MIDTERM 205A, FALL 2018

Problem 1. If $k \ge 2$ and $x \in \mathbb{R}^k$, prove that there exists $y \in \mathbb{R}^k$ such that $y \ne 0$ but $x \cdot y = 0$.

Problem 2. For real numbers $x, y \in \mathbb{R}$ define the function $d(x, y) = \frac{|x-y|}{1+|x-y|}$. Is it a metric? Explain your answer.

Problem 3. Give an example of an open cover of the **open** interval (segment) (0,1) which has no finite subcover.

Problem 4. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable (separable means that it contains countable dense subset).

Problem 5. Let G be an open set in \mathbb{R} which is not upper bounded. Does there exist a real number b > 0 such that the set $\{nb\}_{n \ge 1} \cap G$ is infinite?