Name: \qquad Signature: \qquad
There are no calculators or notes allowed. You will be given exactly 120 min . for this exam.
Please raise your hand if you have any questions and I will come to you. Show all your work to receive credit.

Page	1	2	3	4	5	6	Total
Score							
Max	8	7	9	8	9	9	50

1. $(4+4=8$ points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Assume that for any rational $p \in \mathbb{Q}$ we have $f(p)>0$.
(a) Does it imply that $f(x) \geq 0$ for all $x \in \mathbb{R}$?
(b) Does it imply that $f(x)>0$ for all $x \in \mathbb{R}$?

Solution: (a) Yes. Assume contrary that $f(s)<0$ for some $s \in \mathbb{R}$. Since \mathbb{Q} is dense in \mathbb{R} we can choose $\left\{q_{j}\right\}_{j \geq 1}$, sequence of rational numbers, such that $\lim _{j \rightarrow \infty} q_{j}=s$. By continuity $\lim _{j \rightarrow \infty} f\left(q_{j}\right)=f(s)<0$. This means that for any $\varepsilon>0$ there exists $N>0$ such that for all $j \geq N$ we have $\left|f(s)-f\left(q_{j}\right)\right|<\varepsilon$ as soon as $j \geq N$. Now, $f(s)$ is negative number and $f\left(q_{j}\right)$ are positive. If we pick $\varepsilon=\frac{f(s)}{2}$ then we come to a contradiction.
(b) No, take $f(x)=|x-\sqrt{2}|$.
2. (7 points)

Does the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ converge?
Solution. Let us apply the ratio test

$$
\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\frac{n^{n}}{(n+1)^{n}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
$$

The ratio converges to $\frac{1}{e}<1$. So the series must converge .
3. (9 points) Let K be a compact set in a metric space X, i.e.. from any open cover of K one can extract finite sub-cover. Show that K is closed. (hint: prove that the complement of K is open).

Solution: Let us follows the hint. Pick $x \in K^{c}$. We should find an open neighborhood of x which does not intersect with K. For any $p \in K$, let $d(x, p)>0$ be a distance between x and p. Let $N_{\frac{d(x, p)}{3}}(x)$ and $N_{\frac{d(x, p)}{3}}(p)$ be neighborhoods of radius $\frac{d(x, p)}{3}$ centered at points x and p correspondingly. Clearly they do not intersect with each other. Now $K \subset \cup_{p \in K} N_{\frac{d(x, p)}{3}}(p)$. We can extract finite sub-cover, say we find $p_{1}, p_{2} \ldots, p_{n} \in K$ such that $K \subset N_{\frac{d\left(x, p_{1}\right)}{3}}\left(p_{1}\right) \cup \ldots \cup N_{\frac{d\left(x, p_{n}\right)}{3}}\left(p_{n}\right)$. Choose $r=\min \left\{\frac{d\left(x, p_{1}\right)}{3}, \ldots, \frac{d\left(x, p_{n}\right)}{3}\right\}$. Then $N_{r}(x)=\cap_{j=1}^{n} N_{\frac{d\left(x, p_{j}\right)}{3}}(x)$ is an open neighborhood of x which does not intersect with K.
4. (8 points)

Let $f:(0,1) \rightarrow \mathbb{R}$ be a uniformly continuous function. Show that f must be bounded, i.e., there exists $M>0$ such that $|f(x)|<M$ for all $x \in(0,1)$.

Solution.

Uniform continuity says that for, say $\varepsilon=1$, there exists $\delta>0$ such that $|f(x)-f(y)|<1$ whenever $|x-y|<\delta$. Take N very large, and divide $(0,1)$ into N equal subintervals, say $\left(0, \frac{1}{N}\right],\left[\frac{1}{N}, \frac{2}{N}\right], \ldots,\left[\frac{N-1}{N}, 1\right)$. Each of them is of length $\frac{1}{N}$. So choose $N>0$ so that $\frac{1}{N}<\delta$. Now pick any points $x_{1} \in\left(0, \frac{1}{N}\right], x_{2} \in\left[\frac{1}{N}, \frac{2}{N}\right], \ldots, x_{N} \in\left[\frac{N-1}{N}, 1\right)$, and let $R=\max \left\{\left|f\left(x_{1}\right)\right|, \ldots,\left|f\left(x_{N}\right)\right|\right\}$. If $x \in(0,1)$, then there is a point x_{j} such that $\left|x-x_{j}\right|<\delta$ since x will fall into one of these N intervals. This implies that $\left|f(x)-f\left(x_{j}\right)\right|<1$ which gives $|f(x)|<1+\left|f\left(x_{j}\right)\right| \leq 1+R$. Therefore $|f(x)|<1+R$ for all $x \in(0,1)$.
5. (9 points each).

Let $f:(0,3) \rightarrow \mathbb{R}$ be a continuous function such that $f^{\prime}(x), f^{\prime \prime}(x), \ldots, f^{(2019)}(x)$ exist and are continuous for all $x \in(0,3)$. Assume $f(1)=f^{\prime}(1)=f^{\prime \prime}(1)=\ldots=f^{(2018)}(1)=0$. Also suppose that $f(2)=0$. Show that there exists a point $t \in(1,2)$ such that $f^{(2019)}(t)=0$.

Solution. Indeed, since $f(1)=f(2)=0$, there exists a point $t_{1} \in(1,2)$ such that $f^{\prime}\left(t_{1}\right)=0$ by mean value theorem. Next, $f^{\prime}(1)=f^{\prime}\left(t_{1}\right)=0$, so there exists a point $t_{2} \in\left(1, t_{1}\right)$ such that $f^{\prime \prime}\left(t_{2}\right)=0$. In this way we construct points $t_{1}, t_{2}, \ldots, t_{2019}$. Notice that $f^{(2019)}\left(t_{2019}\right)=0$, and $t_{2019} \in(1,2)$.
6. (9 points)

Let a_{1}, \ldots, a_{10} be nonnegative numbers such that $\sum_{k=1}^{10} a_{k}=1$. Also assume that $\sum_{k=1}^{10} \frac{a_{k}}{k}>\frac{3}{5}$. Show that $\sum_{k=5}^{10} a_{k}<\frac{1}{2}$.

Solution.

$1=\sum_{k=1}^{10} a_{k}=\sum_{k=1}^{4} a_{k}+\sum_{k=5}^{10} a_{k}=A+B$. We have $A+B=1$. Then

$$
\frac{3}{5}<\sum_{k=1}^{10} \frac{a_{k}}{k}=\sum_{k=1}^{4} \frac{a_{k}}{k}+\sum_{k=5}^{10} \frac{a_{k}}{k} \leq A+\frac{B}{5}=1-B+\frac{B}{5}=1-\frac{4 B}{5}
$$

The latter implies $\frac{4 B}{5}<\frac{2}{5}$, and therefore $B<\frac{1}{2}$.

