PROBLEM SET I (DUE OCT. 26/2018)

1. Problem 1 (Proposition 1.18, Rudin)

The following statements are true in every ordered field
(a) If $x>0$ then $-x<0$, and vice versa.
(b) If $x>0$ and $y<z$ then $x y<x z$.
(c) If $x<0$ and $y<z$ then $x y>x z$.
(d) If $x \neq 0$ then $x^{2}>0$. In particular, $1>0$.
(e) If $0<x<y$ then $0<1 / y<1 / x$.

Solution: See Rudin.

2. Problem 2

Let $\alpha \in \mathbb{R}$ be a cut, and let w be a positive rational number. Show that there exists an integer n such that $n w \in \alpha$ but $(n+1) w \notin \alpha$.

Solution: first we show that there exists a positive integer $m>0$ such that $m w \notin \alpha$. Indeed, assume contrary. Consider the set of all rational cuts $A=\{m w\}_{m \geq 1}$. Then α is an upper bound for this set A. Put $t=\sup A$. Since $w>0$ it follows that $t-w<t$, i.e., $t-w$ is not an upper bound for A. Hence there exists an element in A, say $m_{1} w$ such that $m_{1} w>t-w$. The latter implies that $w\left(m_{1}+1\right)>t$ which is a contradiction. Thus there exists a positive integer m such that $m w \notin \alpha$.

Next, look at $(m-1) w$. If it happens that $(m-1) w \in \alpha$ then we are done because we can take $n=m-1$. Otherwise we continuo and look at $(m-2) w,$. etc. Let us show that for some positive integer k we must have $(m-k) w \notin \alpha$ (the process will stop). Indeed, otherwise consider the set $B=\{p w\}_{p \leq m}$, and notice that $\alpha<p w$ for any integer $p \leq m$, i.e., α is a lower bound. Then arguing similarly as before we come to a contradiction.

3. Problem 3

Let $1^{*}=\{p \in Q: p<1\}$. Show that for any cut $\alpha \in R, \alpha>0^{*}$, there exists a cut $\beta \in R$ such that $\alpha \beta=1^{*}$.

Solution: Define $\beta=\left\{p \in Q, p>0: \exists r>1, \frac{1}{p r} \notin \alpha\right\} \cup\{p \in Q, p \leq 0\}$. Show that β is a cut. Indeed, β is not empty: take p such that $p \notin \alpha$. Then $1 / 2 p$ is in β. Next, β is not all Q. Indeed, take rational number $q>0$ and $q \in \alpha$. Then $1 / q$ is not in β. Next, β has the property that if $b \in \beta$ then $b+r^{\prime} \in \beta$ for some $r^{\prime}>0$. Indeed, without loss of generality assume that $b>0$. We know that $\frac{1}{b r} \notin \alpha$ for some $r>1$. If we represent $b r=(b+\varepsilon) r^{\prime}$ for some $r^{\prime}>1$ and $\varepsilon>0$ then we are done because $b+\varepsilon \in \beta$. Indeed, choose $\varepsilon>0$ such that $\frac{b r}{b+\varepsilon}>1$, for example any $0<\varepsilon<b r-b$ works fine.

Next, we prove $\alpha \beta=1^{*}$. This is done in two steps.
Part I: $1^{*} \subset \alpha \beta$.
Recall that $\alpha \beta$ are those rational numbers p such that $p \leq a b$ for some choices $a \in \alpha, b \in \beta$ and $a, b>0$.

Pick any element $q<1, q>0$. It is enough to show that $q \in \alpha \beta$ (if $q \leq 0$ there is nothing to prove). Let n be a positive integer (large enough) such that $\frac{n}{n+2}>q$. Clearly such n exists because $q<1$.

Let $u>0$ be a positive rational number such that $u \in \alpha$. Consider $w=\frac{u}{n}$. Clearly $w \in \alpha$. There exists a positive integer $m>0$ such that $m w \in \alpha$ but $(m+1) w \notin \alpha$. Notice that $m \geq n$. Consider $(m+2) w$ which is also not in α. The claim is that $\frac{1}{w(m+2)} \in \beta$. Indeed, take $r=\frac{m+2}{m+1}>1$, then clearly $\frac{1}{(m+2) w} \cdot r=(m+1) w \notin \alpha$.

So we found two elements $\frac{1}{w(m+2)} \in \beta$, and $m w \in \alpha$. Let us show that their product is greater than q. Indeed, we have $\frac{1}{w(m+2)} \cdot m w=\frac{m}{m+2} \geq \frac{n}{n+2}>q$.

Part II: $\alpha \beta \subset 1^{*}$. We want to show that if $t \in \alpha \beta$ then $t<1$. Without loss of generality assume $t>0$ otherwise there is nothing to prove. Since $t \in \alpha \beta$ then $t \leq a b$ for some $a \in \alpha$ and $b \in \beta$ and $a, b>0$. Now by definition of β, there exists $r>1$ such that $\frac{1}{b r} \notin \alpha$, i.e., $\frac{1}{b r}>a$. This implies that $1>\frac{1}{r}>a b \geq t$.

4. The rest of the problems

Chapter 1, Exercise 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18.

5. The last problem

Take any real number $t \leq 0$, and let $p \leq t$ and $q \leq t$. Let $a \geq 0$. Show that

$$
p \sqrt{a^{2}+(y+b)^{2}}+q \sqrt{a^{2}+(y-b)^{2}}-2 t y \leq-a\left(\sqrt{p^{2}-t^{2}}+\sqrt{q^{2}-t^{2}}\right)
$$

holds true for any real number $b \in R$ and any $y \geq 0$.
Solution: Amir gave a nice solution. Here is a similar one. We will apply Cauchy-Schwarz inequality twice:

$$
\sqrt{A^{2}+B^{2}} \sqrt{B^{2}+D^{2}} \geq|A B|+|C D|
$$

for any real numbers $A, B, C, D \in \mathbb{R}$. Indeed we have

$$
\begin{aligned}
& p \sqrt{a^{2}+(y+b)^{2}}+q \sqrt{a^{2}+(y-b)^{2}}-2 t y= \\
& -\sqrt{\left(p^{2}-t^{2}\right)+t^{2}} \sqrt{a^{2}+(y+b)^{2}}-\sqrt{\left(q^{2}-t^{2}\right)+t^{2}} \sqrt{a^{2}+(y-b)^{2}}-2 t y \leq \\
& -a \sqrt{p^{2}-t^{2}}-|t(y+b)|-a \sqrt{q^{2}-t^{2}}-|t(y-b)|-2 t y \leq-a\left(\sqrt{p^{2}-t^{2}}+\sqrt{q^{2}-t^{2}}\right) .
\end{aligned}
$$

In the last step we used the triangle inequality $-|t(y+b)|-|t(y-b)|-2 t y \leq 0$.

