
PROBLEM SET III (DUE NOV. 23, 2018)

1. Problem 0

Rudin, Chapter 3, Exercise: 2, 5, 6 (a,b,c), 7, 8, 9 (a,c,d), 10, 11, 16, 19.

2. Problem 1

Let a > 0. Define the sequence

xn =

√
a +

√
a + . . . +

√
a

(here we have n square roots). Show that limn→∞ xn = 1
2(1 +

√
1 + 4a).

Solution: Notice that xn+1 ≥ xn i.e., the sequence is nondecreasing. Indeed, the case√
a +
√
a >
√
a easily follows by squaring both sides. And the general case√√√√a +

√
a + ...

√
a︸ ︷︷ ︸

n

≥
√
a + ...

√
a︸ ︷︷ ︸

n

(2.1)

follows by induction: we square both sides of (2.1) and we cancel a, then the inequality is
equivalent to the following one √

a + ...
√
a︸ ︷︷ ︸

n

≥
√
a + ...

√
a︸ ︷︷ ︸

n−1

.

which is true by induction hypothesis.
Also notice that xn ≤ a + 1. Indeed (by induction): the case x1 =

√
a ≤ a + 1 is obvious. For

the general case notice that

xn+1 =
√
a + xn

induction
≤

√
a + a + 1 ≤ a + 1.

The latter inequality holds by squaring both sides of the inequality.
Since xn+1 ≥ xn and xn ≤ a + 1 for all n ≥ 1 it follows that the limit limn→∞ xn = L > 0

exists. Since limxn+1 = limxn we have

L = lim
n→∞

xn+1 = lim
n→∞

√
a + xn =

√
a + lim

n→∞
xn =

√
a + L

The solution of the equation L =
√
a + L is precisely L = 1

2(1 +
√

1 + 4a).

3. Problem 2

Show that for any sequence {xn}n≥1 of positive real numbers we have

lim sup
n→∞

(
x1 + xn+1

xn

)n

≥ e.

Solution:
Assume the contrary, i.e.,

lim sup
n→∞

(
x1 + xn+1

xn

)n

< e.

Since e = limn→∞
(
1 + 1

n

)n
it follows that starting from some (sufficiently large) N > 0, we have(
x1 + xn+1

xn

)n

≤
(

1 +
1

n

)n

for all n ≥ N.
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The latter implies that x1+xn+1

xn
≤ 1 + 1

n which can be rewritten as follows

x1
n + 1

≤ xn
n
− xn+1

n + 1
for all n ≥ N.(3.1)

But this is impossible because choose M very very large (much larger than N). Then we can
write

x1 ≥
x1
1
− xM+1

M + 1

telesc.sum
=

M∑
k=1

(
xk
k
− xk+1

k + 1

)
=

N−1∑
k=1

(
xk
k
− xk+1

k + 1

)
+

M∑
k=N

(
xk
k
− xk+1

k + 1

)
(3.1)

≥

N−1∑
k=1

(
xk
k
− xk+1

k + 1

)
+ x1

M∑
k=N

1

k + 1

Now notice that
∑N−1

k=1

(
xk
k −

xk+1

k+1

)
is a fixed number (independent of M). On the other hand

choosing M large enough we can make the second term, i.e., x1
∑M

k=N
1

k+1 as large as we wish

(because
∑∞

n=1
1
n diverges). Thus we get that

x1 ≥ (a fixed number) + x1 · (a large number going to infinity as M goes to inifinity).

Choosing M large enough we come to a contradiction.

4. Bonus problem 3*

Show that if the series
∑∞

n=1 an converges then there exists a sequence c1 ≤ c2 ≤ c3 . . . such
that cn →∞ and the series

∑∞
n=1 ancn converges.

Solution: We will use the fact that partials sums form Cauchy sequence: since the series∑∞
n=1 an converges then by choosing N large enough we can make the difference of partial sums

|sp − sq| as small as we wish provided that q ≥ p ≥ N .
Indeed, pick any sequence {εj}j≥1 going to zero “sufficiently fast”, for example εj = 1

j10
for

j ≥ 1. Next, choose N1 > 0 so that

∣∣∣∣∣∣
∑

p≤k≤q
ak

∣∣∣∣∣∣ < ε1 for all p ≥ q ≥ N1,

Similarly choose N2 > N1 so that
∣∣∣∑p≤k≤q ak

∣∣∣ < ε2 for all p ≥ q ≥ N2 etc.

Define c` = j if Nj ≤ ` < Nj+1 for all j ≥ 1, and c` = 0 if 1 ≤ ` < N1. Clearly {c`}`≥1 is
nondecreasing going to infinity as ` → ∞. Also notice that if s > t > N for some large N > 0,
say if s ∈ [Nu, Nu+1) and t ∈ [Nv, Nv+1) where u ≥ v and v is large enough then we have∣∣∣∣∣∣

∑
t≤k≤s

akck

∣∣∣∣∣∣ ≤ u

∣∣∣∣∣∣
∑

t≤k<Nu+1

ak

∣∣∣∣∣∣+ (u + 1)

∣∣∣∣∣∣
∑

Nu+1≤k<Nu+2

ak

∣∣∣∣∣∣+ . . . + v

∣∣∣∣∣∣
∑

Nv≤k≤s
ak

∣∣∣∣∣∣ ≤
u

u10
+

u + 1

(u + 1)10
+ . . . +

v

v10

which goes to zero as N (i.e., u) goes to infinity. Therefore
∑

akck converges.

5. Bonus problem 4*

Let the sequence of real numbers {xn}n≥1 be such that xn+m ≤ xn + xm for all integers
n,m ≥ 1. Show that xn

n → infm≥1
xm
m

Solution: Let ` = infm≥1
xm
m . It is enough to show that for any number s > ` we have

` ≤ lim inf
n→∞

xn
n
≤ lim sup

n→∞

xn
n
≤ s.(5.1)
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This would imply that limn→∞
xn
n = `. To verify (5.1), let m ≥ 1 be such that xm

m < s. Pick any
integer n ≥ 1. We can write it as n = mk + r where 0 ≤ r ≤ m− 1, and k = k(n), r = r(n) are
nonnegative integers. Then

xn
n

=
xmk+r

n
≤ kxm

n
+

xr
n

<
km

n
s +

xr
n

(5.2)

Now when n goes to infinity clearly xr
n → 0 because always xr ∈ {x1, x2, . . . , xm−1} which are

fixed numbers (independent of n). Also km
n goes to 1 as n→∞ because 1 = km

n + r
n and r

n goes
to zero. Thus the limit of the right hand side of (5.2) is s. This implies that lim supn→∞

xn
n ≤ s.
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