HW I, due April 14

1. Problem

Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Show that $\sup _{|x| \leq 1}|A x|=\sup _{|x|=1}|A x|$.

2. Problem 1 (Spivak, 1-7)

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is norm preserving if $|T x|=|x|$, and inner product preserving if $\langle T x, T y\rangle=\langle x, y\rangle$ (here $\langle x, y\rangle$ means dot product).
(a) Prove that T is norm preserving if and only if T is inner-product preserving.
(b) Prove that such a linear transformation T is $1-1$ and T^{-1} is of the same sort.

3. Problem 2 (Spivak, 1-8)

If $x, y \in \mathbb{R}^{n}$ are non-zero, the angle between x and y is defined as $\arccos \left(\frac{\langle x, y\rangle}{|x| y \mid}\right)$. The linear transformation T is angle preserving if T is $1-1$, and for $x, y \neq 0$, we have

$$
\arccos \left(\frac{\langle x, y\rangle}{|x||y|}\right)=\arccos \left(\frac{\langle T x, T y\rangle}{|T x||T y|}\right) .
$$

(a) Prove that if T is norm preserving, then T is angle preserving.
(b) If there is a basis x_{1}, \ldots, x_{n} of \mathbb{R}^{n} and numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that $T x_{j}=\lambda_{j} x_{j}$, prove that T is angle preserving if and only if all $\left|\lambda_{j}\right|$ are equal (here we are also assuming that T is symmetric, i.e., $\langle T x, y\rangle=\langle x, T y\rangle$ for all $\left.x, y \in \mathbb{R}^{n}\right)$.
(c) What are all angle preserving linear maps $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$?

4. Problem 3 (Spivak, 1-9)

If $0 \leq \theta<\pi$, let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ have the matrix

$$
\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Show that T is angle preserving transformation and if $x \neq 0$, then

$$
\arccos \left(\frac{\langle x, T x\rangle}{|x||T x|}\right)=\theta .
$$

5. Problem 4

(a) The linear map $P: X \rightarrow Y$ is called projection if $P^{2}=P$, here P^{2} means $P P$. If X is a finite dimensional vector space, and Y is a vector space in X, then there is a projection P such that $P(X)=Y$.
(b) Let $A: X \rightarrow Y$ be a linear map, here X, Y are an arbitrary vector spaces. Let us call the set $\{x \in X: A x=0\}$ null space of A. Show that the null space of A is a vector space.

6. Problem 5

See problem 5, Chapter 9, Rudin.

