
PROBLEM SET IV (DUE DEC. 7, 2018)

1. Problem 0

Rudin, Chapter 4, Exercise: 3, 4, 5, 6, 7, 8, 9, 14, 16, 18, 20, 21, 23, 24, 25(a).

2. Bonus problem 1

For a real number x > 0 let {x} denote its fractional part, i.e., {x} = x− [x] where [x] denotes
the largest integer smaller than x. Show that for any x > 1 we have

n∑
k=1

{kx} ≤ n

2
x,

holds true for all n ≥ 1.
Solution: Since I have explained the proof of the inequality in the class I will only sketch the

idea: it is enough to consider the case 2 ≥ x ≥ 1. Taking x = y+1, y ∈ (0, 1), and using the fact

that {kx} = {ky} = ky−[ky] it is enough to show that
∑n

k=1[ky] ≥
n(n+1)y

2 − n
2 (y+1) = n·ny

2 −
n·1
2 .

To verify the last inequality, i.e., n·1
2 +

∑n
k=1[ky] ≥

n·ny
2 draw a graph of a function f(s) = sy

for s ∈ [0, n] and also draw a square lattice and try see what does this inequality mean (compare
areas).

3. Bonus problem 2

Let f be a convex function such that the series
∑∞

k=1 kf(k) converges absolutely. Show that

∞∑
k=1

(−1)k−1kf(k) ≥ 0.

Solution Since the series converges absolutely we can rearrange terms and put the parentheses
as we wish. For example,

∞∑
k=1

(−1)k−1kf(k) =

f(1)− 2f(2) + 3f(3)− 4f(4) + 5f(5)− 6f(6) + 7f(7)− 8f(8) + 9f(9)− 10f(10) + ... =

[f(1)− 2f(2) + f(3)] + 2[f(3)− 2f(4) + f(5)] + 3[f(5)− 2f(6) + f(7)] + 4[f(7)− 2f(8) + f(9)] + ...

Since each terms is nonnegative by convexity, i.e., f(a)− 2f(a+b
2 ) + f(b) ≥ 0 we obtain that the

full sum is nonnegative.

4. Bonus problem 3

Let I ⊂ R be an interval, and let f : I 7→ R be a non-decreasing convex function. If
x1, x2, . . . , xn and y1, y2, . . . , yn are numbers in I such that

x1 ≥ x2 ≥ . . . ≥ xn,

y1 ≥ y2 ≥ . . . ≥ yn,

and

x1 + . . .+ xk ≥ y1 + . . . yk, for all 1 ≤ k ≤ n

then

f(x1) + . . .+ f(xn) ≥ f(y1) + . . .+ f(yn)
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Solution Without loss of generality assume that xi 6= yi for all i = 1, . . . , n (how?). Next, set

Dj =
f(xi)− f(yi)

xi − yi
for all j = 1, . . . , n.

First show that convexity of f implies that Dj −Dj+1 ≥ 0 for all j = 1, . . . , n − 1. Next, let
Xj = x1 + .. + xj , and Yj = y1 + .. + yj for all j = 1, . . . , n. Also set X0 = Y0 = 0. Clearly
Xj − Yj ≥ 0 for all j = 1, . . . , n.

We can write

f(x1)− f(y1) + f(x2)− f(y2) + ...+ f(xn)− f(yn) =

= D1(x1 − y1) +D2(x2 − y2) + ...+Dn(xn − yn) =

= D1(X1 −X0 − (Y1 − Y0)) +D2(X2 −X1 − (Y2 − Y1)) + ...+Dn(Xn −Xn−1 − (Yn − Yn−1)) =

= D1(X1 − Y1) + [D2(X2 − Y2)−D2(X1 − Y1)] + [D3(X3 − Y3)−D3(X2 − Y2)] + ...+

+Dn(Xn − Yn)−Dn(Xn−1 − Yn−1) =

(X1 − Y1)(D1 −D2) + (X2 − Y2)(D2 −D3) + ...+ (Xn−1 − Yn−1)(Dn−1 −Dn) +Dn(Xn − Yn)

All terms are nonnegative. The last term is nonnegative because Dn ≥ 0 by the fact that f is
non-decreasing.

Remark 4.1. The inequality is called Karamata’s inequality. In fact the converse is also true, if
the inequality on f holds for all such choices of points x1, .., xn, and y1, ..., yn (and some n ≥ 2)
then f is nondecreasing and convex (exercise).
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