## PROBLEM SET II (DUE NOV. 9, 2018)

## 1. Problem 0

Show that intersection of countable number of $k$-cells, say $\left\{I_{n}\right\}_{n \geq 1}$ is nonempty if $I_{n+1} \subset I_{n}$ for any $n \geq 1$.

Solution See Rudin.

## 2. Problem 1

Show that there can be only finite or countable number of pairwise disjoint symbol " 8 "'s drawn on the plane.

Solution Indeed, to any symbol " 8 " drawn on the plane choose any two points $A$ and $B$ on the plane with rational coordinates such that $A$, and $B$ are inside two different circles of 8 . Next, show that for two disjoint symbol 8's the pair of points $A, B$ and $A^{\prime}, B^{\prime}$ will be different, i.e., if $A=A^{\prime}$ and $B=B^{\prime}$ then the corresponding symbol 8 's will intersect.

This gives a map $f$ from the pairwise disjoint set of 8 's drawn on the plane to a subset of $Q^{2} \times Q^{2}$ which is 1-1. The latter means that 8 's can be at most countable.

## 3. Problem 2

Let $\{0,1\}^{\mathbb{N}}$ be the Cantor group, i.e., all possible sequences of the type $(0,0,1,1,0, \ldots)$ consisting of 0 's and 1 's. Let $\mathcal{P}(\mathbb{N})$ denote the collection of all subsets of natural numbers $\mathbb{N}=\{1,2, \ldots\}$. Construct $1-1$, onto map $f:\{0,1\}^{\mathbb{N}} \mapsto \mathcal{P}(\mathbb{N})$.

Solution: here is the construction: to the point $(1,1,1, \ldots$,$) , i.e., all coordinates are 1$ we will associate $\{1,2,3, \ldots$,$\} the whole set. Next, if we have somewhere zero then we will remove$ the corresponding element written on the same position from $\{1,2,3, \ldots$,$\} . For example$

$$
\begin{aligned}
& (1,1,1, \ldots,) \mapsto\{1,2,3, \ldots,\} \\
& (0,1,1, \ldots,) \mapsto\{2,3, \ldots,\} ; \\
& (1,0,1, \ldots,) \mapsto\{1,3, \ldots,\} ; \\
& \ldots \\
& (0,1,1,0,0 \ldots,) \mapsto\{2,3\} ; \quad \text { etc. }
\end{aligned}
$$

Clearly each point of $\{0,1\}^{\mathbb{N}}$ will define a subset of $\mathbb{N}$. The map is $1-1$ and onto.

## 4. Problem 3

I suggest to solve all problems listed in the exercise section of Chapter 2. Here are some of them: $2,5,8,9,10$ (very strange problem), 11, 13, 14, 17 (looks like an interesting problem), $21(\mathrm{c}), 22,23,24,25$, (these $23,24,25,26$ are together, in some literature people define compact sets by saying that every infinite subset has a limit point in it) $26,29,30$ Chapter 2.

On our midterm exam there will be 5 problems: 4 of them will be from Rudin.

## 5. Bonus problem 1

Given an integer $n \geq 1$, suppose we want to find $n$ different vectors $v_{1}, v_{2}, \ldots, v_{n}$ in $\mathbb{R}^{n}$ with coordinates +1 or -1 such that the inner product of any two of them is zero. Can one solve
this problem when $n=6$ ? When $n=8$ ? Notice that when $n=2$ one can take $v_{1}=(1,1)$ and $v_{2}=(-1,1)$. Then clearly $v_{1} \cdot v_{2}=0$.

## Solution

When $n=6$ we cannot solve the problem. Indeed, assume yes, and we found $v_{1}, v_{2}, \ldots, v_{6}$ in $\mathbb{R}^{6}$ with coordinates $\pm 1$ such that $\left\langle v_{j}, v_{i}\right\rangle=0$ for any $i \neq j$. Let us write these vectors as rows in the following way

$$
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right)
$$

We will see a following list

$$
\left(\begin{array}{cccccc}
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & -1
\end{array}\right)
$$

where the $j$ 'th row of the list represents the vector $v_{j}$. Notice that if we switch any two columns then the resulting new vectors $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ corresponding to the rows of new list still will satisfy the property that the inner product $v_{j}^{\prime}$ and $v_{i}^{\prime}$ is zero provided that $i \neq j$. Also notice that the same is true if we would switch the rows of the list. The same is true if we multiply by -1 all elements of any given column. So the latter means that we can switch the signs of any given column. Let us look at the first row: $(1-1 \quad 1-1-1 \quad 1)$. Let us make all -1 to be +1 by multiplying the corresponding column by -1 . For example, if we multiply the second column by -1 we would get a new list

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1
\end{array}\right)
$$

Similarly the fourth and fifth column

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & -1
\end{array}\right)
$$

So what we achieved is that in the first row we made everybody to be +1 . Since the inner product of the first and the second row is zero, it means that in the second row we must have exactly $\frac{6}{2}=3$ negative 1 's. Let us switch the columns, so that to put all negative ones to the left side, for example like this

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1
\end{array}\right)
$$

Next arguing in a similar way in the third row we must have also $6 / 2=3$ negative ones. By switching the last remaining $6 / 2$ columns we can achieve in the third row that in the last $6 / 2$ numbers of the third row there must be half negative ones and half positive 1's, and also in the first 3 numbers of the third row (WHY?), but $6 / 4$ is not an integer so this is not possible.

The construction for $n=8$ can be done as follows: let

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Then consider

$$
B=\left(\begin{array}{cc}
A & A \\
A & -A
\end{array}\right)
$$

and finally take

$$
C=\left(\begin{array}{cc}
B & B \\
B & -B
\end{array}\right)
$$

Show that the vectors $v_{1}, \ldots, v_{8}$ corresponding to the rows of this new obtained list $C$ do satisfy the property that their inner product is zero.

## 6. Bonus Problem 2

Let $n \geq 1$ be a fixed integer. Suppose we are given on the plane $n$ red vertices and $n$ blue vertices. Suppose there are edges joining red and blue vertex, and we do not know how many edges are there but there is the following constraint: for any $k \leq n$, and any $k$-subset of red vertices (call it $A$ ) there exist at least $k$ blue vertices (call it $B$ ) such that for any vertex $b \in B$ there is an edge joining $b$ to a vertex $a \in A$. Does this constraint imply that we can split red and blue vertices in $n$ pairs of vertices (red,blue) such that vertices from each pair are joined by an edge (each vertex can be only in one pair).

## Solution

Proof is by induction on $n$. If $n=1$ there is nothing to prove. Assume the claim is true for $k=1,2, \ldots, n-1$, and now we want to prove for $k=n$.

Step 1: Take any $m$ subset $A$ of red vertices where $1 \leq m<n$. Suppose we can find at most $m$ blue vertices $B$ with the property described in the problem, i.e., any $b \in B$ is joined to some element of $A$. Then notice that no vertex from $B^{c}$ (the complement of $B$ ) is joined to a vertex of $A$ otherwise we would've find more than $m$ blue vertices of type $B$. Next notice that for any $k$ subset of $A$ (here $k \leq m$ ), call it $A^{\prime}$, there exists at least $k$ vertices in $B$, call it $B^{\prime}$ such that any vertex of $B^{\prime}$ is joined to a vertex of $A^{\prime}$. Hence, we can use the induction hypothesis the sets $A$ and $B$. Next we want to use the induction hypothesis for $A^{c}$ and $B^{c}$. But to do so we should verify that they satisfy the assumption that for any $\ell$ subset of red vertices in $A^{c}$, call it $A^{\prime \prime}$, there exists at least $\ell$ subset of blue vertices in $B^{c}$ call it $B^{\prime \prime}$ such that any vertex of $B^{\prime \prime}$ is joined to some vertex of $A^{\prime \prime}$. Indeed, if this number of blue vertices is strictly less than $\ell$, say $p<\ell$ then consider the set $A^{\prime \prime} \cup A$ which has $m+\ell$ red vertices then we can find only $m+p$ blue vertices with the property described in the problem which contradicts to the assumption of the problem. Therefore we can use induction hypothesis to $A^{c}$ and $B^{c}$.

Step 2: In what follows we can assume that for any $m$ subset $A$ of red vertices where $1 \leq m<n$ we can always find at least $m+1$ blue vertices $B$ with the property described in the problem (otherwise we are in step 1 which is solved). In this case take any blue vertex such that it is joined to some red vertex. Call such blue vertex $b_{0}$ and its joined red vertex $a_{0}$. Clearly they exist. In this case let us remove from the set of red vertices $a_{0}$, and from the set of blue vertices $b_{0}$ (they are already joined by an edge and let us forget about them). Now we are left with $n-1$ red vertices and $n-1$ blue vertices. The claim is that this new sets satisfy the property described in the problem: for any $m$ subset of red vertices, call it $A^{\prime}$, there exists at least $m$ subset of blue vertices, call it $B^{\prime}$ such that any $b \in B^{\prime}$ is joined to some $a \in A^{\prime}$. Indeed, with $b_{0}$ there were
at least $m+1$ blue vertices, and now by removing $b_{0}$ definitely there will be at least $m$ blue vertices. Thus we can apply the induction hypothesis to $n-1$ red and $n-1$ blue vertices.

## 7. Why cuts (REAL Numbers) ARE Uncountable?

Let us construct 1-1 map $f$ from the set $R_{+}$of all nonnegative cuts $x \geq 0$ to the set of all objects of the form

$$
n_{0} \cdot n_{1} n_{2} n_{3} \ldots,
$$

where $n_{0} \geq 0$ is any integer and $n_{1} . n_{2}, \ldots$ can be nonnegative integers taking values $0,1,2, \ldots, 9$.
Definition. All such sequences we denote by $\mathbb{W}$.
Also notice that we can consider negative cuts as well just by putting negative sign everywhere.
Here starts the construction.
Take any $x \in R_{+}, x \geq 0$. Let $n_{0} \geq 0$ be the largest integer such that $n_{0} \leq x$. Now let $n_{1} \geq 0$ be the largest integer such that $n_{0}+\frac{n_{1}}{10} \leq x$. Notice that $0 \leq n_{1} \leq 9$ (why $n_{1}$ cannot be greater than 9 ?). And we iterate this process: suppose $n_{0}, n_{1}, \ldots, n_{k}$ are already constructed then we define $n_{k+1} \geq 0$ to be the largest integer such that

$$
n_{0}+\frac{n_{1}}{10}+\ldots+\frac{n_{k}}{10^{k}}+\frac{n_{k+1}}{10^{k+1}} \leq x
$$

Thus we have a map $x \mapsto n_{0} . n_{1} n_{2} \ldots$, i.e., $f: R_{+} \mapsto \mathbb{W}$.

Why is $f$ one-to-one?
For this it would be enough to show that $x=\sup E$ where

$$
E=\left\{n_{0}+\frac{n_{1}}{10}+\ldots+\frac{n_{k}}{10^{k}}\right\}_{k \geq 0}
$$

Indeed, this would mean that if there are two reals $x, y \geq 0, x \neq y$ such that their image gives one and the same object $n_{0} \cdot n_{1} n_{2} \ldots$, then $x=\sup E$, and $y=\sup E$ which would be a contradiction (since $\sup E$ is unique). Thus it suffices to verify the property that $x=\sup E$. Notice that $E$ is nonempty, and $E$ is upper bounded (for any $e \in E$ we have $e \leq x$ ). Therefore $\sup E$ exists in $R$. Denote $t \stackrel{\text { def }}{=} \sup E$. Next we show that $t=x$. It is clear that $x \geq t$ since $x$ is an upper bound for $E$ and $t$ is the least upper bound. Next, assume the contrary that $t<x$. Set $\varepsilon=x-t>0$. Let $\ell \geq 0$ be such that $\frac{1}{10^{\ell}}<\frac{\varepsilon}{2}$. Clearly

$$
n_{0}+\frac{n_{1}}{10}+\ldots+\frac{n_{\ell}}{10^{\ell}} \leq t
$$

Therefore

$$
n_{0}+\frac{n_{1}}{10}+\ldots+\frac{n_{\ell}+1}{10^{\ell}} \leq t+\frac{1}{10^{\ell}}<t+\varepsilon=x
$$

But this means that $n_{\ell}$ was not the largest nonnegative integer such that

$$
n_{0}+\frac{n_{1}}{10}+\ldots+\frac{n_{\ell}}{10^{\ell}} \leq x
$$

A contradiction. Thus $x=\sup E$.

Is $f$ onto? The answer is NO.
Indeed, consider the following sequence $0.999 \ldots$ And show that one cannot find a cut $x \in R_{+}$ such that $f(x)=0.999 \ldots$ The "right" candidate should be $x=1$ but for this one we have $f(1)=1.000 \ldots$ Thus we see that there are "bad" elements in $\mathbb{W}$. Let us call an object $n_{0} . n_{1} n_{2} \ldots \in \mathbb{W}$ bad if starting at some point $k \geq 1$ we have $9=n_{k}=n_{k+1}=n_{k+2}=\ldots$ In other words these are those sequences who have a "tail" consisting only by 9 's. Let us denote the set of all bad elements of $\mathbb{W}$ by $B$.

Problem 7.1. Show that $f: R_{+} \mapsto \mathbb{W} \backslash B$ is $1-1$, and onto.

Let us split the solution of this problem into several steps. To show that $f$ is $1-1$ it will be enough to prove the following lemma

Lemma 7.1. For each $b \in B$ no $x \in R$ satisfies $f(x)=b$.
Proof. Here is the sketch: suppose for some $b \in B$ there is $x$ such that $f(x)=b$. We know that starting at some point $b$ has the tail of $9^{\prime} s$. If $b=n_{0} .999 \ldots$ show that the supremum of the set of numbers

$$
E=\left\{n_{0}, \quad n_{0}+\frac{9}{10}, \quad n_{0}+\frac{9}{10}+\frac{9}{10^{2}}, \ldots\right\}
$$

is $n_{0}+1=x$. Indeed, clearly $n_{0}+1$ is un upper bound. It remains to show that it is the least upper bound (Exercise). On the other hand $f(x)=f\left(n_{0}+1\right)=\left(n_{0}+1\right) .000 \ldots \neq n_{0} .999 \ldots$.

Now, if

$$
b=n_{0} . n_{1} n_{2} \ldots n_{k} 9999 \ldots
$$

where $n_{k}<9$ and $k \geq 1$, then show that the supremum of the corresponding set of $E$ is $b=n_{0} . n_{1} n_{2} \ldots\left(n_{k}+1\right) 000 \ldots$. Again this is left as an exercise.

The lemma together with the previous reasoning implies that the map $f: R_{+} \mapsto \mathbb{W} \backslash B$ is one-to-one

Finally it remains to solve the following problem.
Problem 7.2. Show that $f: R_{+} \mapsto \mathbb{W} \backslash B$ is onto.
Here we need to show that given any object $m_{0} \cdot m_{1} m_{2} \ldots$ (here $m_{0} \geq 0$ is any integer and $m_{1}, m_{2}, \ldots$ take values $\left.0,1,2 \ldots, 9\right)$ we can find a nonnegative real $x$ such that $f(x)=m_{0} \cdot m_{1} m_{2}$. Indeed, let $U$ to be the set of all numbers $m_{0}+\frac{m_{1}}{10}+\ldots+\frac{m_{k}}{10^{k}}$ for all $k \geq 0$. Then $U$ is nonempty, and it is bounded from above. Indeed, let us show that for any $e \in U$ we have $e \leq m_{0}+1$. We have

$$
e=m_{0}+\frac{m_{1}}{10}+\ldots+\frac{m_{\ell}}{10^{\ell}}
$$

for some $\ell \geq 0$. If $\ell=0$ there is nothing to prove. Assume $\ell \geq 1$. Then

$$
\begin{aligned}
& e \leq m_{0}+\frac{9}{10}\left(1+\ldots+\frac{1}{10^{\ell-1}}\right)=m_{0}+\frac{9}{10}\left(\frac{1-\frac{1}{10^{\ell}}}{1-\frac{1}{10}}\right)< \\
& m_{0}+\frac{9}{10}\left(\frac{1}{1-\frac{1}{10}}\right)=m_{0}+1
\end{aligned}
$$

Therefore $\sup U$ exists in $R$. The nontrivial claim is that we can take $x=\sup U$, and then $f(x)=m_{0} \cdot m_{1} \ldots$. Indeed, here is the sketch of the argument. Assume the contrary that $f(x)=n_{0} \cdot n_{1} n_{2} \ldots$ and $n_{0} \cdot n_{1} n_{2} \ldots \neq m_{0} \cdot m_{1} \ldots$. This means that there exists $k \geq 1$ such that $n_{0}=m_{0}, n_{1}=m_{1}, \ldots, n_{k-1}=m_{k-1}, m_{k} \neq n_{k}$. consider the case $n_{k}<m_{k}$ (the case $n_{k}>m_{k}$ is similar). Let $V$ be the corresponding set of numbers for the element $n_{0} . n_{1} n_{2} \ldots$, i.e.,

$$
V=\left\{n_{0}, \quad n_{0}+\frac{n_{1}}{10}, \quad n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}, \ldots\right\} .
$$

It suffices to show that $\sup V<\sup U$. Let us use the notation for "finite" sequences of $\mathbb{W}$, i.e.,

$$
h_{0} \cdot h_{1} \ldots h_{n}=h_{0}+\frac{h_{1}}{10}+\ldots+\frac{h_{n}}{10^{n}}
$$

Next, we will show that

$$
\begin{equation*}
\sup V<n_{0} \cdot n_{1} n_{2} \ldots n_{k-1}\left(n_{k}+1\right) \leq n_{0} \cdot n_{1} n_{2} \ldots n_{k-1} m_{k} \ldots \leq \sup U \tag{7.1}
\end{equation*}
$$

Indeed, let $\ell>k$ be such that $n_{\ell}<9$. Then for any $p \geq 0$ we have

$$
\begin{aligned}
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}}{10^{k}}+\frac{n_{k+1}}{10^{k+1}}+\ldots+\frac{n_{\ell}}{10^{\ell}}+\frac{n_{\ell+1}}{10^{\ell+1}}+\ldots+\frac{n_{\ell+p}}{10^{\ell+p}} \leq \\
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}}{10^{k}}+\frac{n_{k+1}}{10^{k+1}}+\ldots+\frac{n_{\ell}}{10^{\ell}}+\frac{9}{10^{\ell+1}}+\ldots+\frac{9}{10^{\ell+p}} \leq \\
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}}{10^{k}}+\frac{n_{k+1}}{10^{k+1}}+\ldots+\frac{n_{\ell}+1}{10^{\ell}} \leq \\
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}}{10^{k}}+\frac{9}{10^{k+1}}+\ldots+\frac{9}{10^{\ell}}= \\
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}+1}{10^{k}}+\left(\frac{9}{10^{k+1}}+\ldots+\frac{9}{10^{\ell}}-\frac{1}{10^{k}}\right)= \\
& n_{0}+\frac{n_{1}}{10}+\frac{n_{2}}{10^{2}}+\ldots+\frac{n_{k}+1}{10^{k}}-\varepsilon
\end{aligned}
$$

where $\varepsilon=-\left(\frac{9}{10^{k+1}}+\ldots+\frac{9}{10^{\ell}}-\frac{1}{10^{k}}\right)>0$. (notice that if we would include infinite tails of 9 's then $\varepsilon$ would not be separated from zero)

Thus we have proved that $\forall v \in V$ we have

$$
v \leq n_{0} \cdot n_{1} n_{2} \ldots n_{k-1}\left(n_{k}+1\right)-\varepsilon<n_{0} \cdot n_{1} n_{2} \ldots n_{k-1}\left(n_{k}+1\right)
$$

In particular

$$
\sup V \leq n_{0} \cdot n_{1} n_{2} \ldots n_{k-1}\left(n_{k}+1\right)-\varepsilon<n_{0} \cdot n_{1} n_{2} \ldots n_{k-1}\left(n_{k}+1\right)
$$

Since $m_{k} \geq n_{k}+1$ we have

$$
\sup U \geq m_{0} \cdot m_{1} \ldots m_{k-1} m_{k} 0 \geq m_{0} \cdot m_{1} \ldots m_{k-1}\left(n_{k}+1\right)
$$

which proves the inequality 7.1 .
Exercise 1. What happens when $n_{k}>m_{k}$ ?

Thus we have identified in 1-1, onto way $R_{+}$and $\mathbb{W} \backslash B$.
The elements of $\mathbb{W} \backslash B$ are called "decimal expansions" of real numbers $x$, and we just saw that to "identify" all cuts we do not need all possible elements from $\mathbb{W}$.

However it is convenient to say that $0.999 \ldots$ and $1.000 \ldots$ correspond to one and the same cut and to identify these two different elements to be "equivalent". We say that $u, v \in \mathbb{W}$ are equivalent if the corresponding set of numbers $E_{v}$ and $E_{u}$ have the same supremum, i..e, $\sup E_{v}=\sup E_{u}$.

Problem 7.3. Show that $\mathbb{W} \backslash B$ is uncountable.
Proof. First show that $B$ is countable. Then show that $\mathbb{W}$ is uncountable by using Cantor's diagonal process (or use the fact that $\mathbb{W}$ contains all infinite sequences 01000110011... with coordinates 0 and 1 , and use a theorem that we have proved in the class). Then show that if $\mathbb{W}$ is uncountable and $B$ is countable then $\mathbb{W} \backslash B$ is uncountable.

Thus we obtain that the set $R_{+}$is uncountable.

