PROBLEM 5

Let G be an open set in \mathbb{R} which is not upper bounded. Does there exist $b>0$ such that $\{n b\}_{n \geq 1} \cap G$ is infinite?

Proof. The answer is yes.
Pick any $0<p<q$ and $n_{0}>0$. Then $\cup_{n \geq n_{0}}(n p, n q)$ contains (C, ∞) for some $C>0$ (why?). Indeed, notice that when n increases then the length of the segment $(n p, n q)$ is $n(q-p)$ which also increases to infinity. Let us look at two consecutive segments $(n p, n q)$ and $((n+1) p,(n+1) q)$. The distance between $n p$ and $(n+1) p$ is p which is fixed, therefore it is clear that starting from some sufficiently large $n_{0}>0$ we will have $(n+1) p \in(n p, n q)$ for all $n \geq n_{0}$.

Since $(C, \infty) \cup G$ is nonempty it follows that there exists an integer $N_{1} \geq n_{0}$ such that $\left(N_{1} p, N_{1} q\right) \cap G$ is not empty. This implies that there exists $x \in(p, q)$ such that $N_{1} x \in G$. Since G is open there exist $0<p_{1}<x<q_{1}$ (in a tiny neighborhood of x) with $\left[p_{1}, q_{1}\right] \subset(p, q)$ such that $\left[N_{1} p_{1}, N_{1} q_{1}\right] \subset G$.

Indeed, $N_{1} x \in G \cap\left(N_{1} p, N_{1} q\right)$. Since $G \cap\left(N_{1} p, N_{1} q\right)$ is open we have $\left(N_{1} x-\delta, N_{q} x+\delta\right) \subset G \cap$ $\left(N_{1} p, N_{1} q\right)$ for some small $\delta>0$. Then $\left(x-\frac{\delta}{N}, x+\frac{N}{\delta}\right) \subset(p, q)$. Choose $\left[p_{1}, q_{1}\right]=\left[x-\frac{\delta}{2 N}, x+\frac{\delta}{2 N}\right]$

Next, consider $0<p_{1}<q_{1}$, and $n_{1}>0$ (with $n_{1}>N_{1}$), and repeat the previous step. Thus we obtain the sequence of intervals $\left[p_{1}, q_{1}\right] \supset\left[p_{2}, q_{2}\right] \supset \ldots$ and sequence of strictly increasing integers $N_{1}<N_{2}<\ldots$ such that $\left[N_{1} p_{1}, N_{1} q_{1}\right],\left[N_{2} p_{2}, N_{2} q_{2}\right], \ldots, \subset G$. Notice that for $b \in \cap_{k \geq 1}\left[p_{k}, q_{k}\right]$ we have $N_{1} b, N_{2} b, \ldots \in G$.

