
PROBLEM SET II (DUE NOV. 9, 2018)

1. Problem 0

Show that intersection of countable number of k-cells, say {In}n≥1 is nonempty if In+1 ⊂ In
for any n ≥ 1.

2. Problem 1

Show that there can be only finite or countable number of pairwise disjoint symbol “8”’s drawn
on the plane.

3. Problem 2

Let {0, 1}N be the Cantor group, i.e., all possible sequences of the type (0, 0, 1, 1, 0, . . .) consist-
ing of 0’s and 1’s. Let P(N) denote the collection of all subsets of natural numbers N = {1, 2, . . .}.
Construct 1− 1, onto map f : {0, 1}N 7→ P(N).

4. Problem 3

I suggest to solve all problems listed in the exercise section of Chapter 2. Here are some of
them: 2, 5, 8, 9, 10 (very strange problem), 11, 13, 14, 17 (looks like an interesting problem),
21(c), 22, 23, 24, 25, (these 23, 24, 25, 26 are together, in some literature people define compact
sets by saying that every infinite subset has a limit point in it) 26, 29, 30 Chapter 2.

On our midterm exam there will be 5 problems: 4 of them will be from Rudin.

5. Bonus problem 1

Given an integer n ≥ 1, suppose we want to find n different vectors v1, v2, . . . , vn in Rn with
coordinates +1 or −1 such that the inner product of any two of them is zero. Can one solve
this problem when n = 6? When n = 8? Notice that when n = 2 one can take v1 = (1, 1) and
v2 = (−1, 1). Then clearly v1 · v2 = 0.

6. Bonus problem 2

Let n ≥ 1 be a fixed integer. Suppose we are given on the plane n red vertices and n blue
vertices. Suppose there are edges joining red and blue vertex, and we do not know how many
edges are there but there is the following constraint: for any k ≤ n, and any k-subset of red
vertices (call it A) there exist at least k blue vertices (call it B) such that for any vertex b ∈ B
there is an edge joining b to a vertex a ∈ A. Does this constraint imply that we can split red and
blue vertices in n pairs of vertices (red,blue) such that vertices from each pair are joined by an
edge (each vertex can be only in one pair).

7. Why cuts (real numbers) are uncountable?

Let us construct 1-1 map f from the set R+ of all nonnegative cuts x ≥ 0 to the set of all
objects of the form

n0.n1n2n3 . . . ,

where n0 ≥ 0 is any integer and n1.n2, . . . can be nonnegative integers taking values 0, 1, 2, . . . , 9.

Definition. All such sequences we denote by W.
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Also notice that we can consider negative cuts as well just by putting negative sign everywhere.
Here starts the construction.
Take any x ∈ R+, x ≥ 0. Let n0 ≥ 0 be the largest integer such that n0 ≤ x. Now let n1 ≥ 0

be the largest integer such that n0 + n1
10 ≤ x. Notice that 0 ≤ n1 ≤ 9 (why n1 cannot be greater

than 9?). And we iterate this process: suppose n0, n1, . . . , nk are already constructed then we
define nk+1 ≥ 0 to be the largest integer such that

n0 +
n1

10
+ . . . +

nk

10k
+

nk+1

10k+1
≤ x.

Thus we have a map x 7→ n0.n1n2 . . ., i.e., f : R+ 7→W.

Why is f one-to-one?
For this it would be enough to show that x = supE where

E =
{
n0 +

n1

10
+ . . . +

nk

10k

}
k≥0

.

Indeed, this would mean that if there are two reals x, y ≥ 0, x 6= y such that their image gives one
and the same object n0.n1n2 . . ., then x = supE, and y = supE which would be a contradiction
(since supE is unique). Thus it suffices to verify the property that x = supE. Notice that E is
nonempty, and E is upper bounded (for any e ∈ E we have e ≤ x). Therefore supE exists in R.

Denote t
def
= supE. Next we show that t = x. It is clear that x ≥ t since x is an upper bound for

E and t is the least upper bound. Next, assume the contrary that t < x. Set ε = x− t > 0. Let
` ≥ 0 be such that 1

10`
< ε

2 . Clearly

n0 +
n1

10
+ . . . +

n`

10`
≤ t

Therefore

n0 +
n1

10
+ . . . +

n` + 1

10`
≤ t +

1

10`
< t + ε = x

But this means that n` was not the largest nonnegative integer such that

n0 +
n1

10
+ . . . +

n`

10`
≤ x.

A contradiction. Thus x = supE.

Is f onto? The answer is NO.
Indeed, consider the following sequence 0.999 . . .. And show that one cannot find a cut x ∈ R+

such that f(x) = 0.999 . . .. The “right” candidate should be x = 1 but for this one we have
f(1) = 1.000 . . .. Thus we see that there are “bad” elements in W. Let us call an object
n0.n1n2 . . . ∈ W bad if starting at some point k ≥ 1 we have 9 = nk = nk+1 = nk+2 = . . .. In
other words these are those sequences who have a “tail” consisting only by 9’s. Let us denote
the set of all bad elements of W by B.

Problem 7.1. Show that f : R+ 7→W \B is 1-1, and onto.

Let us split the solution of this problem into several steps. To show that f is 1-1 it will be
enough to prove the following lemma

Lemma 7.1. For each b ∈ B no x ∈ R satisfies f(x) = b.

Proof. Here is the sketch: suppose for some b ∈ B there is x such that f(x) = b. We know that
starting at some point b has the tail of 9′s. If b = n0.999 . . . show that the supremum of the set
of numbers

E =

{
n0, n0 +

9

10
, n0 +

9

10
+

9

102
, . . .

}
is n0 + 1 = x. Indeed, clearly n0 + 1 is un upper bound. It remains to show that it is the least
upper bound (Exercise). On the other hand f(x) = f(n0 + 1) = (n0 + 1).000 . . . 6= n0.999 . . ..
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Now, if

b = n0.n1n2 . . . nk9999 . . .

where nk < 9 and k ≥ 1, then show that the supremum of the corresponding set of E is
b = n0.n1n2 . . . (nk + 1)000 . . .. Again this is left as an exercise. �

The lemma together with the previous reasoning implies that the map f : R+ 7→ W \ B is
one-to-one

Finally it remains to solve the following problem.

Problem 7.2. Show that f : R+ 7→W \B is onto.

Here we need to show that given any object m0.m1m2 . . . (here m0 ≥ 0 is any integer and
m1,m2, . . . take values 0, 1, 2 . . . , 9) we can find a nonnegative real x such that f(x) = m0.m1m2.
Indeed, let U to be the set of all numbers m0 + m1

10 + . . .+ mk

10k
for all k ≥ 0. Then U is nonempty,

and it is bounded from above. Indeed, let us show that for any e ∈ U we have e ≤ m0 + 1. We
have

e = m0 +
m1

10
+ . . . +

m`

10`

for some ` ≥ 0. If ` = 0 there is nothing to prove. Assume ` ≥ 1. Then

e ≤ m0 +
9

10

(
1 + . . . +

1

10`−1

)
= m0 +

9

10

(
1− 1

10`

1− 1
10

)
<

m0 +
9

10

(
1

1− 1
10

)
= m0 + 1

Therefore supU exists in R. The nontrivial claim is that we can take x = supU , and then
f(x) = m0.m1 . . .. Indeed, here is the sketch of the argument. Assume the contrary that
f(x) = n0.n1n2 . . . and n0.n1n2 . . . 6= m0.m1 . . .. This means that there exists k ≥ 1 such that
n0 = m0, n1 = m1, . . . , nk−1 = mk−1, mk 6= nk. consider the case nk < mk (the case nk > mk is
similar). Let V be the corresponding set of numbers for the element n0.n1n2 . . ., i.e.,

V =
{
n0, n0 +

n1

10
, n0 +

n1

10
+

n2

102
, . . .

}
.

It suffices to show that supV < supU . Let us use the notation for “finite” sequences of W, i.e.,

h0.h1 . . . hn = h0 +
h1
10

+ . . . +
hn
10n

Next, we will show that

supV < n0.n1n2 . . . nk−1(nk + 1) ≤ n0.n1n2 . . . nk−1mk . . . ≤ supU.(7.1)

Indeed, let ` > k be such that n` < 9. Then for any p ≥ 0 we have

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n`

10`
+

n`+1

10`+1
+ . . . +

n`+p

10`+p
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n`

10`
+

9

10`+1
+ . . . +

9

10`+p
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n` + 1

10`
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

9

10k+1
+ . . . +

9

10`
=

n0 +
n1

10
+

n2

102
+ . . . +

nk + 1

10k
+

(
9

10k+1
+ . . . +

9

10`
− 1

10k

)
=

n0 +
n1

10
+

n2

102
+ . . . +

nk + 1

10k
− ε

where ε = −
(

9
10k+1 + . . . + 9

10`
− 1

10k

)
> 0. (notice that if we would include infinite tails of 9’s

then ε would not be separated from zero)



4 PROBLEMS

Thus we have proved that ∀v ∈ V we have

v ≤ n0.n1n2 . . . nk−1(nk + 1)− ε < n0.n1n2 . . . nk−1(nk + 1)

In particular

supV ≤ n0.n1n2 . . . nk−1(nk + 1)− ε < n0.n1n2 . . . nk−1(nk + 1)

Since mk ≥ nk + 1 we have

supU ≥ m0.m1 . . .mk−1mk0 ≥ m0.m1 . . .mk−1(nk + 1)

which proves the inequality (7.1).

Exercise 1. What happens when nk > mk?

Thus we have identified in 1-1, onto way R+ and W \B.
The elements of W \ B are called “decimal expansions” of real numbers x, and we just saw

that to “identify” all cuts we do not need all possible elements from W.
However it is convenient to say that 0.999 . . . and 1.000 . . . correspond to one and the same

cut and to identify these two different elements to be “equivalent”. We say that u, v ∈ W
are equivalent if the corresponding set of numbers Ev and Eu have the same supremum, i..e,
supEv = supEu.

Problem 7.3. Show that W \B is uncountable.

Proof. First show that B is countable. Then show that W is uncountable by using Cantor’s
diagonal process (or use the fact that W contains all infinite sequences 01000110011... with
coordinates 0 and 1, and use a theorem that we have proved in the class). Then show that if W
is uncountable and B is countable then W \B is uncountable. �

Thus we obtain that the set R+ is uncountable.
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