1. PROBLEM 1

a) Show that if f € C([0,1]), i.e., f is continuous on [0, 1], then
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where fol fdx is the Riemann integral.
b) In particular, show that
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2. PROBLEM 2

a) Let f be a decreasing function on [0, 1]. Show that
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for all n > 1.
b) Show that

for all N > 1.
3. PROBLEM 3
See problem 2, Chapter 6, Rudin.
4. PROBLEM 4
See problem 5, Chapter 6, Rudin.
5. PROBLEM 5

See problem 8, Chapter 6, Rudin.
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