PROBLEM 5

Let G be an open set in \mathbb{R} which is not upper bounded. Does there exist b > 0 such that $\{nb\}_{n \ge 1} \cap G$ is infinite?

Proof. The answer is yes.

Pick any $0 and <math>n_0 > 0$. Then $\bigcup_{n \ge n_0} (np, nq)$ contains (C, ∞) for some C > 0 (why?). Indeed, notice that when n increases then the length of the segment (np, nq) is n(q-p) which also increases to infinity. Let us look at two consecutive segments (np, nq) and ((n + 1)p, (n + 1)q). The distance between np and (n + 1)p is p which is fixed, therefore it is clear that starting from some sufficiently large $n_0 > 0$ we will have $(n + 1)p \in (np, nq)$ for all $n \ge n_0$.

Since $(C, \infty) \cup G$ is nonempty it follows that there exists an integer $N_1 \ge n_0$ such that $(N_1p, N_1q) \cap G$ is not empty. This implies that there exists $x \in (p, q)$ such that $N_1x \in G$. Since G is open there exist $0 < p_1 < x < q_1$ (in a tiny neighborhood of x) with $[p_1, q_1] \subset (p, q)$ such that $[N_1p_1, N_1q_1] \subset G$.

Indeed, $N_1 x \in G \cap (N_1 p, N_1 q)$. Since $G \cap (N_1 p, N_1 q)$ is open we have $(N_1 x - \delta, N_q x + \delta) \subset G \cap (N_1 p, N_1 q)$ for some small $\delta > 0$. Then $(x - \frac{\delta}{N}, x + \frac{N}{\delta}) \subset (p, q)$. Choose $[p_1, q_1] = [x - \frac{\delta}{2N}, x + \frac{\delta}{2N}]$

Next, consider $0 < p_1 < q_1$, and $n_1 > 0$ (with $n_1 > N_1$), and repeat the previous step. Thus we obtain the sequence of intervals $[p_1, q_1] \supset [p_2, q_2] \supset \dots$ and sequence of strictly increasing integers $N_1 < N_2 < \dots$ such that $[N_1p_1, N_1q_1], [N_2p_2, N_2q_2], \dots, \subset G$. Notice that for $b \in \bigcap_{k \ge 1} [p_k, q_k]$ we have $N_1b, N_2b, \dots \in G$.