
PROBLEM SET I (DUE OCT. 26/2018)

1. Problem 1 (Proposition 1.18, Rudin)

The following statements are true in every ordered field

(a) If x > 0 then −x < 0, and vice versa.
(b) If x > 0 and y < z then xy < xz.
(c) If x < 0 and y < z then xy > xz.
(d) If x 6= 0 then x2 > 0. In particular, 1 > 0.
(e) If 0 < x < y then 0 < 1/y < 1/x.

Solution: See Rudin.

2. Problem 2

Let α ∈ R be a cut, and let w be a positive rational number. Show that there exists an integer
n such that nw ∈ α but (n+ 1)w /∈ α.

Solution: first we show that there exists a positive integer m > 0 such that mw /∈ α. Indeed,
assume contrary. Consider the set of all rational cuts A = {mw}m≥1. Then α is an upper bound
for this set A. Put t = supA. Since w > 0 it follows that t − w < t, i.e., t − w is not an upper
bound for A. Hence there exists an element in A, say m1w such that m1w > t − w. The latter
implies that w(m1 + 1) > t which is a contradiction. Thus there exists a positive integer m such
that mw /∈ α.

Next, look at (m − 1)w. If it happens that (m − 1)w ∈ α then we are done because we can
take n = m− 1. Otherwise we continuo and look at (m− 2)w, .. etc. Let us show that for some
positive integer k we must have (m−k)w /∈ α (the process will stop). Indeed, otherwise consider
the set B = {pw}p≤m, and notice that α < pw for any integer p ≤ m, i.e., α is a lower bound.
Then arguing similarly as before we come to a contradiction.

3. Problem 3

Let 1∗ = {p ∈ Q : p < 1}. Show that for any cut α ∈ R, α > 0∗, there exists a cut β ∈ R
such that αβ = 1∗.

Solution: Define β = {p ∈ Q, p > 0 : ∃r > 1, 1
pr /∈ α} ∪ {p ∈ Q, p ≤ 0}. Show that β is a

cut. Indeed, β is not empty: take p such that p /∈ α. Then 1/2p is in β. Next, β is not all Q.
Indeed, take rational number q > 0 and q ∈ α. Then 1/q is not in β. Next, β has the property
that if b ∈ β then b + r′ ∈ β for some r′ > 0. Indeed, without loss of generality assume that
b > 0. We know that 1

br /∈ α for some r > 1. If we represent br = (b + ε)r′ for some r′ > 1 and

ε > 0 then we are done because b+ ε ∈ β. Indeed, choose ε > 0 such that br
b+ε > 1, for example

any 0 < ε < br − b works fine.
Next, we prove αβ = 1∗. This is done in two steps.
Part I: 1∗ ⊂ αβ.
Recall that αβ are those rational numbers p such that p ≤ ab for some choices a ∈ α, b ∈ β

and a, b > 0.
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Pick any element q < 1, q > 0. It is enough to show that q ∈ αβ (if q ≤ 0 there is nothing
to prove). Let n be a positive integer (large enough) such that n

n+2 > q. Clearly such n exists
because q < 1.

Let u > 0 be a positive rational number such that u ∈ α. Consider w = u
n . Clearly w ∈ α.

There exists a positive integer m > 0 such that mw ∈ α but (m + 1)w /∈ α. Notice that
m ≥ n. Consider (m + 2)w which is also not in α. The claim is that 1

w(m+2) ∈ β. Indeed, take

r = m+2
m+1 > 1, then clearly 1

1
(m+2)w

·r = (m+ 1)w /∈ α.

So we found two elements 1
w(m+2) ∈ β, and mw ∈ α. Let us show that their product is greater

than q. Indeed, we have 1
w(m+2) ·mw = m

m+2 ≥
n

n+2 > q.

Part II: αβ ⊂ 1∗. We want to show that if t ∈ αβ then t < 1. Without loss of generality
assume t > 0 otherwise there is nothing to prove. Since t ∈ αβ then t ≤ ab for some a ∈ α and
b ∈ β and a, b > 0. Now by definition of β, there exists r > 1 such that 1

br /∈ α, i.e., 1
br > a. This

implies that 1 > 1
r > ab ≥ t.

4. The rest of the problems

Chapter 1, Exercise 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18.

5. The last problem

Take any real number t ≤ 0, and let p ≤ t and q ≤ t. Let a ≥ 0. Show that

p
√
a2 + (y + b)2 + q

√
a2 + (y − b)2 − 2ty ≤ −a

(√
p2 − t2 +

√
q2 − t2

)
holds true for any real number b ∈ R and any y ≥ 0.

Solution: Amir gave a nice solution. Here is a similar one. We will apply Cauchy–Schwarz
inequality twice: √

A2 +B2
√
B2 +D2 ≥ |AB|+ |CD|

for any real numbers A,B,C,D ∈ R. Indeed we have

p
√
a2 + (y + b)2 + q

√
a2 + (y − b)2 − 2ty =

−
√

(p2 − t2) + t2
√
a2 + (y + b)2 −

√
(q2 − t2) + t2

√
a2 + (y − b)2 − 2ty ≤

− a
√
p2 − t2 − |t(y + b)| − a

√
q2 − t2 − |t(y − b)| − 2ty ≤ −a

(√
p2 − t2 +

√
q2 − t2

)
.

In the last step we used the triangle inequality −|t(y + b)| − |t(y − b)| − 2ty ≤ 0.
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