MIDTERM 205B, WINTER 2019

Problem 1. Give an example of a bounded function on $[0,1]$ which is not Riemann integrable.

Problem 2. Give an example of sequence of continuous functions $\left\{f_{n}\right\}_{n \geq 1}$ and $\left\{g_{n}\right\}_{n \geq 1}$ defined on $(0,1)$ such that f_{n} converges uniformly to f on $(0,1)$, also g_{n} converges uniformly to g on $(0,1)$ but $f_{n} g_{n}$ does not converge uniformly to $f g$ on $(0,1)$.

Problem 3. Let f be a continuous function $[0,1]$. Show that if $\int_{0}^{1} f^{2}(x) d x=0$ then $f=0$ on $[0,1]$.

Problem 4. Let f be a continuous function on $[0,1]$ such that $\int_{0}^{1} f(x) x^{n} d x=0$ for all $n \geq 0$. Show that $f=0$ on $[0,1]$.

Hint: use Stone-Weierstrass theorem and the previous problem.

Problem 5. Take any two positive continuous functions f, g on $[0,1]$ such that the graphs of these functions cross at exactly one point $s \in(0,1)$. Assume $f(0)<g(0)$ and $f(1)>g(1)$, and $\int_{0}^{1} f=\int_{0}^{1} g$. Show that $\int_{0}^{1} x f(x) d x \geq \int_{0}^{1} x g(x) d x$.

Hint: Consider $f(x)-g(x)$. Try to multiply the latter expression by some factor to make the result nonnegative and finally integrate it over the interval $[0,1]$.

