PROBLEM SET III (DUE NOV. 23, 2018)

1. Problem 0

Rudin, Chapter 3, Exercise: 2, 5, 6 (a,b,c), 7, 8, 9 (a,c,d), 10, 11, 16, 19.

2. Problem 1

Let $a>0$. Define the sequence

$$
x_{n}=\sqrt{a+\sqrt{a+\ldots+\sqrt{a}}}
$$

(here we have n square roots). Show that $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2}(1+\sqrt{1+4 a})$.

Solution: Notice that $x_{n+1} \geq x_{n}$ i.e., the sequence is nondecreasing. Indeed, the case $\sqrt{a+\sqrt{a}}>\sqrt{a}$ easily follows by squaring both sides. And the general case

$$
\begin{equation*}
\sqrt{a+\underbrace{\sqrt{a+\ldots \sqrt{a}}}_{n}} \geq \underbrace{\sqrt{a+\ldots \sqrt{a}}}_{n} \tag{2.1}
\end{equation*}
$$

follows by induction: we square both sides of 2.1 and we cancel a, then the inequality is equivalent to the following one

$$
\underbrace{\sqrt{a+\ldots \sqrt{a}}}_{n} \geq \underbrace{\sqrt{a+\ldots \sqrt{a}}}_{n-1} .
$$

which is true by induction hypothesis.
Also notice that $x_{n} \leq a+1$. Indeed (by induction): the case $x_{1}=\sqrt{a} \leq a+1$ is obvious. For the general case notice that

$$
x_{n+1}=\sqrt{a+x_{n}} \stackrel{\text { induction }}{\leq} \sqrt{a+a+1} \leq a+1
$$

The latter inequality holds by squaring both sides of the inequality.
Since $x_{n+1} \geq x_{n}$ and $x_{n} \leq a+1$ for all $n \geq 1$ it follows that the limit $\lim _{n \rightarrow \infty} x_{n}=L>0$ exists. Since $\lim x_{n+1}=\lim x_{n}$ we have

$$
L=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \sqrt{a+x_{n}}=\sqrt{a+\lim _{n \rightarrow \infty} x_{n}}=\sqrt{a+L}
$$

The solution of the equation $L=\sqrt{a+L}$ is precisely $L=\frac{1}{2}(1+\sqrt{1+4 a})$.

3. Problem 2

Show that for any sequence $\left\{x_{n}\right\}_{n \geq 1}$ of positive real numbers we have

$$
\limsup _{n \rightarrow \infty}\left(\frac{x_{1}+x_{n+1}}{x_{n}}\right)^{n} \geq e
$$

Solution:

Assume the contrary, i.e.,

$$
\limsup _{n \rightarrow \infty}\left(\frac{x_{1}+x_{n+1}}{x_{n}}\right)^{n}<e
$$

Since $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ it follows that starting from some (sufficiently large) $N>0$, we have

$$
\left(\frac{x_{1}+x_{n+1}}{x_{n}}\right)^{n} \leq\left(1+\frac{1}{n}\right)^{n} \quad \text { for all } \quad n \geq N
$$

The latter implies that $\frac{x_{1}+x_{n+1}}{x_{n}} \leq 1+\frac{1}{n}$ which can be rewritten as follows

$$
\begin{equation*}
\frac{x_{1}}{n+1} \leq \frac{x_{n}}{n}-\frac{x_{n+1}}{n+1} \quad \text { for all } \quad n \geq N \tag{3.1}
\end{equation*}
$$

But this is impossible because choose M very very large (much larger than N). Then we can write

$$
\begin{aligned}
& x_{1} \geq \frac{x_{1}}{1}-\frac{x_{M+1}}{M+1} \stackrel{\text { telesc.sum }}{=} \sum_{k=1}^{M}\left(\frac{x_{k}}{k}-\frac{x_{k+1}}{k+1}\right)=\sum_{k=1}^{N-1}\left(\frac{x_{k}}{k}-\frac{x_{k+1}}{k+1}\right)+\sum_{k=N}^{M}\left(\frac{x_{k}}{k}-\frac{x_{k+1}}{k+1}\right) \stackrel{\sqrt[3.11]{\geq}}{\geq} \\
& \sum_{k=1}^{N-1}\left(\frac{x_{k}}{k}-\frac{x_{k+1}}{k+1}\right)+x_{1} \sum_{k=N}^{M} \frac{1}{k+1}
\end{aligned}
$$

Now notice that $\sum_{k=1}^{N-1}\left(\frac{x_{k}}{k}-\frac{x_{k+1}}{k+1}\right)$ is a fixed number (independent of M). On the other hand choosing M large enough we can make the second term, i.e., $x_{1} \sum_{k=N}^{M} \frac{1}{k+1}$ as large as we wish (because $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges). Thus we get that
$x_{1} \geq$ (a fixed number) $+x_{1} \cdot($ a large number going to infinity as M goes to inifinity).
Choosing M large enough we come to a contradiction.

4. Bonus problem 3^{*}

Show that if the series $\sum_{n=1}^{\infty} a_{n}$ converges then there exists a sequence $c_{1} \leq c_{2} \leq c_{3} \ldots$ such that $c_{n} \rightarrow \infty$ and the series $\sum_{n=1}^{\infty} a_{n} c_{n}$ converges.

Solution: We will use the fact that partials sums form Cauchy sequence: since the series $\sum_{n=1}^{\infty} a_{n}$ converges then by choosing N large enough we can make the difference of partial sums $\left|s_{p}-s_{q}\right|$ as small as we wish provided that $q \geq p \geq N$.

Indeed, pick any sequence $\left\{\varepsilon_{j}\right\}_{j \geq 1}$ going to zero "sufficiently fast", for example $\varepsilon_{j}=\frac{1}{j^{10}}$ for $j \geq 1$. Next, choose $N_{1}>0$ so that

$$
\left|\sum_{p \leq k \leq q} a_{k}\right|<\varepsilon_{1} \quad \text { for all } \quad p \geq q \geq N_{1}
$$

Similarly choose $N_{2}>N_{1}$ so that $\left|\sum_{p \leq k \leq q} a_{k}\right|<\varepsilon_{2}$ for all $p \geq q \geq N_{2}$ etc.
Define $c_{\ell}=j$ if $N_{j} \leq \ell<N_{j+1}$ for all $j \geq 1$, and $c_{\ell}=0$ if $1 \leq \ell<N_{1}$. Clearly $\left\{c_{\ell}\right\}_{\ell \geq 1}$ is nondecreasing going to infinity as $\ell \rightarrow \infty$. Also notice that if $s>t>N$ for some large $N>0$, say if $s \in\left[N_{u}, N_{u+1}\right)$ and $t \in\left[N_{v}, N_{v+1}\right)$ where $u \geq v$ and v is large enough then we have

$$
\begin{aligned}
& \left|\sum_{t \leq k \leq s} a_{k} c_{k}\right| \leq u\left|\sum_{t \leq k<N_{u+1}} a_{k}\right|+(u+1)\left|\sum_{N_{u+1} \leq k<N_{u+2}} a_{k}\right|+\ldots+v\left|\sum_{N_{v} \leq k \leq s} a_{k}\right| \leq \\
& \frac{u}{u^{10}}+\frac{u+1}{(u+1)^{10}}+\ldots+\frac{v}{v^{10}}
\end{aligned}
$$

which goes to zero as N (i.e., u) goes to infinity. Therefore $\sum a_{k} c_{k}$ converges.

5. Bonus problem 4^{*}

Let the sequence of real numbers $\left\{x_{n}\right\}_{n \geq 1}$ be such that $x_{n+m} \leq x_{n}+x_{m}$ for all integers $n, m \geq 1$. Show that $\frac{x_{n}}{n} \rightarrow \inf _{m \geq 1} \frac{x_{m}}{m}$

Solution: Let $\ell=\inf _{m \geq 1} \frac{x_{m}}{m}$. It is enough to show that for any number $s>\ell$ we have

$$
\begin{equation*}
\ell \leq \liminf _{n \rightarrow \infty} \frac{x_{n}}{n} \leq \limsup _{n \rightarrow \infty} \frac{x_{n}}{n} \leq s \tag{5.1}
\end{equation*}
$$

This would imply that $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=\ell$. To verify (5.1), let $m \geq 1$ be such that $\frac{x_{m}}{m}<s$. Pick any integer $n \geq 1$. We can write it as $n=m k+r$ where $0 \leq r \leq m-1$, and $k=k(n), r=r(n)$ are nonnegative integers. Then

$$
\begin{equation*}
\frac{x_{n}}{n}=\frac{x_{m k+r}}{n} \leq \frac{k x_{m}}{n}+\frac{x_{r}}{n}<\frac{k m}{n} s+\frac{x_{r}}{n} \tag{5.2}
\end{equation*}
$$

Now when n goes to infinity clearly $\frac{x_{r}}{n} \rightarrow 0$ because always $x_{r} \in\left\{x_{1}, x_{2}, \ldots, x_{m-1}\right\}$ which are fixed numbers (independent of n). Also $\frac{k m}{n}$ goes to 1 as $n \rightarrow \infty$ because $1=\frac{k m}{n}+\frac{r}{n}$ and $\frac{r}{n}$ goes to zero. Thus the limit of the right hand side of 5.2 is s. This implies that $\lim \sup _{n \rightarrow \infty} \frac{x_{n}}{n} \leq s$.

