MIDTERM 205A, FALL 2018

Problem 1. If $k \geq 2$ and $x \in \mathbb{R}^{k}$, prove that there exists $y \in \mathbb{R}^{k}$ such that $y \neq 0$ but $x \cdot y=0$.
Problem 2. For real numbers $x, y \in \mathbb{R}$ define the function $d(x, y)=\frac{|x-y|}{1+|x-y|}$. Is it a metric? Explain your answer.

Problem 3. Give an example of an open cover of the open interval (segment) $(0,1)$ which has no finite subcover.

Problem 4. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable (separable means that it contains countable dense subset).

Problem 5. Let G be an open set in \mathbb{R} which is not upper bounded. Does there exist a real number $b>0$ such that the set $\{n b\}_{n \geq 1} \cap G$ is infinite?

