PROBLEM SET 4 (DUE FEB. 10, 2019)

1. Problem 1

Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Define

$$B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) x^k (1-x)^{n-k} \binom{n}{k}.$$

Show that polynomials B_n converge uniformly to f on [0,1] as $n \to \infty$.

Hint: notice that since $1 = \sum_{0 \le k \le n} x^k (1-x)^{n-k} {n \choose k}$ it suffices to bound uniformly in x the sum

$$|B_n(x) - f(x)| \le \sum_{0 \le k \le n} \left| f\left(\frac{k}{n}\right) - f(x) \right| x^k (1-x)^{n-k} \binom{n}{k}.$$

If k is such that $\left|\frac{k}{n} - x\right| \leq \delta$ then we can use uniform continuity of f to bound these terms. If $\left|\frac{k}{n}-x\right| > \delta$, then we can estimate $\left|f\left(\frac{k}{n}\right)-f(x)\right| \le 2M$, where M is the maximum of f on [0,1]. Therefore it remains to show that the sum

$$\sum_{k: \left|\frac{k}{n} - x\right| > \delta} x^k (1-x)^{n-k} \binom{n}{k}$$

is small as n becomes large. The question is how to show it?

Remark 1.1. The intuition behind the polynomials $B_n(x)$ (which are called Bernstein polynomials) is "probabilistic" and it comes from the fact that $B_n(x) = \mathbb{E}f\left(\frac{\xi_1 + \dots + \xi_n}{n}\right)$ where ξ_1, \dots, ξ_n are independent identically distributed Bernoulli 0,1 random variables, i.e., $\xi_j = 1$ with probability x and $\xi_j = 0$ with probability (1 - x). Since $\lim_{n\to\infty} \frac{\xi_1 + \dots + \xi_n}{n}$ "converges" to its average value $\mathbb{E}\frac{\xi_1 + \dots + \xi_n}{n} = x$ (by "strong law of large numbers"), then it is "reasonable" to expect that for any continuous function f on [0,1] the quantity $f\left(\frac{\xi_1+\ldots+\xi_n}{n}\right)$ also "converges" to f(x), and in particular by "Lebesgue dominated convergence theorem" we can pass to the limit under "the integrals", i.e., $\mathbb{E}f\left(\frac{\xi_1+\ldots+\xi_n}{n}\right)$ "converges" to f(x). All one needs to justify is why the convergence is uniform in x.

2. Problem 2

Consider the family of nonnegative functions $\{\varphi_k\}_{k\geq 0}$ on the real line \mathbb{R} such that

- 1. $\int_{\mathbb{R}} \varphi_k(x) dx = 1$ for all $k \ge 0$. 2. For any $\delta > 0$ we have $\lim_{k \to \infty} \int_{|x| \ge \delta} \varphi_k(x) dx = 0$.

Here $\int_{\mathbb{R}} \varphi_k dx = \int_{-\infty}^{\infty} \varphi_k dx$; and $\int_{|x| \ge \delta} \varphi_k = \int_{-\infty}^{-\delta} \varphi_k + \int_{\delta}^{\infty} \varphi_k$. Let f be a uniformly continuous bounded function on \mathbb{R} . Define $f * \varphi_k(x) = \int_{\mathbb{R}} f(y)\varphi_k(x-y)dy$. Show that $f * \varphi_k$ converges uniformly to f on \mathbb{R} as $k \to \infty$.

3. Problem 3

Rudin, Chapter 7, problem 14

4. Problem 4

Rudin, Chapter 7, problem 16.

5. Problem 5

Rudin, Chapter 7, problem 25.