HOMEWORK V (DUE JUN. 7, 2019)

The purpose of the last homework will be to better understand differential forms.

Problem 1.

Consider 3-form in $\mathbb{R}^{3}, \omega=d x \wedge d y \wedge d z$. Let $\Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a C^{1} map

$$
\Phi(x, y, z)=\left(\varphi_{1}(x, y, z), \varphi_{2}(x, y, z), \varphi_{3}(x, y, z)\right)
$$

We remind that by definition $\omega_{\Phi}=d \varphi_{1} \wedge d \varphi_{2} \wedge d \varphi_{3}$. Show that

$$
\omega_{\Phi}=\operatorname{det}\left(\Phi^{\prime}\right) d x \wedge d y \wedge d z
$$

where $\operatorname{det}\left(\Phi^{\prime}\right)$ is the determinant of the matrix of the first derivatives of Φ differentiated with respect to the variables x, y, z in the order (x, y, z).
Problem 2. Let $D=[0,1] \times[0,1]$. Consider the two-form $\omega=d x \wedge d y$ in \mathbb{R}^{2}. Let us consider 2-surface $\Phi(x, y): D \rightarrow \mathbb{R}^{2}, \Phi(x, y)=(x, y)$, and 2-surface $\Psi: D \rightarrow \mathbb{R}^{2}, \Psi(x, y)=(y, x)$. Show that $\Phi(D)=\Psi(D)=D$, and $\int_{\Phi} \omega=-\int_{\Psi} \omega$.
Problem 3. What is missing in the proof of Theorem 10.27 of Rudin?
Problem 4. Chapter 10, exercise 2; 7; 8; 9; 15; 16;

