Name:	Signature:
	516110101

There are no calculators or notes allowed. You will be given exactly 120 min. for this exam. Please raise your hand if you have any questions and I will come to you. Show all your work to receive credit. 1. (10 points) Calculate the limit

$$\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{n+k}$$

Solution: We have

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+(k/n)} = \int_{0}^{1} \frac{1}{1+x} dx = \ln(2)$$

2. (10 points)

Let f be a real valued function on \mathbb{R} which is infinitely many times differentiable. Assume that $|f'''| \leq 1$ on \mathbb{R} . Show that there exist constants $A, B, C, D \geq 0$ such that

$$|f(x)| \le A + B|x| + Cx^2 + D|x^3|$$
 for all $x \in \mathbb{R}$

Solution: By Taylor's formula

$$|f(x)| = \left| f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(t)}{3!}x^3 \right| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \left| \frac{f''(0)}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \frac{|f''(0)|}{2!} \right| x^2 + \frac{1}{3!}|x^3| \le |f(0)| + |f'(0)||x| + \frac{|f''(0)|}{2!} \left| x^2 + \frac{1}{3!} \right| x^3| \le |f(0)| + |f'(0)||x| + \frac{|f''(0)|}{2!} \left| x^2 + \frac{1}{3!} \right| x^3|$$

3. (5+5 points)

(a) Give an example of a sequence $S_{n,m}$ such that both $\lim_{m\to\infty} (\lim_{n\to\infty}) S_{n,m}$ and $\lim_{n\to\infty} (\lim_{m\to\infty}) S_{n,m}$ exist but they are not equal.

(b) What does it mean that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on $(a, b) \subset \mathbb{R}$?

Solution:

(a) take $S_{n,m} = \frac{m}{n+m}$.

(b) it means that $s_N(x) = \sum_{n=1}^N f_n(x)$ converge uniformly to some function s(x) on (a, b), i.e., there exists a function s(x) on (a, b) such that for any $\varepsilon > 0$ there exists N > 0 such that $\sup_{x \in (a,b)} |s_k(x) - s(x)| < \varepsilon$ for all $k \ge N$.

4. (10 points)

Show that the series

$$\sum_{k=1}^{\infty} \frac{1}{1+x^{2k+1}}$$

converges uniformly on [2,3].

Solution: Notice that $\frac{1}{1+x^{2k+1}} \leq \frac{1}{1+2^{2k+1}} \leq \frac{1}{2^{2k+1}}$ on [2,3]. Therefore the claim follows by using Weierstrass test and the fact that $\sum_{k\geq 1} \frac{1}{2^{2k+1}}$ converges (geometric series).

5. (10 points each). Suppose we are given a family of differentiable functions $\{f_n\}_{n\geq 1}$ on [0,1] such that $|f'_n(x)| \leq 10$ for all $x \in [0,1]$ and all $n \geq 1$. Assume that $|f_n(x)| \leq e^x$ for all $x \in [0,1]$ and all $n \geq 1$. Does $\{f_n\}_{n\geq 1}$ contain a uniformly convergent subsequence?

Remark: if you want to use a certain theorem then please clearly formulate the theorem with all its assumptions (you do not have to prove the theorem).

Solution: The family $\{f_n\}$ is equicontinuous. Indeed $|f_n(x) - f_n(y)| = |f'_n(c)||x - y| \le 10|x - y|$. Also $\{f_n\}_{n \ge 1}$ is pointwise bounded because $|f_n(x)| \le e^x$. Therefore $\{f_n\}$ contains uniformly convergent subsequence by Arzelá–Ascoli theorem.

6. (10 points)

Show that there exists sequence of polynomials $\{P_n\}_{n\geq 1}$ such that P_n uniformly converges to $f(x) = e^{\sin(x)} - 1$ on [-1, 1]. Moreover $P_n(0) = 0$ for all $n \geq 1$.

Solution: By Stone–Weierstrass there exists a sequence of polynomials $Q_n(x)$ such that $Q_n(x)$ converges uniformly to f(x). Since f(0) = 0 then $Q_n(0) \to 0$ as $n \to \infty$. Consider polynomials $P_n(x) = Q_n(x) - Q_n(0)$. Then

$$|f - P_n| = |f(x) - Q_n(x)| + |Q_n(0)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

as soon as $n \ge N$ for sufficiently large N.

7. (10 points)

The Gamma functions $\Gamma(x)$ is defined as $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. Show that Γ is log-convex on $(0, \infty)$.

Soluiton: let us apply Hölder inequality

$$\Gamma(x)^{\alpha}\Gamma(y)^{1-\alpha} = \left(\int_0^\infty t^{x-1}e^{-t}dt\right)^{\alpha} \left(\int_0^\infty t^{y-1}e^{-t}dt\right)^{1-\alpha} \ge \int_0^\infty t^{\alpha x + (1-\alpha)y-1}e^{-t}dt = \Gamma(\alpha x + (1-\alpha)y)$$

for all $\alpha \in (0,1)$ (and in fact $\alpha \in [0,1]$).

8. (10 points) Find the asymptotic behaviour of the the sum

$$\sum_{k=0}^{n} \frac{(-1)^k}{n+k+1} \binom{n}{k}$$

when n goes to infinity.

Solution: let us apply Laplace method.

$$\sum_{k=0}^{n} \frac{(-1)^{k}}{n+k+1} \binom{n}{k} = \sum_{k=0}^{n} \int_{0}^{1} (-1)^{k} \binom{n}{k} t^{n+k} dt = \int_{0}^{1} (t(1-t))^{n} dt = \int_{0}^{1} e^{n \ln(t(1-t))} dt$$

Since $g(t) := \ln(t(1-t))$ attains unique global maximum at point t = 1/2 (and g'(1/2) = 0) and outside of a neighborhood of t = 1/2 we have $g(1/2) - \delta > g(x)$ for some $\delta > 0$ and all $x \in (N_{\varepsilon}(1/2))^c$ we can apply Laplace method. We have $g(1/2) = \ln(1/4)$, and $g''(t) = -\frac{1}{t^2} - \frac{1}{(1-t)^2}$, so g''(1/2) = -8 we have

$$\int_0^1 e^{n\ln(t(1-t))} dt \sim e^{ng(1/2)} \sqrt{\frac{2\pi}{n|g''(1/2)|}} = e^{n\ln(1/4)} \sqrt{\frac{2\pi}{8n}} = \frac{\sqrt{\pi}}{2 \cdot 4^n \sqrt{n}} = \frac{\sqrt{\pi}}{2^{2n+1}\sqrt{n}}$$

as n goes to infinity.