Name: Signature:

There are no calculators or notes allowed. You will be given exactly 120 min . for this exam. Please raise your hand if you have any questions and I will come to you. Show all your work to receive credit.

1. (10 points) Calculate the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k}
$$

Solution: We have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+(k / n)}=\int_{0}^{1} \frac{1}{1+x} d x=\ln (2)
$$

2. (10 points)

Let f be a real valued function on \mathbb{R} which is infinitely many times differentiable. Assume that $\left|f^{\prime \prime \prime}\right| \leq 1$ on \mathbb{R}.
Show that there exist constants $A, B, C, D \geq 0$ such that

$$
|f(x)| \leq A+B|x|+C x^{2}+D\left|x^{3}\right| \quad \text { for all } \quad x \in \mathbb{R}
$$

Solution: By Taylor's formula

$$
|f(x)|=\left|f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(t)}{3!} x^{3}\right| \leq|f(0)|+\left|f^{\prime}(0)\right||x|+\left|\frac{f^{\prime \prime}(0)}{2!}\right| x^{2}+\frac{1}{3!}\left|x^{3}\right|
$$

3. $(5+5$ points $)$
(a) Give an example of a sequence $S_{n, m}$ such that both $\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty}\right) S_{n, m}$ and $\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty}\right) S_{n, m}$ exist but they are not equal.
(b) What does it mean that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on $(a, b) \subset \mathbb{R}$?

Solution:
(a) take $S_{n, m}=\frac{m}{n+m}$.
(b) it means that $s_{N}(x)=\sum_{n=1}^{N} f_{n}(x)$ converge uniformly to some function $s(x)$ on (a, b), i.e., there exists a function $s(x)$ on (a, b) such that for any $\varepsilon>0$ there exists $N>0$ such that $\sup _{x \in(a, b)}\left|s_{k}(x)-s(x)\right|<\varepsilon$ for all $k \geq N$.
4. (10 points)

Show that the series

$$
\sum_{k=1}^{\infty} \frac{1}{1+x^{2 k+1}}
$$

converges uniformly on $[2,3]$.
Solution: Notice that $\frac{1}{1+x^{2 k+1}} \leq \frac{1}{1+2^{2 k+1}} \leq \frac{1}{2^{2 k+1}}$ on [2,3]. Therefore the claim follows by using Weierstrass test and the fact that $\sum_{k \geq 1} \frac{1}{2^{2 k+1}}$ converges (geometric series).
5. (10 points each). Suppose we are given a family of differentiable functions $\left\{f_{n}\right\}_{n \geq 1}$ on $[0,1]$ such that $\left|f_{n}^{\prime}(x)\right| \leq$ 10 for all $x \in[0,1]$ and all $n \geq 1$. Assume that $\left|f_{n}(x)\right| \leq e^{x}$ for all $x \in[0,1]$ and all $n \geq 1$. Does $\left\{f_{n}\right\}_{n \geq 1}$ contain a uniformly convergent subsequence?

Remark: if you want to use a certain theorem then please clearly formulate the theorem with all its assumptions (you do not have to prove the theorem).

Solution: The family $\left\{f_{n}\right\}$ is equicontinuous. Indeed $\left|f_{n}(x)-f_{n}(y)\right|=\left|f_{n}^{\prime}(c)\right||x-y| \leq 10|x-y|$. Also $\left\{f_{n}\right\}_{n \geq 1}$ is pointwise bounded because $\left|f_{n}(x)\right| \leq e^{x}$. Therefore $\left\{f_{n}\right\}$ contains uniformly convergent subsequence by Arzelá-Ascoli theorem.
6. (10 points)

Show that there exists sequence of polynomials $\left\{P_{n}\right\}_{n \geq 1}$ such that P_{n} uniformly converges to $f(x)=e^{\sin (x)}-1$ on $[-1,1]$. Moreover $P_{n}(0)=0$ for all $n \geq 1$.

Solution: By Stone-Weierstrass there exists a sequence of polynomials $Q_{n}(x)$ such that $Q_{n}(x)$ converges uniformly to $f(x)$. Since $f(0)=0$ then $Q_{n}(0) \rightarrow 0$ as $n \rightarrow \infty$. Consider polynomials $P_{n}(x)=Q_{n}(x)-Q_{n}(0)$. Then

$$
\left|f-P_{n}\right|=\left|f(x)-Q_{n}(x)\right|+\left|Q_{n}(0)\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}
$$

as soon as $n \geq N$ for sufficiently large N.
7. (10 points)

The Gamma functions $\Gamma(x)$ is defined as $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$. Show that Γ is log-convex on $(0, \infty)$.
Soluiton: let us apply Hölder inequality

$$
\Gamma(x)^{\alpha} \Gamma(y)^{1-\alpha}=\left(\int_{0}^{\infty} t^{x-1} e^{-t} d t\right)^{\alpha}\left(\int_{0}^{\infty} t^{y-1} e^{-t} d t\right)^{1-\alpha} \geq \int_{0}^{\infty} t^{\alpha x+(1-\alpha) y-1} e^{-t} d t=\Gamma(\alpha x+(1-\alpha) y)
$$

for all $\alpha \in(0,1)$ (and in fact $\alpha \in[0,1]$).
8. (10 points) Find the asymptotic behaviour of the the sum

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{n+k+1}\binom{n}{k}
$$

when n goes to infinity.
Solution: let us apply Laplace method.

$$
\sum_{k=0}^{n} \frac{(-1)^{k}}{n+k+1}\binom{n}{k}=\sum_{k=0}^{n} \int_{0}^{1}(-1)^{k}\binom{n}{k} t^{n+k} d t=\int_{0}^{1}(t(1-t))^{n} d t=\int_{0}^{1} e^{n \ln (t(1-t))} d t
$$

Since $g(t):=\ln (t(1-t))$ attains unique global maximum at point $t=1 / 2$ (and $\left.g^{\prime}(1 / 2)=0\right)$ and outside of a neighborhood of $t=1 / 2$ we have $g(1 / 2)-\delta>g(x)$ for some $\delta>0$ and all $x \in\left(N_{\varepsilon}(1 / 2)\right)^{c}$ we can apply Laplace method. We have $g(1 / 2)=\ln (1 / 4)$, and $g^{\prime \prime}(t)=-\frac{1}{t^{2}}-\frac{1}{(1-t)^{2}}$, so $g^{\prime \prime}(1 / 2)=-8$ we have

$$
\int_{0}^{1} e^{n \ln (t(1-t))} d t \sim e^{n g(1 / 2)} \sqrt{\frac{2 \pi}{n\left|g^{\prime \prime}(1 / 2)\right|}}=e^{n \ln (1 / 4)} \sqrt{\frac{2 \pi}{8 n}}=\frac{\sqrt{\pi}}{2 \cdot 4^{n} \sqrt{n}}=\frac{\sqrt{\pi}}{2^{2 n+1} \sqrt{n}}
$$

as n goes to infinity.

