PROBLEM SET IV (DUE DEC. 7, 2018)

1. Problem 0

Rudin, Chapter 4, Exercise: 3, 4, 5, 6, 7, 8, 9, 14, 16, 18, 20, 21, 23, 24, 25(a).

2. Bonus problem 1

For a real number $x>0$ let $\{x\}$ denote its fractional part, i.e., $\{x\}=x-[x]$ where $[x]$ denotes the largest integer smaller than x. Show that for any $x>1$ we have

$$
\sum_{k=1}^{n}\{k x\} \leq \frac{n}{2} x
$$

holds true for all $n \geq 1$.

3. Bonus problem 2

Let f be a convex function such that the series $\sum_{k=1}^{\infty} k f(k)$ converges absolutely. Show that

$$
\sum_{k=1}^{\infty}(-1)^{k-1} k f(k) \geq 0
$$

4. Bonus problem 3

Let $I \subset \mathbb{R}$ be an interval, and let $f: I \mapsto \mathbb{R}$ be a non-decreasing convex function. If $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ are numbers in I such that

$$
\begin{aligned}
& x_{1} \geq x_{2} \geq \ldots \geq x_{n}, \\
& y_{1} \geq y_{2} \geq \ldots \geq y_{n},
\end{aligned}
$$

and

$$
x_{1}+\ldots+x_{k} \geq y_{1}+\ldots y_{k}, \quad \text { for all } \quad 1 \leq k \leq n
$$

then

$$
f\left(x_{1}\right)+\ldots+f\left(x_{n}\right) \geq f\left(y_{1}\right)+\ldots+f\left(y_{n}\right)
$$

