PROBLEM SET 2 (DUE JAN. 26/2019)

1. Problem 1

Let $f \in C([a, b])$, and $\varphi \in C(\mathbb{R})$. Assume that φ is periodic function with period $T>0$, i.e., $\varphi(x+T)=\varphi(x)$ for all $x \in \mathbb{R}$. Find the limit

$$
\lim _{A \rightarrow \infty} \int_{a}^{b} f(t) \varphi(A t) d t
$$

2. Problem 2

Suppose that both $f, g:[0,1] \rightarrow \mathbb{R}$ are increasing functions. Show that

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x .
$$

3. Problem 3

Assume φ is strictly increasing and continuous on $[0, \infty), \varphi(0)=0$, and $\psi(x)=\varphi^{-1}(x)$ is the inverse function. Then for all $a \in[0, \infty)$, and any $b \in[0, \sup \varphi)$ one has

$$
a b \leq \int_{0}^{a} \varphi(t) d t+\int_{0}^{b} \psi(t) d t
$$

4. Problem 4

Let $f: \mathbb{R} \mapsto \mathbb{R}$ be $n+1$ times continuously differentiable function, i.e., $f, f^{\prime}, f^{\prime \prime}, \ldots ., f^{(n+1)}$ exist and are continuous. Show that for any $a \in \mathbb{R}$ the following Taylor's formula with integral reminder holds true

$$
f(x)=\sum_{0 \leq k \leq n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{(x-a)^{n+1}}{n!} \int_{0}^{1}(1-t)^{n} f^{(n+1)}(a+t(x-a)) d t
$$

for all $x \in \mathbb{R}$.
Another way of writing it is (after change of variables)

$$
f(x)=\sum_{0 \leq k \leq n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{(x-a)^{n+1}}{(n+1)!} \cdot \int_{0}^{1} f^{(n+1)}(x+s(a-x)) s^{n}(n+1) d s .
$$

I like this second way because it says that you just continue adding the usual term in Taylor's formula $\frac{(x-a)^{n+1}}{(n+1)!}$ but with a certain factor $\int_{0}^{1} f^{(n+1)}(x+s(a-x)) s^{n}(n+1) d s$ which integrates $f^{(n+1)}(y)$ along the line $[x, a]$ with a "probability density" $s^{n}(n+1) d s$. The latter I call it probability density because its total mass is one, i.e., $\int_{0}^{1} s^{n}(n+1) d s=1$.

5. Problem 5

Exercise 10, Chapter 6, Rudin.

