MIDTERM 205B, WINTER 2019

Problem 1. Give an example of a bounded function on [0,1] which is not Riemann integrable.

Problem 2. Give an example of sequence of continuous functions $\{f_n\}_{n\geq 1}$ and $\{g_n\}_{n\geq 1}$ defined on (0,1) such that f_n converges uniformly to f on (0,1), also g_n converges uniformly to g on (0,1) but f_ng_n does not converge uniformly to fg on (0,1). **Problem 3.** Let f be a continuous function [0,1]. Show that if $\int_0^1 f^2(x) dx = 0$ then f = 0 on [0,1].

Problem 4. Let f be a continuous function on [0,1] such that $\int_0^1 f(x)x^n dx = 0$ for all $n \ge 0$. Show that f = 0 on [0,1].

Hint: use Stone-Weierstrass theorem and the previous problem.

Problem 5. Take any two positive continuous functions f, g on [0, 1] such that the graphs of these functions cross at exactly one point $s \in (0, 1)$. Assume f(0) < g(0) and f(1) > g(1), and $\int_0^1 f = \int_0^1 g$. Show that $\int_0^1 x f(x) dx \ge \int_0^1 x g(x) dx$. Hint: Consider f(x) - g(x). Try to multiply the latter expression by some factor to make the result nonnegative and finally integrate it over the interval [0, 1].