PROBLEM SET 6 (DUE FEB. 25, 2019)

Given a positive number n let $\sigma_{0}(n)$ be the number of the divisors of n, and let $\sigma_{1}(n)$ be the sum of all divisors of n. For example if $n=12$ then all divisors are $1,2,3,4,6,12$. Therefore $\sigma_{0}(n)=6$, and $\sigma_{1}(n)=1+2+3+4+6+12=28$.

1. Problem 1

Show that for any $|t|<1$ we have

$$
\sum_{n \geq 1} \frac{t^{n}}{1-t^{n}}=\sum_{n \geq 1} \sigma_{0}(n) t^{n}
$$

2. Problem 2

Show that

$$
\sum_{n \geq 1} \frac{n t^{n}}{1-t^{n}}=\sum_{n \geq 1} \sigma_{1}(n) t^{n}
$$

3. Problem 3 ("after twelve years")

Given $x \in \mathbb{R}$ let $[x]$ denote its "floor function", i.e., the greatest integer less than or equal to x. Consider the partial sums

$$
S_{N}(x)=\sum_{n=1}^{N}(-1)^{[n x]}
$$

For which rational numbers $x=\frac{p}{q} \in \mathbb{Q}$ we have

$$
\sup _{N \geq 1}\left|S_{N}(x)\right|<\infty ?
$$

Remark 3.1. In fact one can show that if x is irrational then the quantity $\sup _{N \geq 1}\left|S_{N}(x)\right|$ is not bounded! This is a little bit tricky but if time permits I will cover it in the class.

4. Bonus problem

Let x be an irrational number. Show that $\sup _{N \geq 1}\left|S_{N}(x)\right|$ is bounded if and only if

$$
\sup _{n \geq 1}\left|\#\left\{1 \leq k \leq n: 0 \leq\{k x\} \leq \frac{1}{2}\right\}-\frac{n}{2}\right|<\infty
$$

where $\{k x\}=k x-[k x]$, and \# denotes the cardinality of the set of those positive integers k, $1 \leq k \leq n$ such that $0 \leq\{k x\} \leq \frac{1}{2}$.
Remark 4.1. Solutions of the bonus problems are not graded. Nevertheless, I would be happy to see your solution which you could tell me before/after the class or during my office hours.

5. Bonus problem

Let f be a 1-periodic continuous function on $[0,1)$. Let $x \in \mathbb{R} \backslash \mathbb{Q}$ be fixed. Assume that

$$
\sup _{N \geq 1}\left|\sum_{n=1}^{N} f(n x)\right|<\infty .
$$

What can you say about f in terms of its Fourier coefficients?

