1. Show that \(\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) form a basis for \(\mathbb{R}^2 \). Generalize this to a basis for \(\mathbb{R}^n \). Conclude that \(\mathbb{R}^n \) has dimension \(n \). [Note: This is called the standard basis for \(\mathbb{R}^n \).]

2. Prove that the vectors \(\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \), \(\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \), and \(\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \) do not span \(\mathbb{R}^3 \).
3. Show that two vectors are linearly dependent if and only if one is a scalar multiple of the other.