MATH 120A Prep: Complex Numbers I

1. Convert i and 1 to polar form and show that $i^4 = 1$.

Solution: Both 1 and i are on the unit circle, 1 has an angle of 0 and i has an angle of $\pi/2$ so their polar representations are

$$1 = 1e^{0i} i = 1e^{\frac{\pi i}{2}}$$

Then

$$i^4 = \left(e^{\frac{\pi i}{2}}\right)^4 = e^{2\pi i} = e^{0i} = 1$$

2. Write -2 + 2i and $1 + \sqrt{3}i$ in polar form and multiply.

Solution: -2 + 2i has radius and angle

$$r = \sqrt{(-2)^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$
 $\theta = \arctan(2/-2) = 3\pi/4$

so it has representation $2\sqrt{2}e^{3\pi/4}$. Also $1+\sqrt{3}i$ has radius and angle

$$r = \sqrt{1^2 + \sqrt{3}^2} = 2$$
 $\theta = \arctan(\sqrt{3}/1) = \frac{\pi}{3}$

so the polar representation is $2e^{\pi i/3}$. Therefore the product is

$$\left(2\sqrt{2}e^{3\pi i/4}\right)\left(2e^{\pi i/3}\right) = 4\sqrt{2}e^{13\pi i}12$$

3. What is $\frac{1}{re^{i\theta}}$ in polar form? [Hint: If $(re^{i\theta})(se^{i\phi}) = 1$ what do we need s and ϕ to be?]

Solution: Let $se^{i\phi}$ be the polar representation of $1/re^{i\theta}$, so

$$e^{i0}=1=(re^{i\theta})(se^{i\phi})=rse^{i(\theta+\phi)}$$

Then we need rs=1 and $\theta+\phi=0$ so $s=r^{-1}$ and $\phi=-\theta$. Therefore

$$\frac{1}{re^{i\theta}} = r^{-1}e^{-i\theta}$$