PROBLEM SET 2 (DUE JAN. 26/2019)

1. Problem 1

Let $f \in C([a, b])$, and $\varphi \in C(\mathbb{R})$. Assume that φ is periodic function with period T > 0, i.e., $\varphi(x+T) = \varphi(x)$ for all $x \in \mathbb{R}$. Find the limit

$$\lim_{A \to \infty} \int_{a}^{b} f(t)\varphi(At)dt.$$

2. Problem 2

Suppose that both $f, g: [0,1] \to \mathbb{R}$ are increasing functions. Show that

$$\int_0^1 f(x)g(x)dx \ge \int_0^1 f(x)dx \int_0^1 g(x)dx.$$

3. Problem 3

Assume φ is strictly increasing and continuous on $[0, \infty)$, $\varphi(0) = 0$, and $\psi(x) = \varphi^{-1}(x)$ is the inverse function. Then for all $a \in [0, \infty)$, and any $b \in [0, \sup \varphi)$ one has

$$ab \leq \int_0^a \varphi(t)dt + \int_0^b \psi(t)dt.$$
4. PROBLEM 4

Let $f : \mathbb{R} \to \mathbb{R}$ be n + 1 times continuously differentiable function, i.e., $f, f', f'', \dots, f^{(n+1)}$ exist and are continuous. Show that for any $a \in \mathbb{R}$ the following Taylor's formula with integral reminder holds true

$$f(x) = \sum_{0 \le k \le n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{(x-a)^{n+1}}{n!} \int_0^1 (1-t)^n f^{(n+1)}(a+t(x-a)) dt$$

for all $x \in \mathbb{R}$.

Another way of writing it is (after change of variables)

$$f(x) = \sum_{0 \le k \le n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{(x-a)^{n+1}}{(n+1)!} \cdot \int_0^1 f^{(n+1)} (x+s(a-x)) s^n (n+1) ds.$$

I like this second way because it says that you just continue adding the usual term in Taylor's formula $\frac{(x-a)^{n+1}}{(n+1)!}$ but with a certain factor $\int_0^1 f^{(n+1)}(x+s(a-x)) s^n(n+1) ds$ which integrates $f^{(n+1)}(y)$ along the line [x,a] with a "probability density" $s^n(n+1) ds$. The latter I call it probability density because its total mass is one, i.e., $\int_0^1 s^n(n+1) ds = 1$.

5. Problem 5

Exercise 10, Chapter 6, Rudin.