PROBLEM SET III (DUE NOV. 23, 2018)

1. Problem 0

Rudin, Chapter 3, Exercise: 2, 5, 6 (a,b,c), 7, 8, 9 (a,c,d), 10, 11, 16, 19.

2. Problem 1

Let $a>0$. Define the sequence

$$
x_{n}=\sqrt{a+\sqrt{a+\ldots+\sqrt{a}}}
$$

(here we have n square roots). Show that $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2}(1+\sqrt{1+4 a})$.

3. Problem 2

Show that for any sequence $\left\{x_{n}\right\}_{n \geq 1}$ of positive real numbers we have

$$
\limsup _{n \rightarrow \infty}\left(\frac{x_{1}+x_{n+1}}{x_{n}}\right)^{n} \geq e
$$

4. Problem 3^{*}

Show that if the series $\sum_{n=1}^{\infty} a_{n}$ converges then there exists a sequence $c_{1} \leq c_{2} \leq c_{3} \ldots$ such that $c_{n} \rightarrow \infty$ and the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges.

5. Problem 4^{*}

Let the sequence of real numbers $\left\{x_{n}\right\}_{n \geq 1}$ be such that $x_{n+m} \leq x_{n}+x_{m}$ for all integers $n, m \geq 1$. Show that $\frac{x_{n}}{n} \rightarrow \inf _{m \geq 1} \frac{x_{m}}{m}$

