
PROBLEM SET II (DUE NOV. 9, 2018)

1. Problem 0

Show that intersection of countable number of k-cells, say {In}n≥1 is nonempty if In+1 ⊂ In
for any n ≥ 1.

Solution See Rudin.

2. Problem 1

Show that there can be only finite or countable number of pairwise disjoint symbol “8”’s drawn
on the plane.

Solution Indeed, to any symbol “8” drawn on the plane choose any two points A and B on
the plane with rational coordinates such that A, and B are inside two different circles of 8. Next,
show that for two disjoint symbol 8’s the pair of points A,B and A′, B′ will be different, i.e., if
A = A′ and B = B′ then the corresponding symbol 8’s will intersect.

This gives a map f from the pairwise disjoint set of 8’s drawn on the plane to a subset of
Q2 ×Q2 which is 1-1. The latter means that 8’s can be at most countable.

3. Problem 2

Let {0, 1}N be the Cantor group, i.e., all possible sequences of the type (0, 0, 1, 1, 0, . . .) consist-
ing of 0’s and 1’s. Let P(N) denote the collection of all subsets of natural numbers N = {1, 2, . . .}.
Construct 1− 1, onto map f : {0, 1}N 7→ P(N).

Solution: here is the construction: to the point (1, 1, 1, . . . , ), i.e., all coordinates are 1 we
will associate {1, 2, 3, . . . , } the whole set. Next, if we have somewhere zero then we will remove
the corresponding element written on the same position from {1, 2, 3, . . . , }. For example

(1, 1, 1, . . . , ) 7→ {1, 2, 3, . . . , }
(0, 1, 1, . . . , ) 7→ {2, 3, . . . , };
(1, 0, 1, . . . , ) 7→ {1, 3, . . . , };
...

(0, 1, 1, 0, 0 . . . , ) 7→ {2, 3}; etc.

Clearly each point of {0, 1}N will define a subset of N. The map is 1-1 and onto.

4. Problem 3

I suggest to solve all problems listed in the exercise section of Chapter 2. Here are some of
them: 2, 5, 8, 9, 10 (very strange problem), 11, 13, 14, 17 (looks like an interesting problem),
21(c), 22, 23, 24, 25, (these 23, 24, 25, 26 are together, in some literature people define compact
sets by saying that every infinite subset has a limit point in it) 26, 29, 30 Chapter 2.

On our midterm exam there will be 5 problems: 4 of them will be from Rudin.

5. Bonus problem 1

Given an integer n ≥ 1, suppose we want to find n different vectors v1, v2, . . . , vn in Rn with
coordinates +1 or −1 such that the inner product of any two of them is zero. Can one solve
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this problem when n = 6? When n = 8? Notice that when n = 2 one can take v1 = (1, 1) and
v2 = (−1, 1). Then clearly v1 · v2 = 0.

Solution
When n = 6 we cannot solve the problem. Indeed, assume yes, and we found v1, v2, . . . , v6 in

R6 with coordinates ±1 such that 〈vj , vi〉 = 0 for any i 6= j. Let us write these vectors as rows
in the following way 

v1
v2
v3
v4
v5
v6


We will see a following list 

1 −1 1 −1 −1 1
1 1 1 1 1 1
1 −1 1 −1 −1 1
1 1 1 1 1 −1
1 −1 1 −1 −1 1
1 1 1 1 1 −1


where the j’th row of the list represents the vector vj . Notice that if we switch any two columns
then the resulting new vectors v′1, v

′
2, v
′
3, v
′
4, v
′
5, v
′
6 corresponding to the rows of new list still will

satisfy the property that the inner product v′j and v′i is zero provided that i 6= j. Also notice
that the same is true if we would switch the rows of the list. The same is true if we multiply by
−1 all elements of any given column. So the latter means that we can switch the signs of any
given column. Let us look at the first row: (1− 1 1− 1− 1 1). Let us make all −1 to be +1
by multiplying the corresponding column by −1. For example, if we multiply the second column
by −1 we would get a new list 

1 1 1 −1 −1 1
1 −1 1 1 1 1
1 1 1 −1 −1 1
1 −1 1 1 1 −1
1 1 1 −1 −1 1
1 −1 1 1 1 −1


Similarly the fourth and fifth column

1 1 1 1 1 1
1 −1 1 −1 −1 1
1 1 1 1 1 1
1 −1 1 −1 −1 −1
1 1 1 1 1 1
1 −1 1 −1 −1 −1


So what we achieved is that in the first row we made everybody to be +1. Since the inner product
of the first and the second row is zero, it means that in the second row we must have exactly
6
2 = 3 negative 1’s. Let us switch the columns, so that to put all negative ones to the left side,
for example like this 

1 1 1 1 1 1
1 1 1 −1 −1 −1
1 1 1 1 1 1
1 1 −1 −1 −1 −1
1 1 1 1 1 1
1 1 −1 −1 −1 −1
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Next arguing in a similar way in the third row we must have also 6/2 = 3 negative ones. By
switching the last remaining 6/2 columns we can achieve in the third row that in the last 6/2
numbers of the third row there must be half negative ones and half positive 1’s, and also in the
first 3 numbers of the third row (WHY?), but 6/4 is not an integer so this is not possible.

The construction for n = 8 can be done as follows: let

A =

(
1 1
1 −1

)
Then consider

B =

(
A A
A −A

)
and finally take

C =

(
B B
B −B

)
Show that the vectors v1, . . . , v8 corresponding to the rows of this new obtained list C do satisfy
the property that their inner product is zero.

6. Bonus problem 2

Let n ≥ 1 be a fixed integer. Suppose we are given on the plane n red vertices and n blue
vertices. Suppose there are edges joining red and blue vertex, and we do not know how many
edges are there but there is the following constraint: for any k ≤ n, and any k-subset of red
vertices (call it A) there exist at least k blue vertices (call it B) such that for any vertex b ∈ B
there is an edge joining b to a vertex a ∈ A. Does this constraint imply that we can split red and
blue vertices in n pairs of vertices (red,blue) such that vertices from each pair are joined by an
edge (each vertex can be only in one pair).

Solution
Proof is by induction on n. If n = 1 there is nothing to prove. Assume the claim is true for

k = 1, 2, . . . , n− 1, and now we want to prove for k = n.
Step 1: Take any m subset A of red vertices where 1 ≤ m < n. Suppose we can find at most

m blue vertices B with the property described in the problem, i.e., any b ∈ B is joined to some
element of A. Then notice that no vertex from Bc (the complement of B) is joined to a vertex
of A otherwise we would’ve find more than m blue vertices of type B. Next notice that for any
k subset of A (here k ≤ m), call it A′, there exists at least k vertices in B, call it B′ such that
any vertex of B′ is joined to a vertex of A′. Hence, we can use the induction hypothesis the sets
A and B. Next we want to use the induction hypothesis for Ac and Bc. But to do so we should
verify that they satisfy the assumption that for any ` subset of red vertices in Ac, call it A′′,
there exists at least ` subset of blue vertices in Bc call it B′′ such that any vertex of B′′ is joined
to some vertex of A′′. Indeed, if this number of blue vertices is strictly less than `, say p < ` then
consider the set A′′ ∪ A which has m + ` red vertices then we can find only m + p blue vertices
with the property described in the problem which contradicts to the assumption of the problem.
Therefore we can use induction hypothesis to Ac and Bc.

Step 2: In what follows we can assume that for any m subset A of red vertices where 1 ≤ m < n
we can always find at least m + 1 blue vertices B with the property described in the problem
(otherwise we are in step 1 which is solved). In this case take any blue vertex such that it is
joined to some red vertex. Call such blue vertex b0 and its joined red vertex a0. Clearly they
exist. In this case let us remove from the set of red vertices a0, and from the set of blue vertices
b0 (they are already joined by an edge and let us forget about them). Now we are left with n− 1
red vertices and n−1 blue vertices. The claim is that this new sets satisfy the property described
in the problem: for any m subset of red vertices, call it A′, there exists at least m subset of blue
vertices, call it B′ such that any b ∈ B′ is joined to some a ∈ A′. Indeed, with b0 there were
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at least m + 1 blue vertices, and now by removing b0 definitely there will be at least m blue
vertices. Thus we can apply the induction hypothesis to n− 1 red and n− 1 blue vertices.

7. Why cuts (real numbers) are uncountable?

Let us construct 1-1 map f from the set R+ of all nonnegative cuts x ≥ 0 to the set of all
objects of the form

n0.n1n2n3 . . . ,

where n0 ≥ 0 is any integer and n1.n2, . . . can be nonnegative integers taking values 0, 1, 2, . . . , 9.

Definition. All such sequences we denote by W.

Also notice that we can consider negative cuts as well just by putting negative sign everywhere.
Here starts the construction.
Take any x ∈ R+, x ≥ 0. Let n0 ≥ 0 be the largest integer such that n0 ≤ x. Now let n1 ≥ 0

be the largest integer such that n0 + n1
10 ≤ x. Notice that 0 ≤ n1 ≤ 9 (why n1 cannot be greater

than 9?). And we iterate this process: suppose n0, n1, . . . , nk are already constructed then we
define nk+1 ≥ 0 to be the largest integer such that

n0 +
n1

10
+ . . . +

nk

10k
+

nk+1

10k+1
≤ x.

Thus we have a map x 7→ n0.n1n2 . . ., i.e., f : R+ 7→W.

Why is f one-to-one?
For this it would be enough to show that x = supE where

E =
{
n0 +

n1

10
+ . . . +

nk

10k

}
k≥0

.

Indeed, this would mean that if there are two reals x, y ≥ 0, x 6= y such that their image gives one
and the same object n0.n1n2 . . ., then x = supE, and y = supE which would be a contradiction
(since supE is unique). Thus it suffices to verify the property that x = supE. Notice that E is
nonempty, and E is upper bounded (for any e ∈ E we have e ≤ x). Therefore supE exists in R.

Denote t
def
= supE. Next we show that t = x. It is clear that x ≥ t since x is an upper bound for

E and t is the least upper bound. Next, assume the contrary that t < x. Set ε = x− t > 0. Let
` ≥ 0 be such that 1

10`
< ε

2 . Clearly

n0 +
n1

10
+ . . . +

n`

10`
≤ t

Therefore

n0 +
n1

10
+ . . . +

n` + 1

10`
≤ t +

1

10`
< t + ε = x

But this means that n` was not the largest nonnegative integer such that

n0 +
n1

10
+ . . . +

n`

10`
≤ x.

A contradiction. Thus x = supE.

Is f onto? The answer is NO.
Indeed, consider the following sequence 0.999 . . .. And show that one cannot find a cut x ∈ R+

such that f(x) = 0.999 . . .. The “right” candidate should be x = 1 but for this one we have
f(1) = 1.000 . . .. Thus we see that there are “bad” elements in W. Let us call an object
n0.n1n2 . . . ∈ W bad if starting at some point k ≥ 1 we have 9 = nk = nk+1 = nk+2 = . . .. In
other words these are those sequences who have a “tail” consisting only by 9’s. Let us denote
the set of all bad elements of W by B.

Problem 7.1. Show that f : R+ 7→W \B is 1-1, and onto.
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Let us split the solution of this problem into several steps. To show that f is 1-1 it will be
enough to prove the following lemma

Lemma 7.1. For each b ∈ B no x ∈ R satisfies f(x) = b.

Proof. Here is the sketch: suppose for some b ∈ B there is x such that f(x) = b. We know that
starting at some point b has the tail of 9′s. If b = n0.999 . . . show that the supremum of the set
of numbers

E =

{
n0, n0 +

9

10
, n0 +

9

10
+

9

102
, . . .

}
is n0 + 1 = x. Indeed, clearly n0 + 1 is un upper bound. It remains to show that it is the least
upper bound (Exercise). On the other hand f(x) = f(n0 + 1) = (n0 + 1).000 . . . 6= n0.999 . . ..

Now, if

b = n0.n1n2 . . . nk9999 . . .

where nk < 9 and k ≥ 1, then show that the supremum of the corresponding set of E is
b = n0.n1n2 . . . (nk + 1)000 . . .. Again this is left as an exercise. �

The lemma together with the previous reasoning implies that the map f : R+ 7→ W \ B is
one-to-one

Finally it remains to solve the following problem.

Problem 7.2. Show that f : R+ 7→W \B is onto.

Here we need to show that given any object m0.m1m2 . . . (here m0 ≥ 0 is any integer and
m1,m2, . . . take values 0, 1, 2 . . . , 9) we can find a nonnegative real x such that f(x) = m0.m1m2.
Indeed, let U to be the set of all numbers m0 + m1

10 + . . .+ mk

10k
for all k ≥ 0. Then U is nonempty,

and it is bounded from above. Indeed, let us show that for any e ∈ U we have e ≤ m0 + 1. We
have

e = m0 +
m1

10
+ . . . +

m`

10`

for some ` ≥ 0. If ` = 0 there is nothing to prove. Assume ` ≥ 1. Then

e ≤ m0 +
9

10

(
1 + . . . +

1

10`−1

)
= m0 +

9

10

(
1− 1

10`

1− 1
10

)
<

m0 +
9

10

(
1

1− 1
10

)
= m0 + 1

Therefore supU exists in R. The nontrivial claim is that we can take x = supU , and then
f(x) = m0.m1 . . .. Indeed, here is the sketch of the argument. Assume the contrary that
f(x) = n0.n1n2 . . . and n0.n1n2 . . . 6= m0.m1 . . .. This means that there exists k ≥ 1 such that
n0 = m0, n1 = m1, . . . , nk−1 = mk−1, mk 6= nk. consider the case nk < mk (the case nk > mk is
similar). Let V be the corresponding set of numbers for the element n0.n1n2 . . ., i.e.,

V =
{
n0, n0 +

n1

10
, n0 +

n1

10
+

n2

102
, . . .

}
.

It suffices to show that supV < supU . Let us use the notation for “finite” sequences of W, i.e.,

h0.h1 . . . hn = h0 +
h1
10

+ . . . +
hn
10n

Next, we will show that

supV < n0.n1n2 . . . nk−1(nk + 1) ≤ n0.n1n2 . . . nk−1mk . . . ≤ supU.(7.1)
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Indeed, let ` > k be such that n` < 9. Then for any p ≥ 0 we have

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n`

10`
+

n`+1

10`+1
+ . . . +

n`+p

10`+p
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n`

10`
+

9

10`+1
+ . . . +

9

10`+p
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

nk+1

10k+1
+ . . . +

n` + 1

10`
≤

n0 +
n1

10
+

n2

102
+ . . . +

nk

10k
+

9

10k+1
+ . . . +

9

10`
=

n0 +
n1

10
+

n2

102
+ . . . +

nk + 1

10k
+

(
9

10k+1
+ . . . +

9

10`
− 1

10k

)
=

n0 +
n1

10
+

n2

102
+ . . . +

nk + 1

10k
− ε

where ε = −
(

9
10k+1 + . . . + 9

10`
− 1

10k

)
> 0. (notice that if we would include infinite tails of 9’s

then ε would not be separated from zero)
Thus we have proved that ∀v ∈ V we have

v ≤ n0.n1n2 . . . nk−1(nk + 1)− ε < n0.n1n2 . . . nk−1(nk + 1)

In particular

supV ≤ n0.n1n2 . . . nk−1(nk + 1)− ε < n0.n1n2 . . . nk−1(nk + 1)

Since mk ≥ nk + 1 we have

supU ≥ m0.m1 . . .mk−1mk0 ≥ m0.m1 . . .mk−1(nk + 1)

which proves the inequality (7.1).

Exercise 1. What happens when nk > mk?

Thus we have identified in 1-1, onto way R+ and W \B.
The elements of W \ B are called “decimal expansions” of real numbers x, and we just saw

that to “identify” all cuts we do not need all possible elements from W.
However it is convenient to say that 0.999 . . . and 1.000 . . . correspond to one and the same

cut and to identify these two different elements to be “equivalent”. We say that u, v ∈ W
are equivalent if the corresponding set of numbers Ev and Eu have the same supremum, i..e,
supEv = supEu.

Problem 7.3. Show that W \B is uncountable.

Proof. First show that B is countable. Then show that W is uncountable by using Cantor’s
diagonal process (or use the fact that W contains all infinite sequences 01000110011... with
coordinates 0 and 1, and use a theorem that we have proved in the class). Then show that if W
is uncountable and B is countable then W \B is uncountable. �

Thus we obtain that the set R+ is uncountable.
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