

to prevent any such from extending.

In Version 1, we must construct a chain

$$0 \rightarrow N \rightarrow M_{\nu} \rightarrow A_{\nu} \rightarrow 0$$

and we must use the \diamondsuit prediction principles to predict and kill a particular splitting : $A_{\alpha} \rightarrow M_{\alpha}$ for each $\alpha \in S$.

Application: Baer modules

Baer (1936): countable Baer \mathbb{Z} -modules are free. Griffith (1969): all Baer \mathbb{Z} -modules are free. Kaplansky (1962): Baer modules over arbitrary IDs are flat and of proj. dim \leq 1. Are they all projective?

Consequence (1990)

(R an ID) The class of Baer modules is \aleph_0 -deconstructible. Hence, if every countably generated Baer R-module is projective, then every Baer R-module is projective.

(Recall: A is Baer if $A \in {}^{\perp}$ {torsion modules}.)

Theorem. (Angeleri Hugel-Bazzoni-Herbera 2005)

Every countably generated Baer module over an arbitrary ID is projective. Hence, every Baer module is projective.

Regular case, version 3

 $\mathcal{A} = {}^{\perp}\mathcal{B}$ where \mathcal{B} is closed under direct sums.

The regular theorem. (v.3 Šťovíček-Trlifaj)

Assume \mathcal{B} is closed under arbitrary direct sums. If A is $\leq \kappa$ -generated and has a filtration $\{A_{\alpha} : \alpha < \kappa\}$ of $< \kappa$ -generated submodules belonging to \mathcal{A} , then there is a subfiltration $\{A_{f(\alpha)} : \sigma < \kappa\}$ such that $A_{f(\alpha+1)}/A_{f(\alpha)} \in \mathcal{A}$ for all $\alpha < \kappa$.

Cotorsion pairs

Definition. (Salce 1979)

A cotorsion pair is a pair of classes of modules (A, B) such that $A = {}^{\perp}B$ and $B = A^{\perp}$

Examples

- (Projectives, *R*-modules)
- (R-modules, Injectives)
- $(^{\perp}(\mathcal{S}^{\perp}), \mathcal{S}^{\perp})$ $(^{\perp}\mathcal{S}, (^{\perp}\mathcal{S})^{\perp})$
- Case of $S = \{Pure-injective modules\}:$ {Flat modules} = ${}^{\perp}S$ {Flat modules} ${}^{\perp} = \{(Enoch) \ Cotorsion \ modules\}$

(Flat, Cotorsion) is a cotorsion pair.

Tilting cotorsion pairs

Definition/Theorem

A cotorsion pair $(\mathcal{A}, \mathcal{B})$ is *n*-tilting if

- Every element of \mathcal{A} is of proj. dim. $\leq n$;
- $\mathsf{Ext}^i(A,B) = 0$ for all $i \ge 2$ and all $A \in \mathcal{A}, B \in \mathcal{B}$; and
- B is closed under direct sums.

Example/Theorem

Let S be a set of modules (of proj. dim $\leq n$) such that each member M of S has a projective resolution

$$0 \to P_n \to P_{n-1} \to ... \to P_0 \to M \to 0$$

where each P_{ℓ} is **finitely-generated**. Let $\mathcal{B} = \mathcal{S}^{\perp \infty} \stackrel{def}{=} \{N \mid \text{Ext}^{i}(M, N) = 0 \text{ for all } M \in \mathcal{S} \text{ and all } i \geq 1\}.$ Then $(^{\perp}\mathcal{B}, \mathcal{B})$ is an *n*-tilting cotorsion pair of finite type.

There is an analogous definition for countable type.

Key question

Is every tilting cotorsion pair of finite type?

Theorems

- 1. (Bazzoni-E-Trlifaj 2003) All 1-tilting pairs are of countable type.
- 2. (Bazzoni-Herbera 2005) All 1-tilting pairs are of finite type.
- 3. (Šťovíček-Trlifaj 2005) All *n*-tilting cotorsion pairs are of countable type.
- 4. (Bazzoni-Šťovíček 2005) All *n*-tilting cotorsion pairs are of finite type.

Complete cotorsion pairs

Definition. A cotorsion pair $(\mathcal{A}, \mathcal{B})$ is complete if it has enough projectives and injectives, i.e., for every module M, there is a short exact sequence

$$0
ightarrow B
ightarrow A
ightarrow M
ightarrow 0$$

such that $A \in A$ and $B \in B$; or, equivalently (Salce), for every module M, there is a short exact sequence

$$0 \rightarrow M \rightarrow B \rightarrow A \rightarrow 0$$

such that $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

Theorem. (E-Trlifaj)

The cotorsion pair $(\mathcal{A}, \mathcal{B})$ is complete if it is *generated by a set*, i.e., $\mathcal{B} = \{M\}^{\perp}$ for some module M.

 $(\mathcal{A}, \mathcal{B})$ is generated by a set iff \mathcal{A} is deconstructible. (Enochs for *if*; Šťovíček-Trlifaj for *only if*)

Theorem (Enochs 2000)

The (Flat, Cotorsion) pair is deconstructible, hence complete, so flat covers exist for modules over any ring.

$R = \mathbb{Z}$

Theorems.

1. (E-Trlifaj) $(\mathcal{A}, \mathcal{B})$ is deconstructible, and hence complete, if every member of \mathcal{B} is cotorsion.

2. (E-Shelah-Trlifaj) It is consistent with ZFC + GCH that for every N which is not cotorsion, the cotorsion pair $(^{\perp}\{N\}, (^{\perp}\{N\})^{\perp})$ is not generated by a set, hence not deconstructible.

3. (E-Shelah) It is consistent with ZFC + GCH that $(^{\perp}\{\mathbb{Z}\}, (^{\perp}\{\mathbb{Z}\})^{\perp})$ is not complete.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙