PROBLEM SET 4 (DUE FEB. 10, 2019)

1. Problem 1

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Define

$$
B_{n}(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}\binom{n}{k}
$$

Show that polynomials B_{n} converge uniformly to f on $[0,1]$ as $n \rightarrow \infty$.

Hint: notice that since $1=\sum_{0 \leq k \leq n} x^{k}(1-x)^{n-k}\binom{n}{k}$ it suffices to bound uniformly in x the sum

$$
\left|B_{n}(x)-f(x)\right| \leq \sum_{0 \leq k \leq n}\left|f\left(\frac{k}{n}\right)-f(x)\right| x^{k}(1-x)^{n-k}\binom{n}{k}
$$

If k is such that $\left|\frac{k}{n}-x\right| \leq \delta$ then we can use uniform continuity of f to bound these terms. If $\left|\frac{k}{n}-x\right|>\delta$, then we can estimate $\left|f\left(\frac{k}{n}\right)-f(x)\right| \leq 2 M$, where M is the maximum of f on $[0,1]$. Therefore it remains to show that the sum

$$
\sum_{k:\left|\frac{k}{n}-x\right|>\delta} x^{k}(1-x)^{n-k}\binom{n}{k}
$$

is small as n becomes large. The question is how to show it?
Remark 1.1. The intuition behind the polynomials $B_{n}(x)$ (which are called Bernstein polynomials) is "probabilistic" and it comes from the fact that $B_{n}(x)=\mathbb{E} f\left(\frac{\xi_{1}+\ldots+\xi_{n}}{n}\right)$ where ξ_{1}, \ldots, ξ_{n} are independent identically distributed Bernoulli 0,1 random variables, i.e., $\xi_{j}=1$ with probability x and $\xi_{j}=0$ with probability $(1-x)$. Since $\lim _{n \rightarrow \infty} \frac{\xi_{1}+\ldots+\xi_{n}}{n}$ "converges" to its average value $\mathbb{E} \frac{\xi_{1}+\ldots+\xi_{n}}{n}=x$ (by "strong law of large numbers"), then it is "reasonable" to expect that for any continuous function f on $[0,1]$ the quantity $f\left(\frac{\xi_{1}+\ldots+\xi_{n}}{n}\right)$ also "converges" to $f(x)$, and in particular by "Lebesgue dominated convergence theorem" we can pass to the limit under "the integrals", i.e., $\mathbb{E} f\left(\frac{\xi_{1}+\ldots+\xi_{n}}{n}\right)$ "converges" to $f(x)$. All one needs to justify is why the convergence is uniform in x.

2. Problem 2

Consider the family of nonnegative functions $\left\{\varphi_{k}\right\}_{k \geq 0}$ on the real line \mathbb{R} such that

1. $\int_{\mathbb{R}} \varphi_{k}(x) d x=1$ for all $k \geq 0$.
2. For any $\delta>0$ we have $\lim _{k \rightarrow \infty} \int_{|x| \geq \delta} \varphi_{k}(x) d x=0$.

Here $\int_{\mathbb{R}} \varphi_{k} d x=\int_{-\infty}^{\infty} \varphi_{k} d x$; and $\int_{|x| \geq \delta} \varphi_{k}=\int_{-\infty}^{-\delta} \varphi_{k}+\int_{\delta}^{\infty} \varphi_{k}$. Let f be a uniformly continuous bounded function on \mathbb{R}. Define $f * \varphi_{k}(x)=\int_{\mathbb{R}} f(y) \varphi_{k}(x-y) d y$. Show that $f * \varphi_{k}$ converges uniformly to f on \mathbb{R} as $k \rightarrow \infty$.

3. Problem 3

Rudin, Chapter 7, problem 14

4. Problem 4

Rudin, Chapter 7, problem 16.
5. Problem 5

Rudin, Chapter 7, problem 25.

