HW I, DUE APRIL 14

1. Problem

Let $A: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Show that $\sup_{|x| \le 1} |Ax| = \sup_{|x| = 1} |Ax|$.

2. Problem 1 (Spivak, 1-7)

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is norm preserving if |Tx| = |x|, and inner product preserving if $\langle Tx, Ty \rangle = \langle x, y \rangle$ (here $\langle x, y \rangle$ means dot product).

- (a) Prove that T is norm preserving if and only if T is inner-product preserving.
- (b) Prove that such a linear transformation T is 1-1 and T^{-1} is of the same sort.

3. Problem 2 (Spivak, 1-8)

If $x, y \in \mathbb{R}^n$ are non-zero, the *angle* between x and y is defined as $\arccos\left(\frac{\langle x, y \rangle}{|x||y|}\right)$. The linear transformation T is *angle preserving* if T is 1-1, and for $x, y \neq 0$, we have

$$\arccos\left(\frac{\langle x,y\rangle}{|x||y|}\right)=\arccos\left(\frac{\langle Tx,Ty\rangle}{|Tx||Ty|}\right).$$

- (a) Prove that if T is norm preserving, then T is angle preserving.
- (b) If there is a basis x_1, \ldots, x_n of \mathbb{R}^n and numbers $\lambda_1, \ldots, \lambda_n$ such that $Tx_j = \lambda_j x_j$, prove that T is angle preserving if and only if all $|\lambda_j|$ are equal (here we are also assuming that T is symmetric, i.e., $\langle Tx, y \rangle = \langle x, Ty \rangle$ for all $x, y \in \mathbb{R}^n$).
 - (c) What are all angle preserving linear maps $T: \mathbb{R}^n \to \mathbb{R}^n$?

4. Problem 3 (Spivak, 1-9)

If $0 \le \theta < \pi$, let $T : \mathbb{R}^2 \to \mathbb{R}^2$ have the matrix

$$\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

Show that T is angle preserving transformation and if $x \neq 0$, then

$$\arccos\left(\frac{\langle x, Tx \rangle}{|x||Tx|}\right) = \theta.$$

5. Problem 4

- (a) The linear map $P: X \to Y$ is called projection if $P^2 = P$, here P^2 means PP. If X is a finite dimensional vector space, and Y is a vector space in X, then there is a projection P such that P(X) = Y.
- (b) Let $A: X \to Y$ be a linear map, here X, Y are an arbitrary vector spaces. Let us call the set $\{x \in X : Ax = 0\}$ null space of A. Show that the null space of A is a vector space.

6. Problem 5

See problem 5, Chapter 9, Rudin.