Examples:

1. Which proof technique would you use to show \(\sqrt{2} \) is irrational?

 Prove something is not true \(\rightarrow \) contradiction

 Setup: Assume \(\sqrt{2} \) is rational...

 Want to show: This gives a contradiction.

2. Which proof techniques would you use to show that \(n^2 \) is odd if and only if \(n \) is odd?

 Forward: If \(n^2 \) odd, then \(n \) odd.
 \[\text{not even} \rightarrow \text{not even} \]
 \[\# \text{Contrapositive} \]
 Assume \(n \) even.
 Conclude that \(n^2 \) is even.

 Backward: If \(n \) odd, then \(n^2 \) odd.
 \[\text{not even} \rightarrow \text{not even} \]
 \[\# \text{Direct} \]
 Assume \(n \) odd.
 Conclude that \(n^2 \) is odd.

3. Which proof technique would you use to show that for any positive integer \(n \), that \(n^3 - n \) is divisible by 3?

 Induction.

 Base Case: Show true for \(n = 1 \).

 Inductive Step: If this is true for \(n \), then it is also true for \(n+1 \).
4. Which proof technique would you use to show that for sets A, B, C we have $(A \setminus B) \cup (C \setminus B) \subseteq (A \cup C) \setminus B$?

$x \in (A \setminus B) \cup (C \setminus B)$ is really saying $x \in A \setminus B$ or $x \in C \setminus B$ or usually implies Proof by Cases.

Case 1: $x \in A \setminus B$
Show $x \in (A \cup C) \setminus B$

Case 2: Assume $x \in C \setminus B$
Show $x \in (A \cup C) \setminus B$.

One of the two options has to happen, so the statement is true.

5. Which proof technique would you use to show that if r and s are rational numbers then $r + s$ is rational?

Direct proof:
Assume r is rational and s is rational.
Prove $r + s$ is rational.