1. Problem 1

Chapter 8, Exercise 4,5,6,7,8 and 9.

2. PRoblem 2

We have explained in the class that

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

has no zeros on \mathbb{R}. The argument was based on the fact that $e^{x}>0$ for $x>0$ and the identity $e^{x} e^{-x}=1$ which followed from the binomial identity $(x+y)^{n}=\sum_{k=0}^{n} x^{k} y^{n-k}\binom{n}{k}$.

Let us see if we can avoid these identities and give a pure analytic proof of this and a more general fact.

Let $\alpha \in(0,1)$. Show that

$$
f(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{(k!)^{\alpha}}>0 \quad \text { for all } \quad x \in \mathbb{R}
$$

The interesting case is of course when $x<0$.
Hints:

1. Show that there exists a constant $c=c(\alpha)>0$ such that

$$
\int_{0}^{1}\left(1-t^{n}\right) \frac{d t}{t\left(\log \frac{1}{t}\right)^{\alpha+1}}=c n^{\alpha}
$$

holds true for all nonnegative $n=0,1,2, \ldots$.
2. Next, conclude that

$$
\begin{equation*}
\int_{0}^{1}(f(x)-f(x t)) \frac{d t}{t\left(\log \frac{1}{t}\right)^{\alpha+1}}=c x f(x) \quad \text { for all } \quad x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

(explain why one can switch the sum and the integral).
3. Show that the identity (2.1) implies that f cannot have roots at negative real numbers (assume contrary and choose the maximal root).

