PROBLEM SET 6 (DUE FEB. 25, 2019)

Given a positive number n let $\sigma_0(n)$ be the number of the divisors of n, and let $\sigma_1(n)$ be the sum of all divisors of n. For example if n = 12 then all divisors are 1, 2, 3, 4, 6, 12. Therefore $\sigma_0(n) = 6$, and $\sigma_1(n) = 1 + 2 + 3 + 4 + 6 + 12 = 28$.

1. Problem 1

Show that for any |t| < 1 we have

$$\sum_{n\geq 1} \frac{t^n}{1-t^n} = \sum_{n\geq 1} \sigma_0(n) t^n$$

2. Problem 2

Show that

$$\sum_{n \ge 1} \frac{nt^n}{1 - t^n} = \sum_{n \ge 1} \sigma_1(n) t^n$$

3. PROBLEM 3 ("AFTER TWELVE YEARS")

Given $x \in \mathbb{R}$ let [x] denote its "floor function", i.e., the greatest integer less than or equal to x. Consider the partial sums

$$S_N(x) = \sum_{n=1}^N (-1)^{[nx]}$$

For which rational numbers $x = \frac{p}{q} \in \mathbb{Q}$ we have

$$\sup_{N\geq 1}|S_N(x)|<\infty?$$

Remark 3.1. In fact one can show that if x is irrational then the quantity $\sup_{N\geq 1} |S_N(x)|$ is not bounded! This is a little bit tricky but if time permits I will cover it in the class.

4. Bonus problem

Let x be an irrational number. Show that $\sup_{N\geq 1} |S_N(x)|$ is bounded if and only if

$$\sup_{n \ge 1} \left| \# \{ 1 \le k \le n : 0 \le \{kx\} \le \frac{1}{2} \} - \frac{n}{2} \right| < \infty$$

where $\{kx\} = kx - [kx]$, and # denotes the cardinality of the set of those positive integers k, $1 \le k \le n$ such that $0 \le \{kx\} \le \frac{1}{2}$.

Remark 4.1. Solutions of the bonus problems are not graded. Nevertheless, I would be happy to see your solution which you could tell me before/after the class or during my office hours.

5. Bonus problem

Let f be a 1-periodic continuous function on [0, 1). Let $x \in \mathbb{R} \setminus \mathbb{Q}$ be fixed. Assume that

$$\sup_{N \ge 1} \left| \sum_{n=1}^{N} f(nx) \right| < \infty.$$

What can you say about f in terms of its Fourier coefficients?