HOMEWORK V (DUE JUN. 7, 2019)

The purpose of the last homework will be to better understand differential forms.

Problem 1.

Consider 3-form in \mathbb{R}^3 , $\omega = dx \wedge dy \wedge dz$. Let $\Phi : \mathbb{R}^3 \to \mathbb{R}^3$ be a C^1 map

 $\Phi(x, y, z) = (\varphi_1(x, y, z), \varphi_2(x, y, z), \varphi_3(x, y, z)).$

We remind that by definition $\omega_{\Phi} = d\varphi_1 \wedge d\varphi_2 \wedge d\varphi_3$. Show that

 $\omega_{\Phi} = \det(\Phi')dx \wedge dy \wedge dz$

where $det(\Phi')$ is the determinant of the matrix of the first derivatives of Φ differentiated with respect to the variables x, y, z in the order (x, y, z).

Problem 2. Let $D = [0,1] \times [0,1]$. Consider the two-form $\omega = dx \wedge dy$ in \mathbb{R}^2 . Let us consider 2-surface $\Phi(x,y) : D \to \mathbb{R}^2$, $\Phi(x,y) = (x,y)$, and 2-surface $\Psi : D \to \mathbb{R}^2$, $\Psi(x,y) = (y,x)$. Show that $\Phi(D) = \Psi(D) = D$, and $\int_{\Phi} \omega = -\int_{\Psi} \omega$.

Problem 3. What is missing in the proof of Theorem 10.27 of Rudin?

Problem 4. Chapter 10, exercise 2; 7; 8; 9; 15; 16;