
1. Problem 1

a) Show that if f ∈ C([0, 1]), i.e., f is continuous on [0, 1], then
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where
∫ 1
0 fdx is the Riemann integral.

b) In particular, show that
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2. Problem 2

a) Let f be a decreasing function on [0, 1]. Show that
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for all n ≥ 1.

b) Show that ∑
1≤k≤N
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≥
∫ N+1
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dx

x

for all N ≥ 1.

3. Problem 3

See problem 2, Chapter 6, Rudin.

4. Problem 4

See problem 5, Chapter 6, Rudin.

5. Problem 5

See problem 8, Chapter 6, Rudin.
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