1. Show that $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ form a basis for \mathbb{R}^2. Generalize this to a basis for \mathbb{R}^n. Conclude that \mathbb{R}^n has dimension n. [Note: This is called the standard basis for \mathbb{R}^n.]

Solution: First we show \vec{e}_1 and \vec{e}_2 are linearly independent. Suppose $c_1 \vec{e}_1 + c_2 \vec{e}_2 = \vec{0}$, then

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

The equality of these vectors means $c_1 = 0$ and $c_2 = 0$ as desired. Now we show they span \mathbb{R}^2. Let $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ be any vector in \mathbb{R}^2. Then

$$v_1 \vec{e}_1 + v_2 \vec{e}_2 = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$$

as we wanted. Since these vectors are linearly independent and span \mathbb{R}^2, they are a basis for \mathbb{R}^2. We can generalize this to a basis for \mathbb{R}^n by considering vectors $\vec{e}_1, \ldots, \vec{e}_n$ where \vec{e}_i is a vector with a 1 in the ith row and zeros elsewhere.

This is a basis for \mathbb{R}^n by a very similar proof to the \mathbb{R}^2 case. Therefore \mathbb{R}^n has dimension n.

2. Prove that the vectors $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$ do not span \mathbb{R}^3.

Solution: We need only show that the matrix with these vectors as columns row reduces to one with a row of all zeros.

$$\begin{bmatrix} 0 & 2 & 4 \\ 1 & 1 & 1 \\ -1 & 1 & 3 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ -1 & 1 & 3 \end{bmatrix} \xrightarrow{R_3 - R_3 + R_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix} \xrightarrow{R_3 - R_3 - R_2} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a row of all zeros these vectors cannot span \mathbb{R}^3.

3. Show that two vectors are linearly dependent if and only if one is a scalar multiple of the other.

Solution: First suppose that vectors \(\vec{v}_1 \) and \(\vec{v}_2 \) are linearly dependent. Then there are constants \(c_1 \) and \(c_2 \) not both zero so that \(c_1 \vec{v}_1 + c_2 \vec{v}_2 = \vec{0} \).

Case 1: \(c_1 \neq 0 \). Then \(\vec{v}_1 = -c_2/c_1 \vec{v}_2 \) is a scalar multiple of \(\vec{v}_2 \).

Case 2: \(c_2 \neq 0 \). Then \(\vec{v}_2 = -c_1/c_2 \vec{v}_1 \) is a scalar multiple of \(\vec{v}_1 \).

In either case one vector is a scalar multiple of the other.

Now assume \(\vec{v}_1 \) and \(\vec{v}_2 \) are vectors and one is a scalar multiple of the other.

Case 1: \(\vec{v}_1 \) is a multiple of \(\vec{v}_2 \). Then there is a real number \(c \) so \(\vec{v}_1 = c \vec{v}_2 \). Then \(\vec{v}_1 - c \vec{v}_2 = \vec{0} \) so they are linearly dependent.

Case 2: \(\vec{v}_2 \) is a multiple of \(\vec{v}_1 \). Then there is a real number \(c \) so that \(\vec{v}_2 = c \vec{v}_1 \). So \(c \vec{v}_1 - \vec{v}_2 = \vec{0} \) and they are linearly dependent.

In either case the vectors are linearly dependent.